THE DEVELOPMENT OF ENERGY EFFICIENT VEHICLE USING NATURAL GAS TECHNOLOGY (NGV)

MUHAMMAD ALIF HAFIZI BIN JASMANI

BACHELOR OF ENGINEERING TECHNOLOGY (MANUFACTURING) UNIVERSITI MALAYSIA PAHANG

THE DEVELOPMENT OF ENERGY EFFICIENT VEHICLE USING NATURAL GAS TECHNOLOGY (NGV)

MUHAMMAD ALIF HAFIZI BIN JASMANI

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Engineering Technology in Manufacturing

> Faculty of Engineering Technology Universiti Malaysia Pahang

> > JANUARY 2018

STATEMENT OF AWARD FOR DEGREE

1. Bachelor of Engineering Technology

Thesis submitted in fulfillment of the requirement for the award of the degree of Bachelor of Engineering Technology in Manufacturing

SUPERVISOR'S DECLARATION

I hereby declare that I have already checked this thesis and in our opinion, this thesis is adequate in term of scope and quality for the award of the degree of Bachelor of Engineering Technology in Manufacturing.

Signature:

Name of Supervisor: EN. JUNAEDI IRWAN BIN ABD HALIM Position: INSTRUCTOR, FACULTY OF ENGINEERING TECHNOLOGY UNIVERSITI MALAYSIA PAHANG Date: JANUARY 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is in my own except for quotations and summaries of which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for the award of another degree.

Signature: Name: MUHAMMAD ALIF HAFIZI BIN JASMANI ID Number: TA14005 Date: JANUARY 2018

DEDICATION

Jhis dissertation is dedicated to my family such as my parents, whose always support me through thick and thin in order to finish this thesis. Also to my love one fynn, always cherishing me every moment in order to make this thesis become a success. Jo my supervisor Sir Junaedi and also my teammates Nasa and Amalin, thank you for the cooperation.

ACKNOWLEDGEMENTS

I am sincerely grateful to ALLAH "S.W.T" for giving me wisdom, strength, patience, and assistance to complete my project work. Had it not been due to His will and favor, the completion of this study would not have been achievable.

This dissertation would not have been possible without the guidance and the help of several individuals who contributed and extended their valuable assistance in the preparation and the completion of this study. I am deeply indebted to my project advisor, En. Junaedi Irwan bin Abd Halim for his patient, guidance, comment, stimulating suggestions and encouragement which helped me in all the time of research, writing of this thesis and assistant throughout my project work. I would also like to express very special thanks to my co-supervisors and teaching engineers En. Mohd Fazli bin Ismail, En. Mohd Tarmizy bin Che Kar, En. Mohd Shamsul Azmi Bin Samsudin, En. Mohd Azlan bin Sayuti, and En. Joharizal bin Johari for his suggestions and co-operation throughout the study.

I also like to convey thanks to the faculty (FTEK) for providing the laboratory and workshop facilities for this project. My sincere appreciation also extends to all my friends, lecturers, teaching engineers and others who provided guidance and advice, including the crucial input for my planning and findings. The guidance and support received from all were vital to the success of this research.

Especially, I would also like to address my unlimited thanks to my family for their unconditional support, both financially and emotionally throughout my studies. My deepest gratitude goes to my family for their support, patience, love, and trust during my study. Finally, I would like to thank everyone who had involved in this study either directly or indirectly.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	v
STUDENT'S DECLARATION	vi
DEDICATION	vii
ACKNOWLEDGEMENTS	viii
ABSTRACT	ix
ABSTRAK	х
TABLE OF CONTENTS	xi
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.0	Introduction	1
1.1	Introduction to the project objective	2
1.2	Project scope	4
CHAPTER 2	THE NATURAL GAS FOR VEHICLE	
2.0	Literature review	5
2.1	NGV conversion kits	7
2.2	Benefits of NGV	8
CHAPTER 3	METHODOLOGY	
3.0	Project methodology	12
3.1	Pre-installation	22

3.2	Installation equipment	23
3.3	NGV sequential system installation procedure	24

CHAPTER 4 RESULT AND DISCUSSION

4.0	Time and budget analysis	26
4.1	Fuel consumption	28
СНАРТЕ	CR 5 CONCLUSION AND RECOMMENDATION	
5.0	Conclusion	34
5.1	Recommendations	34
REFERE	ENCES	36
APPEND	DIX A	37
APPEND	IX B	40

LIST OF TABLES

Table No.	Title	Page
2.0	Data on the global gas production	6
3.1	Engine specification of Proton Waja 1.6 (A) CamPro	13
3.2	Bracket designs that available in the market	13
4.1	Budget & Cost Analysis for the Circuit Gas Leakage Sensor	27
4.2	Gant Chart for the NGV project	28
4.2 (a)	Description of the tasks	29
4.3	Odometer reading and fuel consumption during test drive	30
4.4	Odometer reading and fuel consumption data	30
4.5	Average odometer reading and fuel consumption during test drive	31

LIST OF FIGURES

Figures No.	Title	Page
1.1	Carbon dioxide emission for various type of combustion	3
2.1	NGV Sequential	8
3.1	Rear view of Proton Waja	12
3.2 (a)	Schematic drawing of the bracket design	15
3.2 (b)	Schematic drawing of the enhanced bracket design	16
3.3 (a)	Meshing, constraint, and load applied to the design via FEM	17
3.3 (b)	Displacement value on the bracket after 608N load applied	17
3.3 (c)	Stress value on the bracket after 608N load applied	18
3.4 (a)	The ergonomic ramp design (isometric)	19
3.4 (b)	The ergonomic ramp design (side)	20
3.4 (c)	The ergonomic ramp design (top)	20
3.5 (a)	The ergonomic ramp (top)	21
3.5 (b)	The ergonomic ramp (side)	21
3.5 (c)	The ergonomic ramp (front)	22
3.6	Two stages to install NGV system	24

LIST OF SYMBOLS

km	Kilometer
L	Liter
σ	Stress
MPa	Mega Pascal
mm	Millimeter
Ν	Newton
сс	Cubic centimeter
m ³	Meter cube

LIST OF ABBREVIATION

NGV	Natural Gas Vehicle
CNG	Compressed Natural Gas
EEV	Energy Efficient Vehicle
MAI	Malaysia Automotive Institute
NAP	National Automotive Policy
ECU	Engine Controller Unit
MAP	Manifold Absolute Pressure
TCF	Trillion Cubic Feet
DOHC	Dual Overhead Camshaft
FEM	Finite Element Method
JPJ	Jabatan Pengangkutan Jalan
SKM	Suruhanjaya Koperasi Malaysia
DOSH	Department of Occupational Safety And Health
RPM	Rotation per Minute
LCD	Liquid Crystal Display