THE DEVELOPMENT SYSTEM AND CIRCUIT DESIGN OF BUCK BOOST CONVERTER FOR PV SOLAR SYSTEM

NURSHUHADAH BINTI ZAHARUDIN

BACHELOR OF ENGINEERING TECHNOLOGY (ELECTRICAL) WITH HONS

UNIVERSITI MALAYSIA PAHANG

BUCK BOOST CONVERTER FOR PV SOLAR SYSTEM

NURSHUHADAH BINTI ZAHARUDIN

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Engineering Technology in Electrical

Faculty of Engineering Technology UNIVERSITI MALAYSIA PAHANG

JANUARY 2018

STATEMENT OF AWARD FOR DEGREE

1. Bachelor of Engineering Technology

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Engineering Technology in Electrical.

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of degree of Bachelor of Engineering Technology in Electrical.

Signature:

Name of Supervisor: DR WAHEB ABDUL JABAR

Position: LECTURER, FACULTY OF ENGINEERING TECHNOLOGY,

UNIVERSITI MALAYSIA PAHANG.

Date: JANUARY 2018

vii

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries in which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for award of other degree.

Signature:

Name: NURSHUHADAH BINTI ZAHARUDIN

ID Number: TB14007

Date: JANUARY 2018

ACKNOWLEDGEMENTS

In the name of Allah, the Most Merciful and The Gracious. Praise be to Allah, finally this thesis reaches the end with the support of many individuals.

Here I would like to extend my sincere gratitude to all of them. First and foremost I want to thank my supervisor, Dr Waheb Abdul Jabar and my co-supervisor Dr. Yasir H.Naif for his guidance, continuous support and encouragement, endless patience, and also for being very understanding supervisor. He has always impressed me with his intelligence and knowledge. He also a very generous person as he always shared anything that he knew that can help me in this project. I really appreciate his kindness in spent a lot of his time together to finish this project and for correcting my mistakes while completing this thesis. I've learned a lot since the beginning of this project until the project is successfully done.

Many specials thanks goes to all the instructors from Faculty of Engineering Technology (FTEK) who have gave me support and guidance especially in doing mechanical part for this project.

I acknowledge my sincere gratitude to my strong backbone support which is my beloved parents Encik. Zaharudin Bin Murad and Puan Maimon Binti Zakaria, also my others family members for their love and sacrifice throughout my life. They are the place where I went to when facing some emotional issues while doing this project. I also thank them for all the financial support that they gave me during my studies.

Lastly, thanks to my friends who always support me and be there for me during ups and downs in my life. Without all of them that I had mention above, I would not be where I be today. Thank you and may Allah shower all of us with his blessings.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	v
STUDENT'S DECLARATION	vi
ACKNOWLEDGEMENT	vii
ABSTRACT	viii
TABLE OF CONTENTS	xi
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	XV
LIST OF ABBREVIATION	xvi
	1211
CHAPTER 1 INTRODUCTION	
1.1 Project Background	1
1.2 Objective	2
1.3 Problem statement	3
1.4 Scope Project	4
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction	4
2.2 PV Solar System	6
2.3 Sensitive load toward Regulated Voltage	13
2.4 Buck Boost Converter	14
2.4.1 DC – DC Converter	14
2.4.2 Buck Converter	16
2.4.3 Boost Converter	19
2.4.4 Buck Boost Converter	20
2.5 Mosfet	23
2.6 Capacitor	24
2.7 Inductor	25

	2.8 D	Piode	25
	2.9 A	arduino Atmega328	25
	2.10 H	Battery	27
CHAP	TER 3 M	ETHODOLOGY	
	3.1 I	ntroduction	29
	3.2 F	Flowchart of the process	30
	3.3 I	Designing of buck boost converter	33
	3.4	Circuit Simulation using MULTISIM	33
	3.5 H	PWM Generation using function generator	36
	3.6 I	PWM Generation using arduino controller	37
	3.5 H	Buck Boost Converter circuit using proteus 7	39
СНАР	TER 4 RI	ESULT AND DISCUSSION	
	4.1 \$	Simluation result and practical result	41
	4.2 H	Buck mode reult	41
		Conclusion.	46
	5.2 H	Recommendation	46
СНАР	TER 5 CO	ONCLUSION AND RECOMMENDATION	
REFEI	RENCES		47
A PPF1	JDICES		50

LIST OF TABLES

Table No.	Title	Page
3.1	The value of duty cycle at different value of voltage input	32
3.2	The value of every component	36

LIST OF FIGURES

Figure No.	Title	Page
2.1	Cut way of Monocrystalline Solar Panel	7
2.2	Diagram of Grid-connected PV solar system	8
2.3	Diagram of Direct-Coupled System	9
2.4	Diagram of stand alone PV system with battery storage powering DC and AC load	10
2.5	Line Voltage	14
2.6	The system of DC-DC Converter	16
2.7	Buck DC-DC Converter circuit	17
2.8	Buck Converter Waveform	18
2.9	Boost DC-DC Converter circuit	19
2.10	Connection of buck-boost converter circuit	19
2.11	Graph of buck boost converter	21
2.12	Graph operation mode in buck boost converter	22
2.13	Capacitor's C Voltage	23
2.14	Arduino Microcontroller	24
3.1	Flowchart shows the flow of the project development system	31
3.2	Connection of buck boost converter using MULTISIM	35
3.3	Circuit configuration in MULTISIM	35
3.4	Flowchart of arduino PWM closed loop system	38
3.5	Proteus system Virtual Modelling	39
4.1	Simulation result for boost mode	41
4.2	Practical result for boost mode	42
4.3	Simulation result for ideal mode	42
4.4	Practical result for ideal mode	43

4.5	Simulation result for buck mode	44
4,6	Practical result for buck mode	45

LIST OF ABBREVIATION

I-V Current - voltage

ANOVA Analysis of variance

DC Direct current

AC Alternating current

PWM Pulse Width Modulator

BJT Bipolar Junction Transistor

MOSFET Metal Oxide Semiconductor Field Effect Transistor

PID Proportional, Integral and differential

RLS Recursive loop square