MECHANICAL PERFORMANCE OF LIGHTWEIGHT SANDWICH STRUCTURES BASED ON TRAPEZOIDAL CORRUGATED-CORES

NOOR ZAKIAH BINTI MD ZAID

Master of Science

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

(Supervisor’s Signature)
Full Name: DR. MOHD RUZAIMI BIN MAT REJAB
Position: SENIOR LECTURER
Date:

(Co-supervisor’s Signature)
Full Name: PROF DR.ING. NIK ABDULLAH BIN NIK MOHAMED
Position: PROFESSOR
Date:

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : NOOR ZAKIAH BINTI MD ZAID
ID Number : MMM14038
Date : JULY 2018
MECHANICAL PERFORMANCE OF LIGHTWEIGHT SANDWICH STRUCTURES BASED ON TRAPEZOIDAL CORRUGATED-CORES

NOOR ZAKIAH BINTI MD ZAID

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

JULY 2018
ACKNOWLEDGEMENTS

First and foremost, I would like to express my highest gratitude to Allah the Almighty for blessing me in finishing this project regardless obstacles occurred. Next, I would like to express my sincere gratitude to my supervisor and co-supervisor Dr Mohd Ruzaimi Bin Mat Rejab and Prof Dr. Ing. Nik Abdullah Bin Nik Mohamed for their continuous support, patience, motivation, enthusiasm, and immense knowledge towards my master study and research. I could not have imagined having a better advisor and mentor for my master study.

I would like to extend my sincerest thanks to all members of the staff of Mechanical Engineering Department (UMP), and members of structural and analysis group for their valuable comments, precious sharing and knowledge which helped me in many ways during my research and dissertation. Their contribution means a lot towards my understanding.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I am also grateful to my family for their sacrifice, patience, and understanding that were inevitable to make this work possible. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals.

I would like to greatly thank the Ministry of Higher Education (MOHE) for sponsor of FRGS grant and Universiti Malaysia Pahang (UMP) for all the support throughout the period of me completing this study.

Last but not least, special thanks should be given to my committee members. I must also acknowledge them for their comments and suggestions, which was crucial for the successful completion of this study.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Application of Corrugated-core sandwich structure 3

1.3 Problem Statement 5

1.4 Objective 5

1.5 Scope 6

1.6 Organisation of Thesis 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Sandwich Structure 9

2.3 Type of Sandwich Structures 11
2.3.1 Honeycomb Sandwich Structure 12
2.3.2 Foam Core Sandwich Structure 15
2.3.3 Corrugated-core Sandwich Structure 17

2.4 Mechanical Tests on Sandwich Structure 23
2.4.1 Compression Testing on Sandwich Structure 23
2.4.2 Tensile Testing on Sandwich Structure 24

2.5 Modelling of Sandwich Structure 25
2.5.1 Finite Element Analysis on Sandwich Structure 25

CHAPTER 3 METHODOLOGY 32

3.1 Introduction 32

3.2 Design of mould 32
3.2.1 Carbon Fibre Reinforced Polymer 34
3.2.2 Glass Fibre Reinforced Polymer 35

3.3 Mechanical Tests 37
3.3.1 Tensile Test for CFRP and GFRP plates 37
3.3.2 Static Compression Test 40
3.3.3 Model of Compression Response of Corrugated-core Sandwich Structure 41
3.3.4 Static Tensile Test for Corrugated-core 44
3.3.5 Model of Tension Response of Corrugated-core Sandwich Structure 46

3.4 Finite Element Analysis 47
3.4.1 Modelling 48
3.4.2 Pre-setup for corrugated-core structure 48
3.4.3 Modelling of Compression Trapezoidal Corrugated-core Sandwich Structure 50
3.4.4 Modelling of Tensile Corrugated-core Sandwich Structure 55

