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ABSTRAK 

 

Hasil darab tensor tak abelan ditakrifkan untuk sepasang kumpulan yang bertindak antara 

satu sama lain dengan tindakan tersebut memenuhi syarat keserasian. Pasangan tindakan 

serasi yang berbeza akan memberikan hasil darab tensor tak abelan yang berbeza. Oleh 

itu, dalam kajian ini bilangan maksimum hasil darab tensor tak abelan yang berbeza 

antara dua kumpulan didapati dengan menentukan jumlah bilangan tindakan pasangan 

serasi dan hanya memfokus kepada kumpulan kitaran berperingkat kuasa-2. Kajian ini 

bermula dengan menentukan jumlah sebenar pasangan tindakan serasi dengan 

menggunakan syarat-syarat perlu dan cukup bagi kumpulan kitaran berperingkat kuasa-

2 yang bertindak serasi antara satu sama lain. Dalam mencari bilangan pasangan tindakan 

serasi bagi kumpulan kitaran  berperingkat kuasa-2, graf tindakan serasi diperkenalkan. 

Kemudian, beberapa ciri bagi graf tindakan serasi dan subgraf bagi graf tindakan serasi 

diberikan. 
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ABSTRACT 

 

The nonabelian tensor product is defined for a pair of groups which act on each other 

provided the actions satisfying the compatibility conditions. Different pairs of compatible 

actions will give different nonabelian tensor products. Thus, in this research, the 

maximum number of different nonabelian tensor products between two groups is found 

by determining the exact number of compatible pairs of actions and focusing only on the 

finite cyclic 2-groups. This research starts with determination of the exact number of 

compatible pairs of actions by using the necessary and sufficient conditions of finite 

cyclic 2-groups to act compatibly on each other. In order to find the number of compatible 

pairs of actions of finite cyclic 2-groups, the compatible action graph is introduced. Then, 

some properties of the compatible action graph and a subgraph of the compatible action 

graph are determined. 
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CHAPTER 1

INTRODUCTION

1.1 An Overview

This chapter presents an introduction to the whole thesis that contains research

background, problem statement, research objectives, research scope and research

significance.

1.2 Research Background

The nonabelian tensor product for groups G and H, denoted by G ⊗ H, started

in connection with a generalized Van Kampen Theorem. The structure has its origins in

algebraic K-theory and also in homotopy theory. Brown and Loday (1984) introduced

the concept of the nonabelian tensor product of groups with compatible actions, which

extends the ideas of Whitehead (1950). The nonabelian tensor product is defined for a

pair of groups, which acts on each other provided the actions satisfy the compatibility

conditions:

(gh)g′ = g(h(g
−1
g′)) and (

hg)h′ = h(g(h
−1

h′))

for all g, g′ ∈ G and h, h′ ∈ H. If G and H are groups that act compatibly with each other,

then G ⊗ H is a group generated by g ⊗ h with these two relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h) and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′)

for all g, g′ ∈ G and h, h′ ∈ H.
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Brown and Loday (1984) studied the finiteness of the nonabelian tensor square

G ⊗ G for a finite group G. However, the paper by Brown and Loday (1984) was written

in Portuguese. Thus, the studies by Brown et al. (1987) became a starting point for

investigations of the nonabelian tensor product of a group and was extensively studied by

many researchers. Brown et al. (1987) focused on the group theory properties and the

determination of the nonabelian tensor squares, denoted by G ⊗ G.

As a continuity of Brown and Loday′s work, the results for the finiteness of

nonabelian tensor product were given by Ellis (1987). Furthermore, Ellis provided the

result on the nonabelian tensor product, which is p-power order if G and H are of

p-power order. Next, McDermott (1998) investigated the nonabelian tensor product

when G and H are a p-group and a q-group respectively, in which p and q are prime

numbers. However, this paper is interested in the bound of the order of G ⊗ H and some

results are given for that case. Meanwhile, the nonabelian tensor product of the cyclic

groups of p-power order are investigated by Visscher (1998) and 14 years later,

Mohamad (2012) focused on the nonabelian tensor product of the p-power order groups

with two-sided actions.

