Performance improvement in mobile air conditioning system using Al$_2$O$_3$/PAG nanolubricant

A. A. M. Redhwanac; W. H. Azmia; M. Z. Sharifa; R. Mamatb; M. Samykanoa; G. Najafid

a Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Pekan, Malaysia
b Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Malaysia
c Faculty of Manufacturing Engineering Technology, TATI University College, Kemaman, Malaysia
d Tarbiat Modares University, Tehran, Iran

ABSTRACT

This paper presents the investigation of Al$_2$O$_3$/PAG nanolubricant performance for a compact vehicle mobile air conditioning (MAC) system. The Al$_2$O$_3$/PAG nanolubricant in this study is prepared by using two-step preparation method and stabilized using 4-Step UV–Vis Spectral Absorbency Analysis. An enhancement in the coefficient of performance (COP), reduction in compressor work, and enhancement in the cooling capacity of MAC employing Al$_2$O$_3$/PAG nanolubricant are recorded up to 31%, 26% and 32%, respectively, for 0.010% volume concentration. The current MAC performance is compared with MAC employing SiO$_2$/PAG nanolubricant from previous study. The comparison shows that the Al$_2$O$_3$/PAG nanolubricant has better performance in term of cooling capacity, compressor work, and COP at an average of 6%, 8%, and 33%, respectively. Therefore, the finding from this study suggests Al$_2$O$_3$/PAG nanolubricant with a volume concentration of 0.010% as an optimum and best performance nanolubricant for MAC systems.

KEYWORDS

Nanolubricant; Air conditioning; Cooling capacity; Heat absorb; Compressor work; Coefficient of performance (COP)