THE DEVELOPMENT OF ENERGY-EFFICIENT VEHICLE USING NATURAL GAS TECHNOLOGIES (NGV)

WAN AMALIN SURAYA BINTI WAN ARIFIN

BACHELOR OF ENGINEERING TECHNOLOGY (ENERGY & ENVIRONMENTAL)

UNIVERSITI MALAYSIA PAHANG

THE DEVELOPMENT OF ENERGY-EFFICIENT VEHICLE USING NATURAL GAS TECHNOLOGIES (NGV)

WAN AMALIN SURAYA BINTI WAN ARIFIN

Thesis submitted in fulfilment of the requirements For the award of the degree of Bachelor of Engineering Technology in Energy & Environmental

> Faculty of Engineering Technology UNIVERSITI MALAYSIA PAHANG

> > JANUARY 2018

STATEMENT OF AWARD FOR DEGREE

1. Bachelor of Engineering Technology

Thesis submitted in fulfilmentof the requirements for the award of the degree of Bachelor of Engineering Technology in Energy & Environmental.

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of degree of Bachelor of Engineering Technology in Energy & Environmental.

Signature: Name of Supervisor : EN. JUNAEDI IRWAN BIN WAN ABDUL HALIM Position : INSTRUCTOR, FACULTY OF ENGINEERING TECHNOLOGY, UNIVERSITI MALAYSIA PAHANG Date : JANUARY 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries in which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature: Name: WAN AMALIN SURAYA BINTI WAN ARIFIN ID Number: TC 14014 Date:

DEDICATION

I dedicate my dissertation work to :

My beloved parents, my dad Wan Arifin Bin Wan Daud and my mom Rusnah Binti Harun. A special feeling of gratitude to them whose always give words of encouragement and push for tenacity ring in my ears.

My supervisor, En. Junaedi Irwan Bin Wan Abdul Halim. Without his sage advice, guide, encouragement, patient encouragement that aided the writing of this thesis in innumerable ways, I believe that, this project would not success as now.

My teammates, Alif and Nasaruddin. They always give intellectual support, ideas and a good teamwork during our Senior Design Project. Thank you, for sharing knowledge, time and experience with me during our degree life.

Lastly, both my friends, Afiqah and Musfirah. Thank you for being there with me throughout the entire degree program and for the pep talks that brought humor along with encouragement all rolled into one. Both of you have been my best cheerleaders.

ACKNOWLEDGEMENTS

I am sincerely grateful to ALLAH "S.W.T" for giving me wisdom, strength, patience and assistance to complete my project work. Had it not been due to His will and favour, the completion of this study would not have been achievable.

This dissertation would not have been possible without the guidance and the help of several individuals who contributed and extended their valuable assistance in the preparation and the completion of this study. I am deeply indebted to my supervisor, En. Junaedi Irwan Bin Wan Abdul Halim for his patient, guidance, comment, stimulating suggestions and encouragement which helped me in all the time of research, writing of this thesis and assistant throughout my project work. I would also like to express a special thanks to my co-supervisor En. Mohd Fazli Bin Ismail and En. Mohd Tarmizy Bin Che Kar for their suggestions and co-operation throughout the study.

I also want to convey thanks to the Faculty of Engineering Technology (FTech) for providing the laboratory facilities for this research. My sincere appreciation also extends to my teammates, my friends, lecturers, teaching engineers and others who provided assistances and advices, including the crucial input for my planning and findings. The guidance and support received from all was vital for the success of this research.

Especially, I would also like to address my unlimited thanks to my parents for their unconditional support, both financially and emotionally throughout my studies. My deepest gratitude goes to my family for their support, patience, love and trust during my study. Finally, I would like to thank everyone who had involved in this study either directly or indirectly.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	v
STUDENT'S DECLARATION	vi
DEDICATION	vii
ACKNOWLEDGEMENTS	viii
ABSTRACT	ix
TABLE OF CONTENTS	х
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii

CHAPTER 1 INTRODUCTION	1
1.1 Project Background	1
1.2 Problem Statement	3
1.3 Project Objectives	4
1.4 Project Scope	4
1.5 Significant of the project	5

CHAPTER 2 LITERATURE REVIEW

6

2.1	History of NGV	6
2.2	History of NGV in Malaysia	8
2.3	Theory of NGV	9

2.4	NGV Kits	12
2.5	5 Benefits of NGV	
2.6	Related studies	16
CHA	APTER 3 METHODOLOGY	18
3.1	Overview and engine specification of the car	18
3.2	Workflow and methodology	19
3.3	Design for enhancement of NGV tank bracket	20
3.4	Fabricating the bracket and ergonomic ramp	22
3.5	Installation procedure for sequential system (NGV)	23
3.6	Design a circuit and install gas leakage sensor in the car	27
3.7	Test and commissioning	29
CHA	APTER 4 RESULT AND DISCUSSION	31
4.1	Testing for exhaust gas emission	31
4.2	Exhaust gas emission for 30 minutes with 5 minutes interval	32
4.3	Exhaust gas emission amount with different engine speed (RPM)	40
4.4	Negative effects from parameters measured	48
4.5	Fuel Consumption Using Petrol	50
4.6	Fuel Consumption Using NGV	51
4.7	Percent of saving by comparing petrol fuel consumption with NGV fuel	52
	consumption	