There were some researchers that were interested in finding the compatible pair of

actions for the finite cyclic 2-groups. First, Visscher (1998) provided the characterizations

on the compatibility conditions for the finite cyclic 2-groups, such that the actions act on

each other in compatible ways. Mohamad (2012) gave some necessary and sufficient

conditions for the finite cyclic 2-groups to act compatibly on each other, with the order

of the actions included as one of the conditions. Sulaiman et al. (2015) studied on some

compatible pairs of the nontrivial actions of order two and four for some of the finite cyclic

2-groups and presented the compatible pair of nontrivial actions for the cyclic groups

when the two groups are the same and the actions are in the same order as in Sulaiman

et al. (2016).
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1.3 Problem Statement

Let G and H be two groups, which act on each other and act on themselves by

conjugation. Different pairs of the compatible actions will give a different nonabelian

tensor product. Most of the researchers calculated the nonabelian tensor product for

trivial actions by letting the action to have order one. However, only some researchers

worked on the nontrivial actions where the actions have an order greater than one and

calculated the nonabelian tensor product under this condition. McDermott (1998)

focused on the quaternion and dihedral groups and gave a different nonabelian tensor

product for a different compatible pair of non-trivial actions. Other than that, Visscher

(1998) discussed the nonabelian tensor product for the finite cyclic 2-groups where the

actions have order two for both and gave eight different cases. According to the

definition of the compatible actions, the compatible pair of actions is required in order

for the nonabelian tensor product to be computed. Therefore, the exact number for the

compatible pairs of actions between the two groups is found where the number will give

the maximum number of the different nonabelian tensor products between G and H.

1.4 Research Objectives

The objectives of this study are:

i. to determine the number of compatible pairs of actions between two finite cyclic

2-groups.

ii. to introduce the compatible action graph of the finite cyclic 2-groups and their

properties.

iii. to determine the properties of a subgraph of compatible action graph for the finite

cyclic 2-group

iv. to validate the results in (i) by using the computer algebra system Groups,

Algorithm and Programming (GAP) to compute the compatible pairs of actions

of the finite cyclic 2-groups.
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1.5 Research Scope

This research is concentrated on the compatible pairs of actions and the groups

considered are limited to the finite cyclic 2-groups only.

1.6 Research Significance

This research will be significant in terms of:

i. New Findings/Knowledge

The major contribution of this thesis is in determining the number of compatible

pair of actions, which focuses on the finite cyclic 2-groups. Furthermore, a new

graph, namely the compatible action graph is introduced.

ii. Specific or Potential Application

In this research, the GAP algorithm that has been built can be used to determine

the total number of the compatible pairs of actions easily and more quickly. In

addition, this algorithm can be modified to find the number of compatible pairs

of actions for other types of groups such as the dihedral and quaternion groups.

1.7 Thesis Organization

Throughout this thesis, all groups are assumed to be finite unless stated

otherwise. The first chapter contains research background, problem statement, research

objectives, research scope, and research significance.

Chapter 2 focuses on the literature review of the work done by various

researchers regarding the nonabelian tensor product and a view of graph theory.

Some definitions and preparatory results on the automorphism groups,

compatibility conditions, graph theory and GAP algorithm are provided in Chapter 3. By

using the GAP algorithm, the compatible conditions and number of compatible pairs of

4



actions were determined. All results in this chapter are used in proving the new results in

subsequent chapters.

The number of compatible pairs of actions for the cyclic 2-groups are

investigated in Chapter 4. By using the necessary and sufficient conditions for two cyclic

2-groups to act compatibly with each other, the number of compatible pairs of actions

between two cyclic 2-groups is determined. Some examples for the number of

compatible pairs of actions between the two cyclic 2-groups are also provided.

Next, the compatible action graph of the cyclic 2-groups is introduced. Some

results on the properties of the compatible action graph of the cyclic groups of 2-power

order are presented in Chapter 5.

Chapter 6 focuses on the subgraph of the compatible action graph. Some results

on properties of the subgraph of compatible action graph are also highlighted.

Lastly, Chapter 7 presents the summary of this research and some suggestions for

future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents details of the literature review on the nonabelian tensor

product of groups, compatible pairs of actions and some background on graph theory.

