MECHANICAL DESIGN AND FABRICATION OF THREE-WHEEL ELECTRICAL VEHICLE (TWEV)

NOOR LIYANA BINTI MOHD ZUKI

BACHELOR OF ENGINEERING TECHNOLOGY (MANUFACTURING) WITH HONS

UNIVERSITI MALAYSIA PAHANG

JANUARI 2018

MECHANICAL DESIGN, ANALYSIS AND FABRICATION OF THREE-WHEEL ELECTRICAL VEHICLE (TWEV)

NOOR LIYANA BINTI MOHD ZUKI

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Engineering Technology in Manufacturing with Hons

Faculty of Engineering Technology UNIVERSITI MALAYSIA PAHANG

JANUARY 2018

STATEMENT OF AWARD FOR DEGREE

1. Bachelor of Engineering Technology

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Engineering Technology in Manufacturing.

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of degree of Bachelor of Engineering Technology in Manufacturing.

Signature:

Name of Supervisor	: ENCIK SYAHRULNAIM BIN MOHAMAD NAWI
Position	: PEGAWAI LATIHAN VOKASIONAL KANAN,
	FACULTY OF ENGINEERING TECHNOLOGY,
	UNIVERSITI MALAYSIA PAHANG
Date	: JANUARY 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries in which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature : Name : NOOR LIYANA BINTI MOHD ZUKI ID Number : TA14008 Date:

ACKNOWLEDGEMENTS

Alhamdulillah, I am sincerely grateful to ALLAH "S.W.T" for giving me wisdom, strength, patience and assistance to complete my project work. It was a journey of a lifetime. This journey would not have come to an end if I did not get the support in many ways (technical, financial, mental etc.) from many persons in different times under various circumstances. It will not be fair if I do not acknowledge their support before proceeding any further. At the very beginning, I would like to express my deepest regards and thanks to my Supervisors, Encik Syahrulnaim Bin Mohamad Nawi. Encik Naim exposed me to the project and guided me how to progress in research and most importantly trained me how to design and fabricated the TWEV. It is my supervisor patience and inquisitiveness what forced me to dive deep into the project, understand it properly and in turn to develop a passion for it. He provided me every support I needed at times. It is him continuous thrive for excellence what brought me on the highway of becoming a technologist. I am grateful to have him as my Supervisor. I also would like to consider all the 'JURUTERA PENGAJAR' as my guidance as I spent one semester to work at workshop. They taught me how to fabricate this project using a machine such as lathe machine, milling machine, band saw and welding machine. I feel honor to work under such a person. They always tried their best to console me and put me back into the proper energy level whenever it was needed.

I am also deeply indebted to my parents Mohd Zuki Bin Hj. Yaman and Nor Azizah Binti Husin for supporting me continuously and keep giving me advices to be strong handling this project till the end. This acknowledgement will be incomplete if I do not mention the help I got from my friend and peer in different course. Thanks to Ms. Asfarina binti Mohd Sarif the person who being of my partner to conduct this project almost one year together without tiredly. Though she is a good in electrical part and who conduct to install the electrical system in TWEV. I am grateful to them for everything from all the sides. It is not possible for me to explain in words their role in completing the journey. If I forget to mention someone's credentials, it is my mistake and I am sorry for that.

TABLE OF CONTENTS

PAGE

STATEMENT OF AWARD FOR DEGREE	iii
SUPERVISOR'S DECLARATION	iv
STUDENT'S DECLARATION	v
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

	1.1	Introduction 1	1-2	
	1.2	Objective		
	1.3	Problem statement 4	4	
	1.4	Scope project 5	5	
CHA	PTEI	2 LITERATURE REVIEW		
	2.1	Design 6	5	
		2.1.1 Tadpole and Delta type 6	6-7	
		2.1.2 Stability of chassis using tadpole type design 7	7-8	
	2.2	Centre of gravity for balancing and stability using engineering 9	9-10	
		software		
	2.3	Current design		
	2.4	Material selection		
		2.4.1Mild steel frame body1	12	
		2.4.2Aluminium 6061 tire holder1	13-14	
		2.4.3 Carbon fiber steel swing arm 1	15	
		2.4.4Stainless steel axle shaft1	16-17	
	2.5	Fabrication process1	17-24	

CHAPTER 3 METHODOLOGY

3.1	Flowchart for production process		
3.2	Chassis		27
	3.2.1	Calculation for stability of chassis	28-29
	3.2.2	Differentiate between stability TWEV"s chassis and	30
		motorcycle's chassis	
3.3	3 Fabrication step		31
	3.3.1	Swing arm	31-32
	3.3.2	Tire holder include sprocket and brake disk	33-35
	3.3.3	Axle shaft	35-36
	3.3.4	Assemble all component	36-37

CHAPTER 4 RESULT AND DISCUSSION

4.1	Stability of the body	38
4.2	Description of TWEV	38
4.3	Discussion on stability of the chassis	39
4.4	Result and calculation	40
	4.4.1 Testing the TWEV	41

CHAPTER 5 CONCLUSION AND RECOMMENDATION

	5.1	Conclusion of project	42
	5.2	Recommendation of project	43-44
REFERE	INCE	S	45
APPEND	DICES		46-52

LIST OF TABLES

Table No.	Title	Page
2.1	Stability of current design	11
3.1	Mechanical properties table	26
3.2	Differentiate of stability between TWEV and motorcycle in	13
	type of scooter	

LIST OF FIGURES

Figure No.	Title	Page
2.1	Tadpole and Delta type	6
2.2	Center of gravity using design software like Solid Work	10
2.3	Mild steel frame	12
2.4	Aluminum tire holder	13
2.5	carbon steel swing arm	14
2.6	Stainless steel axle shaft	15
2.7	Lathe machine	17
2.8	Turning process	18
2.9	Facing process	18
2.10	Boring process	19
2.11	Drilling process	19
2.12	Counter boring process	20
2.13	Vertical milling machine	20
2.14	End milling process	21
2.15	Thread milling process	21
2.16	Band Saw	22
2.17	MIG welding	23
3.1	Center of gravity	28
3.2	Cutting process	29
3.3	End mill operation	30
3.4	welding operation	30
3.5	combination of swing arm	31
3.6	Cutting process using band saw	31
3.7	Facing process	32
3.8	Drilling operation	32
3.9	Make a bearing"s place by using boring operation	33
3.10	Thread milling operation for nut and bolt	33
3.11	Cutting operation	34
3.12	Turning operation	34
3.13	Hydraulic press	35
3.14	Assemble all compartments	35
4.1	TWEV	36
4.2	The specification of TWEV	37
4.3	Testing the TWEV on the road	39
5.1	The original sprocket size	41
5.2	The recommendation sprocket size	42

LIST OF SYMBOLS

Cm	Centimeter
Kg m/s ²	Center of gravity
Kg	Kilogram
E _m	Elastic modulus
g	Gram
a	Acceleration
MPa	Megapascal
m	Meter
Mm	Millimeter

LIST OF ABBREVIATION

TWEV	Three-wheel electrical vehicle
EV	Electric vehicle
CG	Centre of gravity
FSAE	Formula society of automotive engineer
UWA	University of West Alabama
RMIT	Royal Melbourne Institute of Technology