CHAPTER 4 RESULTS AND DISCUSSION 57

4.1 Introduction 57

4.2 Mechanical Properties of Materials 57

4.2.1 Tensile Test on Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) 57

4.3 Static Compression Test for Sandwich Corrugated-core Structure 61

4.3.1 The Compression Behaviour of CFRP Trapezoidal Corrugated-core Sandwich Structure 61

4.3.2 The Compression Behaviour of GFRP Corrugated-Core Sandwich Structure 66

4.3.3 Effect of Varying Number of Unit Cell and Varying Number of Plies 69

4.4 Static Tensile Test for Corrugated-core Structure 71

4.5 Validation of Experimental Result and Numerical Data 73

CHAPTER 5 CONCLUSION AND RECOMMENDATION 77

5.1 Introduction 77

5.2 Conclusion 77

5.3 Recommendation for Future Work 78

REFERENCES 80

APPENDIX A 87

APPENDIX B 92
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Summary of Literature Review</td>
<td>28</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Summary of tensile test sample preparation parameter</td>
<td>39</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Parameter of composite corrugated-core sandwich structures for compression test</td>
<td>41</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Parameter for tensile test trapezoidal corrugated-core</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Input data for finite element modeling</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Summary of CFRP corrugated-core sandwich structure under compression test</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Summary of GFRP corrugated-core sandwich structure under compression test</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Displacement and behaviour of corrugated-core in compression</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Percentage error between experiment and finite element analysis</td>
<td>76</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Contribution of composite material on A380 Airbus</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Corrugated box used in packaging</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Corrugated morphing wing</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Corrugated metal pipe</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Example of foam core sandwich structure</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of Honeycomb sandwich structure</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Impact Respond of stacked trapezoidal corrugated aluminium core and aluminium sheet interlayer structure</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Trapezoidal corrugated-core</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Triangle corrugated-cores</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Foam filled corrugated sandwich beam</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Sinusoidal corrugated-cores</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>Sinusoidal corrugated panel</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Seven layers thin-walled beam</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Trapezoidal corrugated-core mould with 45° angle</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) Solidwork drawing of trapezoidal profile (b) Fabricated mould using CNC machine.</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Cutting the woven carbon fibre</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Layed up process for CFRP</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Layed up process for GFRP</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>The geometry of the trapezoidal corrugated-core sandwich structure</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>(a) Photographs of the three different number of unit cell in CFRP and (b) Photographs of the three different number of unit cell in GFRP</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Measurement of tensile test specimen</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>Tensile test setup using Instron machine</td>
<td>39</td>
</tr>
<tr>
<td>3.10</td>
<td>Experiment setup for compression test</td>
<td>40</td>
</tr>
<tr>
<td>3.11</td>
<td>(a) Schematic view for compression test (b) Cross sectional area for compression test</td>
<td>41</td>
</tr>
<tr>
<td>3.12</td>
<td>(a) A three unit cell sample under compression loading, (b) a single unit cell shows the deformed behaviour (dashed-line), (c) a free-body diagram of a compression loaded core member</td>
<td>42</td>
</tr>
<tr>
<td>3.13</td>
<td>(a) Schematic view for tensile test (b) Cross sectional area for tensile test of trapezoidal corrugated-core</td>
<td>44</td>
</tr>
<tr>
<td>3.14</td>
<td>Experimental setup for tensile test of trapezoidal corrugated-core</td>
<td>45</td>
</tr>
<tr>
<td>3.15</td>
<td>Schematic diagram of corrugated-core for tensile loading</td>
<td>46</td>
</tr>
</tbody>
</table>
Figure 3.16 The flow process to set up in ABAQUS 49
Figure 3.17 Completed part of Trapezoidal Corrugated-core 51
Figure 3.18 Arranging the instance for the model, (a) Isometric view, assembly
of a sandwich structure between two platens, (b) Front view of the model 53
Figure 3.19 Setting for boundary condition 53
Figure 3.20 Configuring for meshing 54
Figure 3.21 Hard contact data from FEM 55
Figure 3.22 Contact stiffness comparison, from kc = 100 to 10000 55
Figure 3.23 Boundary condition applied in modelling of tensile analysis 56
Figure 3.24 Meshing for tensile test analysis 56
Figure 4.1 Stress-Strain Curve for CFRP specimens 58
Figure 4.2 Tensile test after testing: (a) Specimen 1, (b) Specimen 2, (c)
Specimen 3 58
Figure 4.3 Stress-Strain Curve for GFRP specimens 59
Figure 4.4 Tensile test GFRP after testing: a) Specimen 1, b) Specimen 2, c)
Specimen 3, d) Example of cracking 60
Figure 4.5 Graph of Load-Displacement Curve for 3U5P (three unit cells and
five plies) CFRP Corrugated-core Sandwich Structure 61
Figure 4.6 Graph of Stress-Strain Curve for 3U5P CFRP Corrugated-core
Sandwich Structure 62
Figure 4.7 (a) Photograph of compression behaviour of CFRP trapezoidal
corrugated-core based on three unit cells b) Fracture after the
corrugated-core has been almost completely flattened (a)-V. c)
Debonding at the end of the core after compression 63
Figure 4.8 Comparison of Stress-Strain Curve on three unit cells CFRP of
corrugated-core sandwich structure specimens based on 3, 4 and 5
plies 64
Figure 4.9 Comparison of Load-Displacement Curve for CFRP of corrugated-
core sandwich structure specimens based on 1, 2 and 3 unit cells.
These are specimens of 3 plies thickness 65
Figure 4.10 (a)Load-Displacement Curve of GFRP in compression.
(b)Compression behaviour of GFRP trapezoidal corrugated-core 67
Figure 4.11 Photograph of compression behaviour of GFRP trapezoidal
corrugated-core based on three unit cells a) Fracture after the
corrugated-core has been almost completely flattened b) Debonding
at the core after compression 68
Figure 4.12 Comparison between glass fibre three plies (GF3P) with carbon fibre
5 plies (CF5P) 70
Figure 4.13 Comparison between glass fibre three unit cells (GF3U) and carbon
fibre three unit cell (CF3U) with different wall thicknesses 70
Figure 4.14 Static tensile Load-Displacement Curve of corrugated-core with four plies
Figure 4.15 Stress-Strain Curve static corrugated-core for tensile test for four plies
Figure 4.16 a) Load-Displacement Curve of CFRP in tension. b) Corrugated specimen behaviour in tensile test
Figure 4.17 Validation between FE result and experimental data. FE simulation for CFRP with $\xi = 0.03$ show reasonable agreement with the measured response
LIST OF SYMBOLS