2.2 The Nonabelian Tensor Product

The notion of nonabelian tensor product of groups was introduced by Brown and

Loday (1984) and it is an extended idea of Whitehead (1950). The nonabelian tensor

product of a groups was defined for a pair of groups G and H, provided the groups act on

each other in compatible ways and satisfy the compatibility conditions. The paper by

Brown and Loday (1987) motivated many researchers to investigate the group theoretical

aspects of nonabelian tensor products extensively.

Brown and Loday (1987) studied the group theoretical properties, especially on

computing the nonabelian tensor square, G ⊗ G when G is a group. In their study, Brown

and Loday (1987) proved the finiteness of the nonabelian tensor square for a finite group

G. Furthermore, the computation of the nonabelian tensor squares for groups of order up

to 30 was given by using GAP. Later, Ellis (1987) extended the results for the nonabelian

tensor product without any analytical proof. Furthermore, the nonabelian tensor product

is of p-power order if G and H are of p-power order were presented.
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Next, Bacon and Kappe (1993) determined the nonabelian tensor square of

2-generator p-groups of nilpotency class 2, where p is an odd prime. Moreover, the fact

that nonabelian tensor square is abelian when G is a nilpotent group of class 2 was

proven. In other studies, Ellis and Leonard (1995) developed an algorithm for

computation of the nonabelian tensor product and Schur multiplier of a finite group.

Furthermore, Ellis and Leonard (1995) developed a method for determining the

nonabelian tensor products for all pairs of normal subgroups G and H of orders up to 14

and gave the nonabelian tensor square and Schur multiplier of the Burnside groups,

namely B(2,4) and B(3,3) of order 212 and 37, respectively.

McDermott (1998) developed an algorithm for computing the nonabelian tensor

product of groups and implemented the algorithm using GAP. The order of the

nonabelian tensor product for all normal subgroups G and H of the quaternion group of

order 32 was presented. Also, the nonabelian tensor product of Qn and Dn of order 8 was

determined and two cases were considered namely the actions act compatibly on each

other and the actions do not act compatibly with each other. Next, Ellis and McDermott

(1998) improved Rocco′s bound (Rocco, 1991) and extended it to the case of the

nonabelian tensor product of prime power groups G and H. The results showed that

when G has order pn and d is the minimal number of generators of G, then the order of

G ⊗ G does not exceed pdn.

Extended from Ellis and McDermott′s work, Visscher (1998) investigated the

nonabelian tensor product of the cyclic p-groups namely p is an odd prime and p = 2.

Furthermore, Visscher determined the characterisation of the compatibility condition and

classification of all nonabelian tensor products of the cyclic p-groups. Moreover, the

bounds on the nilpotency class and solvability length of G ⊗ H were presented.

Nakaoka (2000) studied the nonabelian tensor product of solvable groups. As a

result, Nakaoka (2000) discussed a group construction regarding the nonabelian tensor

products as a second proof of the result by Ellis (1987). Furthermore, a group η(G,H) is

defined as follows:〈
G,H |

[
g, hφ

]g1 [
gg1, (hg1)φ

]
,
[
g, hφ

] hφ1 =
[
gh1, (hh1)

φ
]
, ∀g, g1 ∈ G, ∀h, h1 ∈ H

〉
.
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where G and H are groups acting compatibly on each other and an extra copy of H,

isomorphic through φ : H → Hφ, h 7→ hφ for all h ∈ H.

Nakaoka and Rocco (2001) presented the nonabelian tensor products for two

nilpotent groups when the groups act on each other. Some examples when at least one of

the actions were non-nilpotent were presented. Moreover, the nonabelian tensor square

for a finite cyclic group was provided. Morse (2005) focused on the polycyclic groups

for the nonabelian tensor square. The nonabelian tensor square of the finite group G and

the presentation for the finite group denoted by ν(G) was defined. In addition, the

subgroup [G,Gϕ] that is isomorphic to the nonabelian tensor square has been computed.

Next, Moravec (2007) studied the nonabelian tensor product for the polycyclic groups.

The results showed that M ⊗ N is polycyclic for two polycyclic groups that act

compatibly with each other. In addition, the generating set for the nonabelian tensor

product for the normal polycyclic subgroups has been provided.

Later, Blyth and Morse (2009) studied the theory of computation of the

nonabelian tensor squares for polycyclic groups. The results provided the computations

and the basis of an algorithm for computing the nonabelian tensor squares for any

polycyclic group. Next, Moravec (2009) discussed the nonabelian tensor squares for

powerful p-groups. Then, some fundamental properties of the nonabelian tensor square,

which focused on powerful p-groups were provided. Moreover, the bounds for the order

of G ⊗ G for a given p-group G were given.

