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ABSTRACT. The thermal properties of PVA with different degree of hydrolysis (DH) was studied by 

preparation of aqueous polymer solution, followed by differential scanning calorimetry (DSC), 

thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The DSC result 

showed the typical partially crystalline materials, showing some phases of separation are characterized by a 

glass transition (Tg = 25-26 °C) related to the amorphous part of the material, followed by two endothermic 

peaks related to the melting point (Tm = 185-225) of the crystallites. Due to the same material (PVA) used, the 

main composition temperatures are close to each other (for peak I between 320 K and 350 K, and for peak II 

between 429 K and 430 K). Finally, FTIR confirmed that between the three materials P 100, P 87 and P 85, 

there were distinctness in the band absorbed between fully hydrolysed PVA, P 100 and partially hydrolysed 

PVA, P 85 and P 87. 
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1. INTRODUCTION 

Gas hydrate is an ice-like crystal composed of light gases such as methane, nitrogen and carbon dioxide, 

and it can be formed at a specific temperature and pressure condition. The formation of these hydrates can 

cause serious plugging inside the oil and gas pipeline [1]. Conventional method of removing hydrates is called 

thermodynamic hydrate inhibitor (THI) and this method uses a large dosage of chemical to shift the hydrate 

equilibrium curve to lower the temperature. Meanwhile, the alternative method for THI is the low dosage 

hydrate inhibitor (LHDI), whereby it is developed and the dosage intake is below 1 wt.%. There are two types 

of LHDI, which are kinetic hydrate inhibitor (KHI) and anti-agglomerant (AA). KHIs function is to inhibit and 

delay the nucleation of hydrate formation, whereas AAs keep the hydrate particles agglomerated in small 

particles. Previously tested KHIs polymers in several other researches are polyvinylcaprolactam (PVCap), 

polyvinylpyrrolidone (PVP), polyacrylamide (PAM) and more. Despite the abundance of research done on 

KHIs, the mechanisms of hydrate inhibition are not fully understood. Only several mechanisms [2-4] have 

been proposed. It is necessary to fully understand the properties of the polymer first in terms of molecular 
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organisation and composition to predict the interaction between the hydrate and inhibitor. In this way, the 

significant knowledge gap can be filled [5], where the general ideas of hydrate inhibition is known to be by 

the KHI’s polymers absorbing onto the hydrate surface crystals to prevent the complete formation of hydrate. 

Poly(vinyl alcohol) (PVA) is extensively used in industries in diverse applications such as biopolymer film, 

coating industry, food processing, medical industries, and it has also been used as hydrate inhibitor in oil and 

gas industries. PVA is a synthetic water-soluble polymer. Its backbones are composed only of carbon atoms, 

which are biodegradable  [6-9] under both aerobic and anaerobic conditions. In order to study the KHIs 

polymer adsorption process, it is important to look on the pendant group existing on the polymer itself. For 

example, some of the previous studied KHIs such as PVP and PVCap show a strong KHI performance 

associated with the amide pendant group, whereby it is prone to adhere because of its hydrophilic properties 

[10,11]. Similar process goes with PVA. PVA is prepared via hydrolysis of polyvinyl acetate. There are two 

types of PVA, fully hydrolysed and partially hydrolysed. Different degree of hydrolysis (DH) of PVA is the 

result of incomplete hydrolysis reaction of PVA. Through several methods of characterisation, the behaviour 

of KHIs polymer adsorption can be predicted. For these reasons, PVA was chosen as inhibitor to study the 

effect of different degree of hydrolysis (DH) of PVA and what it may contribute through the polymer-water 

interaction. Therefore, in this research paper, characterization methods such thermogravimetric analysis 

(TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) were 

used to predict the structural behaviour and interaction of the PVA inhibitor. 

2. MATERIALS AND METHODS 

Polyvinyl alcohol, fully hydrolysed (degree hydrolysis of 99%, molecular weight MW = 145,000 g/mol), 

polyvinyl alcohol, partially hydrolysed (degree hydrolysis of 87%, molecular weight MW = 70,000 g/mol), 

polyvinyl alcohol, partially hydrolysed was acquired from Merck Millipore Singapore. Distilled water was 

used to prepare the aqueous solution. The solution concentration is in weight per hundred (%). A total of 10 

samples of varying concentration (wt.%) were prepared from 0.1-1.1%. 

