STATISTICAL ANALYSIS OF FACTORS AFFECTING MONOCLONAL ANTIBODY PRODUCTION BY USING PRINCIPAL COMPONENT ANALYSIS : PHYSIOLOGICAL CHARACTERISTICS OF CELL LINE

WONG SHIN YIE

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor in Manufacturing Engineering Technology (Pharmaceutical) with Hons.

(Supervisor's Signature) Full Name : DR RAIHANA ZAHIRAH BINTI EDROS Position : HEAD OF PROGRAMME Date : 11 DECEMBER 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : WONG SHIN YIE ID Number : TD14015 Date : 11 DECEMBER 2017

STATISTICAL ANALYSIS OF FACTORS AFFECTING MONOCLONAL ANTIBODY PRODUCTION BY USING PRINCIPAL COMPONENT ANALYSIS : PHYSIOLOGICAL CHARACTERISTICS OF CELL LINE

WONG SHIN YIE

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Manufacturing Engineering Technology (Pharmaceutical)

> Faculty of Engineering Technology UNIVERSITI MALAYSIA PAHANG

> > January 2018

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr Raihana Zahirah Edros for the continuous support throughout my research; for her patience, motivation, and immense knowledge. I would not be able to complete this research and thesis without her guidance.

Besides, I would like to thank my teammates, Wong Li Ung and Gan Zun Jiat, for their encouragement, tolerance, and help throughout this research. Their guidance, invaluably constructive criticism and friendly advice are highly appreciated. It is my pleasure to have them sharing their truthful and instructive opinions on a number of issues related to the research.

Finally, my highest appreciation to my family members; my parents, Wong Kok Kooi and Lim Soo Har and my brother Wong Lean Chun whose love and guidance are with me in whatever I pursue. I am grateful for their spiritual support throughout the completion of this research and thesis.

TABLE OF CONTENT

DEC	CLARAT	ΓΙΟΝ	
TIT	LE PAG	E	
ACF	KNOWL	EDGEMENTS	ii
ABS	TRAK		iii
ABS	TRACT		iv
TAB	BLE OF	CONTENT	v
LIST	Г OF TA	ABLES	ix
LIST	Г OF FI	GURES	x
LIST	Г OF SY	MBOLS	xi
LIST	Г OF AE	BREVIATIONS	xii
CHA	APTER 1	1 INTRODUCTION	2
1.1	Backg	round	2
1.2	Problem Statement		4
1.3	Research Objectives		5
1.4	Scope of the Study		5
CHA	APTER 2	2 LITERATURE REVIEW	7
2.1	Antibo	ody	7
	2.1.1	Structure of Antibody	8
		2.1.1.1 Heavy Chain	9
		2.1.1.2 Light Chain	9
	2.1.2	Classes of Antibody	10

2.2	Mammalian Cell Culture		12
	2.2.1	Chinese Hamster Ovary (CHO) Cells	12
2.3	Physiological Characteristics Affecting Productivity of CHO		13
Cell L	lines		
2.4	Data Mining		15
2.5	Multivariate Analysis		16
2.6	Principal Component Analysis		17
	2.6.1	Data Preprocessing	19
		2.6.1.1 Methods of data Preprocessing	20
	2.6.2	Principal Components	22
		2.6.2.1 Mathematical Model of Principal	22
Comp	onents		
		2.6.2.2 Limit and Significance of Principal	23
Comp	onents		
	2.6.3	Cross-Validation	24
2.7	Partial	Least Square	25
CHA	PTER 3	METHODOLOGY	28
3.1	Data Acquisition		28
3.2	Data Preprocessing		28
3.3	Partial Least Square (PLS) 2		29
3.4	Principal Component Analysis (PCA)		29

CHAPTER 4 RESULTS AND DISCUSSION 3			31
4.1	Data A	cquisition	31
	4.1.1	Growth, Viability and Antibody Concentration Profile	31
	4.1.2	Summary of Data	34
4.2	Data P	reprocessing	36
	4.2.1	Arrangement of Data	36
	4.2.2	Standardization of Data	36
4.3	Partial	Least Square (PLS)	37
4.4	Princip	al Component Analysis (PCA)	42
	4.4.1	Arrangement of Data by All the Six Cell Lines for	42
Five C	Consecu	tive Days	
	4.4.2	Arrangement of Data by Individual Cell Line for Five	46
Conse	ecutive I	Days	
Call I	ing for	4.4.2.1 Scatter Plot for Data Arranged by Individual	46
Cell L	line for	Five Consecutive Days	
for Da	ata Arrai	4.4.2.2 Standardized Biplot and Loading Scatter Plot nged by Individual Cell Line for Five Consecutive Days	49
	4.4.3	Arrangement of Data by Individual Day for All the	50
Six C	ell Lines	8	
Dav f	or All th	4.4.3.1 Scatter Plot for Data Arranged by Individual ne Six Cell Lines	50
- aj 1			
for Da	ata Arra	4.4.3.2 Standardized Biplot and Loading Scatter Plot nged by Individual Day for All the Six Cell Lines	55