Thomas (2010) proved the Ellis’s results (Ellis, 1987) for the nonabelian tensor

product for the two finite groups with an algebraic proof. Furthermore, the nonabelian

tensor product of two p-groups was presented. Blyth et al. (2010) investigated the

nonabelian tensor squares for the class of groups G from the derived subgroup which

focused on the classes of free solvable and free nilpotent groups of finite rank and some

classes of finite p-groups. Furthermore, Russo (2010) determined the nonabelian tensor

products of two Chernikov groups and the nonabelian tensor products of two solvable

minimax groups.
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Meanwhile, Hassim et al. (2010) focused on the nonabelian tensor squares and

homological functors of all 2-Engel groups of orders up to 16. Furthermore, a GAP

algorithm to compute nonabelian tensor squares was developed. Thus, the result

obtained was verified using the GAP software. Next, Salemkar et al. (2010) investigated

the nonabelian tensor product of two Lie algebras K and L, denoted by L ⊗ K . Some

common properties of the Lie algebras and tensor product, such as the bound on the

nilpotency class and solvability length of L ⊗ K were presented. Moreover, the bound

for the dimension of L ⊗ K when K and L are finite-dimensional nilpotent Lie algebras

and ideals of a single Lie algebra were given. Moravec (2010) focused on the powerful

action and M ⊗ N for the powerful p-groups M and N. Some results on the properties of

powerful actions of powerful p-groups were derived. Furthermore, the nonabelian tensor

product with powerful p-groups M and N acting on each other in compatible ways were

determined. In addition, the bounds for parameters, such as order, exponent and rank of

M ⊗ N were estimated.

The nonabelian tensor squares for symplectic groups and projective symplectic

groups were discussed by Rashid et al. (2011a). The commutator subgroups and Schur

multiplier for these groups and also special linear groups and projective special linear

groups were computed. Next, Erfanian et al. (2011) discussed the structure of the

nonabelian tensor square for the polycyclic groups with a trivial centre. In addition, the

Hirsch length and conditions on the Schur multiplier were provided. Rashid et al.

(2011b) discussed on the group G that is capable when it is isomorphic to the central

factor group H/Z(H) for some group H. Furthermore, the nonabelian tensor square and

its capability of groups of order p2q, where p and q are prime were computed. In

addition, the capability of G when Z(G) = 1 or p < q and Gsb = Zp × Zp were proven.

Extended from Visscher’s work, Mohamad (2012) investigated the concept of the

nonabelian tensor product of the cyclic p-groups, namely p = 2 and p is an odd prime.

The characterisation of automorphisms and new necessary and sufficient conditions for

the actions that are compatible on each other for the cyclic p-groups where the order of

the actions included as one condition have been determined. In addition, the nonabelian

tensor product of some cyclic p-groups was proven to be cyclic.
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Moreover, Mohamad et al. (2012) has obtained the nonabelian tensor product of

the finite cyclic groups of order p2 when the actions have order p. Next, Jafari (2012)

provided the improvement for a bound on the order of G ⊗ G which is p(n−e)d+m when

G/G′ has exponent pe. Furthermore, Rashid et al. (2012) focused on determining the

Schur multiplier and the nonabelian tensor square for special orthogonal groups denoted

by SOn(Fq) and spin groups denoted by Spinn(Fq) where Fq is a field with q elements.

Rashid et al. (2013) investigated the nonabelian tensor square and its capability

for the groups of order 8q, where q is an odd prime. The capability of the group using

the the Schur multiplier of the groups of order 8q was determined. The results showed

that G is capable when Z(G) = 1 only. Fauzi et al. (2014) presented the nonabelian

tensor squares of a Biebierbach group of dimension five with a dihedral point group of

order eight denoted by Bl(5) was investigated. Thus, the nonabelian tensor square of the

first Biebierbach group of dimension five with the dihedral point group of order eight

generated by ten elements was determined.