 

Table 1 Sample composition and molecular weight (Mw) 

Samples class Degree of hydrolysis (%) Molecular weight (Mw) 

P 85 85 70,000 

P 87 87 70,000 

P 100 100 145,000 

2.1 Fourier transforms infrared spectroscopy (FTIR). A Perkin Elmer Spectrum One FTIR spectrometer 

equipped with Spectrum software was used to perform the FTIR analysis. The samples were scanned over the 

range 14000 to 2100 cm-1 with the best resolution of 0.5 cm-1. 

2.2 Thermogravimetric analysis (TGA). Thermal stability analysis was run on a Perkin-Elmer 

Thermoanalyser in a nitrogen atmosphere. The temperature ranges used were between 0 to 530 °C. The 

heating rate applied throughout the process was 10 °C/min. 

2.3 Differential scanning calorimetry (DSC). The thermal properties of polyvinyl alcohol were performed 

by the Metler Toledo instrument model DSC1/700. The heating scans were carried out at a heating rate of 10 

°C/min from 0 to 530 °C. 

3. RESULTS AND DISCUSSION  

3.1 Differential scanning calorimetry (DSC).  
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The DSC thermograms obtained showed 3 peaks. The first peak was not very significant, it presented 

dehydration of water that were used as solvent. It also showed a glass transition (Tg) occurring between 20 

to 27 °C (Table 2), related to the amorphous part of the material. The second peak refers to the melting of the 

crystalline phase which is in relation to the melting temperature (Tm) of the crystals. The last peak referred 

to the decomposition of residual acetate group. Fig. 1 shows the DSC results of pure PVA at different degree of 

hydrolysis (DH). The melting temperature of P100, P87 and P85 were found to be 225 °C, 192.41 °C and 

185.08 °C, respectively. Other studies showed that Tm of pure PVA occurred around 191 °C [12].  The melting 

temperatures of PVA at different DH are found to have increased with an increasing in DH number. At P100, 

the melting temperature is higher compare to P85 and P87, this is due to more orderly structure of P100 as 

fully hydrolysed PVA have a symmetrical structure. Whereas, for PVA with lower DH, the lower melting point 

is due to the less orderly structure of PVA that allow the bond to break easily. From the result, it showed that 

the same polymer with different DH can produce a different melting temperature range. These different 

behaviors of PVA from the same group of polymer bring the conjecture that the sample of PVA with different 

DH are constituted of several fractions of different pendant groups such as acetyl and hydroxyl [13]. These 

can be proved through FTIR studies, which will be shown in next section. 

 

Table 2 DSC data for PVA with different degree of hydrolysis at P85, P87 and P100 

Code Melting temperature, Tm (°C) Glass transition, Tg (°C) 

P85 185.08 25.86 

P87 192.41 28.75 

P100 225.00 26.02 

 

 
Fig.1 DSC curves of P100, P87 and P85 

 

3.2 Thermogravimetric analysis (TGA). 

The results from TGA are presented in Fig. 2. The deflection temperatures are shown in Table 3. All three 

results of PVA, P100, P87 and P85 had a slight weight loss in the early stage of thermal analysis, which could 

be in regards to the loss of moisture and the trapped and adsorbed water by PVA [14]. All samples of PVA 

with different DH also show the same trend of roughly 2 step of degradation in the whole range of testing 

temperature. For P 85, the two peaks were observed with a maximum temperatures at 328.56 °C and 429.38 
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°C. Whereas at P 87, the two peak of maximum temperature were at 328.56 °C and 432.28 °C meanwhile, for 

P100 are at 356.62 °C and 429.94 °C. The first temperature can be assigned to the side chain of the PVA while 

the second temperature can be related to a decomposition of the main chain of PVA. The first degradation is 

corresponding to the dehydration of PVA chains and formation of polyene structure, and the other step was 

relative to the degradation of the polyene chain [15]. The result showed that higher DH of PVA shows a 

slightly better thermal stability. It is expected from PVA with a DH higher than 88%. They hardly dissolves in 

water without added heat compared to the one with a lower degree of hydrolysis [16]. The decrease in 

number of hydrophobic acetate groups (decrease of DH) increases inter and intra chain hydrogen bonding. 

