ERGONOMICS STUDY ON WORKERS IN ELECTRICAL INDUSTRY BY USING SIMULATION ANALYSIS

NURUL HUSNA BINTI ZAKARIA

MASTER OF SCIENCE

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science

(Supervisor’s Signature)
Full Name : IR. DR. HJ. NIK MOHD ZUKI BIN NIK MOHAMED
Position : SENIOR LECTURER
Date : 20/07/2018

(Co-supervisor’s Signature)
Full Name : DR. AHMAD NASSER BIN MOHD ROSE
Position : LECTURER
Date : 20/07/2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : NURUL HUSNA BINTI ZAKARIA
ID Number : MMM15019
Date : 20/07/2018
ERGONOMICS STUDY ON WORKERS IN ELECTRICAL INDUSTRY BY USING SIMULATION ANALYSIS

NURUL HUSNA BINTI ZAKARIA

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

JULY 2018
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Ir. Dr. Haji Nik Mohd Zuki bin Nik Mohamed for his guidance and advices in making this research possible. I appreciate his continuous encouragement from the beginning of this research until the end of it. Not to forget, my co-supervisor, Dr. Ahmad Nasser bin Rose and Dr. Mohd Fadzil Faisae bin Ab. Rashid, who had helped me in learning about Witness Simulation Software and some guidance throughout this research.

Besides, I would like to thank the Plant Manager of BI Technologies Sdn. Bhd., Mr. Mohd Podzi bin Haji Mahmud who was willing to share information about his company and allowing me to undergo this project at the company. In addition, the appreciation is dedicated to Sr. Manufacturing Engineer, Mr. Ab Rahim bin Abdullah. With his kindness in letting me to visit the company at any time during operation hours, directly sped up the completion of my data collection. My sincere thanks also go to the supervisor and employees of the company as the co-operation from them is of utmost importance, too.

Finally, I acknowledge my honest thankfulness and gratitude to my parents, family members, and friends for their love, dream and sacrifice in my life. Special thanks to my parents who are always supporting me along my study and whenever I face difficulties. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to achieve my dreams and give something meaningful in my life.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENT ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Chapter Outline 1
1.2 Background of Study 1
1.3 Problem Statement 2
1.4 Objectives 3
1.5 Gap and Motives 4
1.6 Hypothesis 4
1.7 Scope of Study 4
1.8 Thesis Outline 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Chapter Outline 6
2.2 Relationship between Productivity, Ergonomic and Quality 6
2.3 Ergonomics 7
2.4 Manual Material Handling (MMH) 9
2.5 Working Posture
2.5.1 Standing Operation
2.5.2 Seating Operation
2.6 Musculoskeletal Disorder (MSDs)
2.7 Fishbone (Ishikawa) Diagram
2.7.1 Fishbone Diagram (Machine Category)
2.7.2 Fishbone Diagram (Material Category)
2.7.3 Fishbone Diagram (Man Category)
2.7.4 Fishbone Diagram (Method Category)
2.8 Ergonomic Tools
2.8.1 Rapid Upper Limb Analysis (RULA)
2.8.2 Rapid Entire Body Analysis (REBA)
2.8.3 National Institute of Occupational Safety & Health (NIOSH) Survey
2.8.4 Ovako Working Posture Analysis System (OWAS)
2.8.5 Standardized Nordic Questionnaire
2.8.6 Anybody Modelling
2.8.7 Delmia Simulation Software
2.8.8 Witness Simulation Software
2.9 Summary

CHAPTER 3 METHODOLOGY

3.1 Chapter Outline
3.2 Research Framework
3.3 Study and Observe Working Routine in Line Production
3.3.1 Process Flow
3.4 Identify Existing Problem and Ergonomic Physical Risk Factor in Production

3.5 Actual Data Collection

3.6 Layout Simulation

3.7 Survey Assessment

3.8 RULA Assessment

3.9 Ergonomics Simulation

3.10 Data Analysis

3.11 Research Method

3.12 Summary

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Chapter Outline

4.2 Data Collection in Current Production

4.3 Precedence Diagram

4.4 Identify Problem by Using 4M Fishbone Diagram

4.5 Data Analysis of Existing Production Flow

4.5.1 Production Layout in Witness Simulation Software

4.5.2 Results Analysis of the Production Line

4.6 Data from Survey Collection on MSDs Risk

4.7 RULA Assessment

4.8 Ergonomic Simulation

4.8.1 Simulation for Toroidal Winding Worker

4.8.2 Simulation for Epoxy Worker

4.8.3 Simulation for VMI Worker

4.9 Summary
List of Tables

Table 2.1 Distribution of frequent work posture among industrial workers 13
Table 2.2 Selected work settings from NIOSH investigations showing evidence of WMSDs 15
Table 3.1 Number of workers for each process 40
Table 4.1 Data collections in current production 49
Table 4.2 Cycle time for each worker 50
Table 4.3 Physical characteristics of workers 51
Table 4.4 Precedence data of process in line production 52
Table 4.5 Result of performance by using Witness software 56
Table 4.6 Overall survey results for body part discomfort and treatment 59
Table 4.7 Workers with high percent of idle for each process 59
Table 4.8 Survey collection results for low performer 60
Table 4.9 RULA manual assessment score results 61
Table 4.10 Data summary for three selected workers 61
Table 4.11 RULA Score in simulation and manual worksheet for toroidal winding process 65
Table 4.12 RULA score in simulation and manual worksheet for epoxy process 68
Table 4.13 RULA score in simulation and manual worksheet for VMI process 71
LIST OF FIGURES