Niroomand et al. (2015) focused on the decomposition of the nonabelian tensor

product of Lie algebras denoted by L ⊗ N using the diagonal ideal when N = L. Next,

Donadze et al. (2015) investigated the closure and the finiteness properties for the

nonabelian tensor product of groups. Some classes that are closed under the formation of

the nonabelian tensor product, such as solvable by finite, nilpotent by finite, polycyclic

by finite, nilpotent of nilpotency class n and supersolvable groups were presented. In

addition, some necessary and sufficient conditions for the nonabelian tensor products for

the finitely generated groups were provided. Recently, Jafari (2016) categorised finite

p-groups by the order of their nonabelian tensor squares.

In this research, our focus is on the compatible pair of actions for the cyclic

groups. Visscher (1998) is the pioneer who studied the nonabelian tensor product of

cyclic 2-groups, which gave the characterization of the compatibility conditions.

However, Visscher (1998) has covered the cases for one-sided actions and when both

actions have order two only. Next, Mohamad (2012) extended Visschers work (Visscher,

1998) to cover the case for the nonabelian tensor products of the cyclic 2-groups with
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two-sided actions. The necessary and sufficient conditions for the two cyclic 2-groups to

act compatibly with each other, which is the order of the actions included as one of the

conditions were provided. Later, Sulaiman et al. (2015) studied on the compatible pairs

for the cyclic groups with non-trivial actions, but only considered the case of the

compatible pairs of some cyclic 2-groups with non-trivial actions. Also, Sulaiman et al.

(2016) investigated the compatible pair of non-trivial actions for two same cyclic

2-groups and the order of actions are the same. Next, Shahoodh et al. (2016) studied the

compatible pairs of actions for the cyclic groups of 3-power order.

There are researchers that investigated the compatible pair of actions for the cyclic

groups of p-power order with non-trivial actions, but none of them presented the exact

number of compatible pairs of actions between two groups. Therefore, this research leads

to determine the number of compatible pairs of actions between two finite cyclic 2-groups.

2.3 A View of Graph Theory

There were many researchers interested in the study of algebraic structure,

especially in the properties of graphs. Most of the researchers try to investigate the

interplay between group theory and graph theory. The paper by Abdollahi et al. (2006)

used the associate graph called the non-commuting graph of G denoted by ΓG where G is

a nonabelian group and Z(G) is the center of G. Some properties of the non-commuting

graph were determined, such as the connectivity of ΓG, Hamiltonian, planarity when G is

isomorphic with the groups S3,D8 or Q8. Also, the group properties of the two

nonabelian groups that are isomorphic with two similar non-commuting graph were

presented.

Then, Darafsheh (2009) investigated the non-commuting graph for two groups G

and H, where G is the nonabelian finite group and H is the finite nonabelian simple

group of Lie type, such as An(q), Bn(q),Cn(q),Dn(q), F4(q) and G2(q). In addition,

ΓG � ΓH implies G � H was presented. Jahandideh et al. (2015) studied the conditions

on the edges and vertices of a non-commuting graphs. As a result, some properties of the

non-commuting graph, such as the number of edges denoted by |E(ΓG)|, the degrees of
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the vertices of the non-commuting graph and also the number of conjugacy classes of a

finite group was provided.

In connection between group theory and graph theory, Mansoori et al. (2016)

defined the non-coprime graph associated to the group G denoted by
∏

G where vertex

set is G\{e}, e is the identity element of G and two distinct vertices are adjacent

whenever their orders are relatively non-coprime. The general properties of the

non-coprime graph, such as diameter, girth, connectivity, Hamiltonian, independence

number, domination number and also planarity were presented.

There are many researchers studied the specific graph on groups and determine

the properties of the graph for the group, as shown by Abdollahi et al. (2006), Jahandideh

et al. (2015) and Mansoori et al. (2016). In this research, our interest is to introduce the

compatible action graph of the finite cyclic 2-groups and their properties.

2.4 Conclusion

In this chapter, literature on the compatible actions, the nonabelian tensor product

of groups and graph theory were presented. From the literature, our motivation is on

determining a different compatible pair of actions, which can give a different nonabelian

tensor product even for the same groups. Furthermore, our focus is on the determination

of the properties of the compatible action graph of the cyclic 2-groups.
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CHAPTER 3

PRELIMINARY RESULTS

3.1 Introduction

In Chapter 3, some definitions and preliminary results on the automorphism

groups, compatibility conditions and graph theory are given. By using GAP, the number

of compatible pairs of actions are determined. All results in this chapter will be used in

the following chapters.