Hence, it increases degree of hydrogen bonding between the PVA chains and water molecules that 

contributed to higher thermal stability with increasing DH. 

Table 3 Degradation temperature of P100, P87 and P85 at peak I and II 

Samples  Tpeak I (°C) Tpeak II (°C) 

P 85 328.56  429.38 

P 87 333.49 432.28 

P 100 356.62 429.94 

 

 

 

Fig. 2 Thermal stability analysis (TGA) curves of (a) P85, (b) P87 and (c) P100 

 

3.3 Fourier transforms infrared spectroscopy (FTIR).  

Table 4 shows the most evident characteristic band of PVA and their respective assignment. Fig. 3 shows 

the FTIR spectrum of P100, P87 and P85. All major peaks related to hydroxyl and acetate group were 

observed. The large bands observed between 3550 and 3200 cm-1 are linked to the stretching O-H from the 

intermolecular and intramolecular hydrogen bonds (region (a) in Fig. 3). The vibrational band observed 

between 2840-3000 cm-1 refers to the stretching C-H from alkyl groups (region (b) in Fig. 3) and the peaks 

between 1720 - 1705 cm-1 (region (c) in Fig. 3) are due to the stretching of carbonyl, C=O from acetate group 

remaining from PVA. Also in Fig. 3, the FTIR spectrum is only shown for P85 and P87. The intensity of the 
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1720 - 1705 cm-1 is weak for PVAs with high DH, indicating that only a few acetate groups are present in the 

polymer chain and, whereas the intensity is very strong for PVAs with low DH. For P100, there is no signal in 

the region of 1720 - 1705 cm-1. This might be due to P100 is a highly hydrolysed grades PVA and have a 

symmetrical PVA molecular structure. These resulted in no change in dipole moment when the carbon-

carbon double bond stretches. Meanwhile, the peaks observed between 1260 - 1000 cm-1 (region (e) in Fig. 3) 

belong to the C-O in the carboxylic group. The peak for P85 appears to be increased by twofold compared to 

P87 due to hydrogen bonding [17]. The C-H group in phenyl ring of P100 is 828.11 cm-1, and for P85 and P87, 

the band shifted towards higher value, suggesting that this is due to asymmetric stretching in CH3 [18].  

 

  
Fig. 3 FTIR spectra of P 100, P 87 and P 85 

 

Table 4 Chemical group present through analysis 

No PVA spectrum 
Wave number cm-1 

References P100 P87 P85 

1 PVA – OH from inter and intra 

hydrogen bonds 
V 3550 – 3200 3265.09 3286.16 3296.95 

2 PVA from alkyl groups C – H V 2840 – 3000 2907.80 2908.01 2910.25 

3 PVA, C = O (H bonded) carbonyl V 1720 – 1705 - 1713.58 1718.49 

4 PVA C – O asymmetric stretch V 1260 - 1000 - 1239.74 1241.08 

5 PVA C – O – C ether V 1150 – 1085 1086.77 1087 1089.38 

6 PVA CH2 V 1461 – 1417 1419.10 1420.54 1423.97 

7 PVA C-H phenyl ring V 870 – 675 828.11 839.11 840.20 

 

4. SUMMARY 

In this study, the thermal properties of PVA was investigated with different degree of hydrolysis (DH) 

(P100, P87 and P85) at different concentrations (0.1-1.1 wt.%). The DSC measurement showed that the 

melting temperatures of PVA at different DH were found to have increased with an increasing in DH and 

increasing concentration. The melting temperature range of PVA at different DH did not show much 

distinction because the result came from the same polymer, although it was with different DH. As for TGA 

measurement, it showed the same trend where the lower DH of PVA showed a slightly better thermal 
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stability. Degree of hydrolysis is associated with different number of acetate groups within the PVA itself. The 

increase in number of hydrophobic acetate groups reduced the interchain and intrachain hydrogen bonding, 

which explained the higher stability of PVA with decreasing DH. FTIR analysis showed in the region between 

1720 - 1705 cm-1, belongs to carbonyl group (C=O) stretched from the acetate group in PVA. For P87 sample 

(with high DH), the intensity of carbonyl stretching was weak, whereas for P 85 (with low DH) the intensity 

was strong. This proved that the number of acetate group in PVA had affected their interaction. Thus, it can be 

concluded that different of DH can affect the thermal properties of PVA.  
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