CHAPTER 5 CONCLUSION	58
REFERENCES	59
APPENDIX A RAW DATA OBTAINED FROM Edros et. al. 2013	65
APPENDIX B PREPROCESSED DATA	67
APPENDIX C STANDARDIZED DATA	68
APPENDIX D SCATTER PLOT FOR DATA ARRANGED BY INDIVIDUAL CELL LINE FOR FIVE CONSECUTIVE DAYS	69
APPENDIX E SCATTER PLOT FOR DATA ARRANGED BY INDIVIDUAL DAY FOR ALL THE SIX CELL LINES	70
APPENDIX F STANDARDIZED BIPLOT AND LOADING SCATTER PLOT FOR DATA ARRANGED BY INDIVIDUAL DAY FOR ALL THE SIX CELL LINES	71

LIST OF TABLES

Table 4.1	Growth characteristics and cell productivity of GS-CHO cell lines	33
Table 4.2	Preprocessed data of the six GS-CHO cell lines	36
Table 4.3	Standardized data using STATISTICA	37

LIST OF FIGURES

Figure 2.1	Structure of human antibody molecule	8
Figure 2.2	Structure of different classes of antibody	10
Figure 2.3	Schematic diagram for four human IgG subclasses	11
Figure 2.4	Data mean centering in two dimensions	20
Figure 2.5	Algebraic representation of a PC model	23
Figure 2.6	A graphical representation of X block and Y block	26
Figure 3.1	Summary of research	30
Figure 4.1	Growth and viability curve of GS-CHO cell lines	31
Figure 4.2	Antibody concentration profile of GS-CHO cell lines	32
Figure 4.3	Data distribution collected throughout exponential phase of	35
	triplicate batch cultures in the six GS-CHO cell lines	
Figure 4.4	PLS scatter plot for day 1 (A), day 2 (B) and day 3 (C) respectively	39
Figure 4.5	PLS scatter plot for cell line 38 (A), cell line 76 (B) and cell line	42
	150 (C) respectively	
Figure 4.6	Scatter plot for PCA analysis on all the six cell lines for five	43
	consecutive days	
Figure 4.7	Standardized biplot (A) and loading scatter plot (B) generated	44
	from PCA analysis on all the six cell lines for five consecutive days	
Figure 4.8	Scatter plot for PCA analysis on cell line 38 (A), cell line 47 (B),	47
	cell line 160 (C) and cell line 164 (D) for five consecutive days	
Figure 4.9	Standardized biplot and loading scatter plot for cell line 38 (A),	51
	cell line 47 (B), cell line 76 (C), cell line 150 (D), cell line 160 (E)	
	and cell line 164 (F) respectively	
Figure 4.10	Scatter plot for PCA analysis on day 1 (A), day 2 (B), day 4 (C)	53
	and day 5 (D) for all the six cell lines.	
Figure 4.11	Standardized biplot and loading scatter plot for day 1 (A), day 2	56
	(B), day 3 (C) and day 5 (D) respectively	

LIST OF SYMBOLS

q_p	Specific productivity
α	Alpha
β	Beta
γ	Gamma
κ	Kappa
λ	Lambda
%	Percentage
°C	Degree Celcius
μ_{net}	Specific growth
t ₁	Principal component 1
t ₂	Principal component 2

LIST OF ABBREVIATIONS

μΜ	Micromolar
ANOVA	Analysis of variance
BHK	Baby hamster kidney
cells/ml	Cells per millilitre
СНО	Chinese Hamster Ovary
ekf	Element wise k fold method
ELISA	Enzyme-linked immunosorbent assay
ER	Endoplasmic reticulum
g/L/cell	Gram per litre per cell
GS-CHO	Glutamine synthetase Chinese Hamster Ovary
HEK	Human embryonic kidney
IgA	Immunoglobulin A
IgD	Immunoglobulin D
IgE	Immunoglobulin E
IgG	Immunoglobulin G
IgG1	Immunoglobulin G 1
IgG2	Immunoglobulin G 2
IgG3	Immunoglobulin G 3
IgG4	Immunoglobulin G 4
IgM	Immunoglobulin M
KDD	Knowledge Discovery in Database
LV	Latent variable
mAb	Monoclonal antibody
ml	millilitre
MSX	Methionine sulphoxamine
MVS	Multivariate statistics
NSO	Mouse myeloma
PC	Principal component
PCA	Principal Component Analysis
pg/cell/day	Pictogram per cell per day
PLS	Partial Least Square

rkf	Row wise k fold method
rpm	Revolutions per minute