3.2 Automorphism Groups

Let G and H be finite cyclic groups generated by g ∈ G and h ∈ H, respectively.

The automorphism group of G, denoted by Aut(G), is the set consisting of all

isomorphisms σ : G → G such that σ : g 7→ gt where t is an integer with gcd(t, |g |)=1.

The automorphism group of C2n is given below.

Theorem 3.1 (Dummit and Foote, 2004)
Let G be a cyclic group of order 2n, n ≥ 3. Then, Aut(G)� C2 × C2n−2 and |Aut(G)| =

ϕ(2n) = 2n−1.

In view of Theorem 3.1, ϕ(2n) is the Euler’s ϕ−function that represents the

number of positive integers not greater than 2n but relatively prime to 2n. Therefore,

|Aut(C2n)| = ϕ(2
n) = 2n−1.
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Now, let G = 〈g〉 be a finite cyclic group of order n. Then the order of any power

of g is stated in the next proposition.

Proposition 3.1 (Burton, 2005)

Let G be group and g ∈ G with |g | < ∞. Then |gk | =
|g |

gcd(k, |g |)
for any k ∈ N.

Mohamad (2012) characterised the automorphisms of all cyclic 2-groups. Starting

with the following proposition, every automorphism is stated in terms of these generators.

Proposition 3.2 (Mohamad, 2012)
Let G = 〈g〉 with |G | = 2n, n ≥ 3. Then ρ : g → g5 is an automorphism of order 2n−2.

Then, the automorphism of a given order in 〈ρ〉 ≤ Aut(C2n) is given as follows.

Proposition 3.3 (Mohamad, 2012)
Let ρ j be an automorphism of order 2s of 〈g〉 � C2n , where s = 1, 2, . . . , n − 2 and

ρ j : g → g5 j . Then gcd( j, 2n−2) = 2n−s−2. Furthermore, there are 2s−1 automorphisms of

order 2s in 〈ρ〉.

In the next theorem, all automorphisms of cyclic 2-groups are given as follows.

Theorem 3.2 (Mohamad, 2012)
Let G = 〈g〉 � C2n , n ≥ 3. Then Aut(G)=〈τ〉 × 〈ρ〉, where τ(g) = g−1 and ρ(g) = g5 and

every σ ∈ Aut(G) can be represented as σ = τiρ j with i = 0, 1 and j = 0, 1, . . . , 2n−2 − 1

and τiρ j(g) = gt with t ≡ (−1)i · 5 j (mod 2n).

The order of actions is included as one of the conditions in the necessary and

sufficient conditions for actions that act compatibly with each other. Hence, the number of

automorphisms of a specific order for a cyclic 2-groups given in the following proposition.

Proposition 3.4 (Mohamad, 2012)
Let G = 〈g〉 � C2n, n ≥ 3. Then, Aut(G) = 〈τ〉 × 〈ρ〉, where τ(g) = g−1 and ρ(g) = g5.

Then there exist three automorphisms of order two, namely σ = τ, ρ2
n−3

and τρ2
n−3

with

τ(g) = g−1, ρ2
n−3
(g) = g5

j
and τρ2

n−3
= g−5

j
where j = 2n−3. Furthermore, there exist 2s

automorphisms of order 2s, s = 2, 3, . . . , n − 2, namely σ = ρ j , τρ j with ρ j(g) = g5
j

and

τρ j(g) = g−5
j

where gcd(2n−2, j) = 2n−s−2.
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Based on the presentation of Aut(G) above, there are three automorphisms of order

two as given in the following proposition.

Proposition 3.5 (Mohamad, 2012)
Let G = 〈g〉 � C2n, n ≥ 3. Furthermore, let σ ∈ Aut(G) with |σ | = 2. If t is an integer

such that σ(g) = gt , then

t ≡ 2n−1 + 1 (mod 2n), t ≡ 2n−1 − 1 (mod 2n) or t ≡ −1 (mod 2n).

All preparatory results on the automorphisms for the cyclic 2-groups have been

given in this section. In the next section, all results on the compatible pairs of actions that

will be used in this research are given.