Figure 2.1	Different task requires a different height of working table	10
Figure 2.2	Areas for tabletop work	11
Figure 2.3	Chair adjustment	12
Figure 2.4	Parts of the body affected by MSDs	13
Figure 2.5	Frequency of working posture	14
Figure 2.6	Occupational disease and poisoning by sector in Malaysia	18
Figure 2.7	Fishbone diagram to study the factors of quality	19
Figure 2.8	Fishbone root cause grouping	20
Figure 2.9	Risk factors significant in the adjusted model for musculoskeletal accidents	23
Figure 2.10	RULA score	27
Figure 2.11	RULA worksheet	27
Figure 2.12	REBA Score	28
Figure 2.13	REBA Worksheet	29
Figure 3.1	Flow chart of the project	37
Figure 3.2	Objectives and methods of study	38
Figure 3.3	Toroidal inductor	38
Figure 3.4	Flow process of the production line from the beginning to the end	41
Figure 3.5	Layout of the production line	42
Figure 4.1	Process arrangement of focus cell with number of workers	49
Figure 4.2	Precedence diagram of existing production	53
Figure 4.3	Fishbone diagram of existing production	54
Figure 4.4	Layout of focused cell in Witness	55
Figure 4.5	Layout of focused cell in Witness with element flow	55
Figure 4.6	Labors statistic	57
Figure 4.7	Body part discomfort statistic	58
Figure 4.8	Toroidal winding left arm posture: (a); Toroidal winding right arm posture: (b)	62
Figure 4.9	Toroidal winding left forearm: (c); Toroidal winding right forearm: (d)	63
Figure 4.10	Toroidal winding full spine posture: (e); Toroidal winding leg posture: (f)	63
Figure 4.11	Toroidal winding thigh posture: (g)	63
Figure 4.12	Toroidal winding RULA left side analysis: (h); Toroidal winding RULA left side analysis score: (i)	64
Figure 4.13 Toroidal winding RULA right side analysis: (j); Toroidal winding RULA right side analysis score: (k) 64
Figure 4.14 Epoxy left arm posture: (a); Epoxy right arm posture: (b) 66
Figure 4.15 Epoxy forearm left posture: (c); Epoxy head posture: (d) 66
Figure 4.16 Epoxy leg posture: (e); Epoxy thigh posture: (f) 66
Figure 4.17 Epoxy RULA left side analysis: (g); Epoxy RULA left side analysis score: (h) 67
Figure 4.18 Epoxy RULA right side analysis: (i); Epoxy RULA right side analysis score: (j) 67
Figure 4.19 VMI left arm posture: (a); VMI right arm posture: (b) 69
Figure 4.20 VMI left forearm posture: (c); VMI right forearm posture: (d) 69
Figure 4.21 VMI full spine posture: (e); VMI head posture: (f) 69
Figure 4.22 VMI thigh posture: (g); VMI leg posture: (h) 70
Figure 4.23 VMI left and right foot posture: (i) 70
Figure 4.24 VMI RULA left side analysis: (j); VMI RULA left side analysis score: (k) 71
Figure 4.25 VMI RULA right side analysis: (l); VMI RULA right side analysis score: (m) 71
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULA</td>
<td>Rapid Upper Limb Assessment</td>
</tr>
<tr>
<td>REBA</td>
<td>Rapid Entire Body Assessment</td>
</tr>
<tr>
<td>MSDs</td>
<td>Musculoskeletal Disorder</td>
</tr>
<tr>
<td>WMSDs</td>
<td>Work-related Musculoskeletal Disorders</td>
</tr>
<tr>
<td>VMI</td>
<td>Visual Monitor Inspection</td>
</tr>
<tr>
<td>LBP</td>
<td>Low Back Pain</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute of Occupational Safety and Health</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control and Prevention</td>
</tr>
<tr>
<td>NAICS</td>
<td>North American Industry Classification System</td>
</tr>
<tr>
<td>OWAS</td>
<td>Ovako Working Posture System</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>HAL</td>
<td>Hand Activity Level</td>
</tr>
<tr>
<td>LMM</td>
<td>Lumbar Motion Monitor System</td>
</tr>
<tr>
<td>SOCSO</td>
<td>Social Security Organization</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>RSI</td>
<td>Repetitive Stress Injuries</td>
</tr>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
</tr>
<tr>
<td>MLM</td>
<td>Manufacturing Lifestyle Management</td>
</tr>
<tr>
<td>IP</td>
<td>Intellectual property</td>
</tr>
</tbody>
</table>