σ Stress
A Cross sectional area
ε Strain
E Elastic modulus
w Width
x Length
H Height
t Thickness
\circ Degree angle
δ Displacement/ deformation
Θ Angle
Φ Displacement parameter
λ Factor dependant on the boundary conditions
P Load
I Second moment of area
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two Dimension</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimension</td>
</tr>
<tr>
<td>AL</td>
<td>Aluminium</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer Aided Engineering</td>
</tr>
<tr>
<td>CFRC</td>
<td>Carbon Fibre Reinforced Composite</td>
</tr>
<tr>
<td>CFRP</td>
<td>Carbon Fibre Reinforced Polymer</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CSM</td>
<td>Chopped Strand Mat</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>kN</td>
<td>Kilo Newton</td>
</tr>
<tr>
<td>LAT</td>
<td>Lateral at tab top</td>
</tr>
<tr>
<td>LGM</td>
<td>Lateral gauge middle</td>
</tr>
<tr>
<td>LIT</td>
<td>Lateral inside tab top</td>
</tr>
<tr>
<td>LTSP</td>
<td>Lattice Truss Sandwich Panel</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>SQP</td>
<td>Sequential Quadratic Programming</td>
</tr>
<tr>
<td>SrPET</td>
<td>Self-Reinforced Poly(Ethylene Terephthalate)</td>
</tr>
<tr>
<td>UD</td>
<td>Unidirectional</td>
</tr>
<tr>
<td>VeSCo</td>
<td>Ventable Shear Core</td>
</tr>
<tr>
<td>WR</td>
<td>Woven Roving</td>
</tr>
</tbody>
</table>