54

СНА	PTER 5 CONCLUSION AND RECOMMENDATION	56
5.1	Conclusion	56
5.2	Recommendation	57
REF	ERENCES	58
APP	ENDICES	62
Anal	ysis of the bracket using nx nastran with finite element method (fem)	62
Programming codes for the circuit		64

LIST OF TABLES

Table No.	Title	Page
1.1	The reduction of road tax from existing levels	3
2.1	Fuel comparison between CNG and LNG	10
3.1	Engine specification of 1.6 (A) Proton Waja CAMPRO car	18
3.2	Specifications for Lancom III gas analyser	29
4.1	CO ₂ gas emission comparison for petrol and NGV within 30 minutes	32
4.2	CO gas emission comparison for petrol and NGV within 30	33
	minutes	
4.3	NO_x gas emission comparison for petrol and NGV within 30	34
	minutes	
4.4	NO_2 gas emission comparison for petrol and NGV within 30	35
	minutes	
4.5	SO_2 gas emission comparison for petrol and NGV within 30	36
	minutes	
4.6	Amount of gas emission from different types of gas with	37
	variable time	
4.7	Amount of gas emission from different types of gas with	38
	variable time after convert to logarithmic	
4.8	CO ₂ gas emission comparison for petrol and CNG with different RPM	40
4.9	CO gas emission comparison for petrol and CNG with	41
	different RPM	

4.10	NO _x gas emission comparison for petrol and CNG with	42
	different RPM	
4.11	NO2 gas emission comparison for petrol and CNG with	43
	different RPM	
4.12	SO ₂ gas emission comparison for petrol and CNG with	44
	different RPM	
4.13	Amount of gas emission from different types of gas with	45
	variable RPM	
4.14	Amount of gas emission from different types of gas with	46
	variable RPM tested after convert to logarithmic	
4.15	Odometer reading and fuel consumption during test drive	50
4.16	Odometer reading and fuel consumption data	51
4.17	Average odometer reading and fuel consumption during test	52
	drive	
4.18	Timeline for Senior Design Project 2	54
4.19	Detail of item purchased and expenses	55

LIST OF FIGURES

Figure No.	Title	Page
1.1	Sources of Carbon Monoxide Pollution in the UK (2001)	1
2.1	A gas storage bag of 13m3 on the roof of the car	7
2.2	Overview of NGV car	11
3.1	Overview of 1.6 (A) Proton Waja CAMPRO car	18
3.2	Project flowchart	19
3.3	Schematic drawing of the bracket design	21
3.4	Schematic drawing of the enhanced bracket design	21
3.5	Bracket of the tank after fabricated	22
3.6	Ergonomic ramp after fabricated	22
3.7	Two stage of installation NGV system	24
3.8	Engine part of the car before install NGV system	26
3.9	Engine part of the car after install NGV system	27
3.10	Schematic diagram workflow of the circuit	28
3.11	Circuit simulation on breadboard	28
3.12	Lancom III gas analyzer	29
4.1	Position of probe gas analyzer during testing	31
4.2	Exhaust emission of CO ₂ gas from petrol and NGV against	32
	time	
4.3	Exhaust emission of CO gas from petrol and NGV against	33
	time	
4.4	Exhaust emission of NO_x gas from petrol and NGV against	34
	time	

4.5	Exhaust emission of NO ₂ gas from petrol and NGV against	35
	time	
4.6	Exhaust emission of SO_2 gas from petrol and NGV against	36
	time	
4.7	Overall graph of exhaust emission for all type of gaseous	39
	from using petrol and NGV against time	
4.8	Exhaust emission of CO ₂ gas using petrol and NGV against	40
	different RPM	
4.9	Exhaust emission of CO gas using petrol and NGV against	41
	different RPM	
4.10	Exhaust emission of NO_x gas using petrol and NGV against	42
	different RPM	
4.11	Exhaust emission of NO2 gas using petrol and NGV against	43
	different RPM	
4.12	Exhaust emission of SO ₂ gas using petrol and NGV against	44
	different RPM	
4.13	Overall graph of exhaust emission from all type of gaseous	47
	using petrol and NGV against different RPM	

LIST OF SYMBOLS

$\mu g/m^3$	microgram per meter cubic
Btu	British Thermal Unit
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
F	Force unit
kg	kilogram
km	kilometer
kW	kiloWatt
L	Liter
lb	Pound
MJ	Mega joule
mPa	Megapascal
MPa	Megapascal
mscfd	million standard cubic feet per day
Ν	Newton unit
NO	Nitric Oxide
NO ₂	Nitrogen Dioxide
NO _x	Nitric Oxide
ppm	Part per million
SO ₂	Sulphur Dioxide
SO _X	Sulphur Oxide
tef	trillion cubic feet

tcf trillion cubic feet

LIST OF ABBREVIATION

- ADC Analog to Digital Converter
- API Air Pollution Index
- CNG Compressed Natural Gas
- DOHC Dual Overhead Camshaft
- ECU Electronic Control Unit
- EPU Economic Planning Unit
- FEM Finite Element Method
- FRP Fiberglass Reinforced Plastic
- KPI Key Performance Indicator
- LCD Liquid-Crystal Display
- LNG Liquefied Natural Gas
- MAP Manifold Absolute Pressure
- NGV Natural Gas Vehicle
- PM Particulate Matter
- PRSS Petronas Research & Scientific Services
- RPM Revolution per minute
- UMP Universiti Malaysia Pahang
- VVL Variable Valve Lift