3.3 Compatible Actions

In this section, some definitions and previous results on compatible conditions that

will be used to compute the total number of compatible pairs of actions are stated. It starts

with the definition of an action of group G on group H, which is as follows.

Definition 3.1 : Action (Visscher, 1998)
Let G and H be cyclic groups. An action of G on H is a mapping Φ : G → Aut(H) such

that

Φ(gg′)(h) = Φ(g)(Φ(g′)(h))

for all g, g′ ∈ G and h ∈ H.

Then, the definition of a compatible pair of actions between two groups is given

as follows.

Definition 3.2 : Compatible Action (Brown and Loday, 1987)
Let G and H be groups which act on each other. These mutual actions are said to be

compatible with each other and with the actions of G and H on themselves by conjugation

if

(gh)g′ = g(h(g
−1
g′)) and (

hg)h′ = h(g(h
−1

h′))

for all g, g′ ∈ G and h, h′ ∈ H.
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Next, the compatibility condition where G and H are abelian is given in the

following proposition.

Proposition 3.6 (Visscher, 1998)
Let G and H be groups which act on each other. If G and H are abelian, then the mutual

actions are compatible if and only if

(gh)g′ = hg′ and (
hg)h′ = gh′

for all g, g′ ∈ G and h, h′ ∈ H.

The following proposition gives necessary and sufficient number-theoretic

conditions for mutual actions of finite cyclic groups to be compatible.

Proposition 3.7 (Visscher, 1998)
Let G = 〈x〉 � Cm and H = 〈y〉 � Cn be finite cyclic groups. Then there exist mutual

actions of G and H on each other such that yx = xk and xy = yl for k, l ∈ Z if and only if

the conditions (i) and (ii) below are satisfied. These actions are compatible if and only if

condition (iii) is satisfied as well.

i. gcd(k,m) = gcd(l, n) = 1

ii. kn ≡ 1 (mod m) and lm ≡ 1 (mod n)

iii. k l−1 ≡ 1 (mod m) and lk−1 ≡ 1 (mod n)

The next proposition shows that the trivial action is always compatible with any

other action when G is abelian.

Proposition 3.8 (Visscher, 1998)
Let G and H be groups. Furthermore, let G act trivially on H. If G is abelian, then for any

action of H on G the mutual actions are compatible.

According to the presentation of the automorphism group of a cyclic 2-group,

Mohamad (2012) presented the necessary and sufficient conditions for a pair of actions

that act compatibly with each other with specific order. If one of the actions has order

two, then the necessary and sufficient conditions for the other actions to act compatibly

with each other are given in the following theorem.
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Theorem 3.3 (Mohamad, 2012)
Let G = 〈x〉 � C2m and H = 〈y〉 � C2n . Furthermore, let σ ∈ Aut(G) with |σ | = 2 and

σ′ ∈ Aut(H), where m ≥ 2, n ≥ 3.

i. If σ (x) = xt with t ≡ −1 (mod 2m) or t ≡ 2m−1 − 1 (mod 2m), then (σ, σ′) is a

compatible pair if and only if σ′ is the trivial automorphism or |σ′| = 2.

ii. If σ (x) = xt with t ≡ 2m−1 + 1 (mod 2m), then (σ, σ′) is a compatible pair if and

only if |σ′| ≤ 2s′ with s′ ≤ m − 1. In particular, σ is compatible with all

σ′ ∈ Aut(H) provided n ≤ m + 1.

Furthermore, the necessary and sufficient conditions of compatible conditions

where one of the actions has an order greater than two are stated in the following

theorem.

Theorem 3.4 (Mohamad, 2012)
Let G = 〈x〉 � C2m and H = 〈y〉 � C2n . Furthermore, let σ ∈ Aut(G) with |σ | = 2s, s ≥ 2

and σ′ ∈ Aut(H), where m ≥ 4, n ≥ 1.

i. If σ (x) = xt with t ≡ −5 j (mod 2m), then (σ, σ′) is a compatible pair if and only

if σ′(y) = yt ′ with t′ ≡ 1 (mod 2n) or t′ ≡ 2n−1 + 1 (mod 2m).

ii. If σ (x) = xt with t ≡ 5 j (mod 2m), then (σ, σ′) is a compatible pair if and only

if |σ′| ≤ 2m−s provided n ≤ m − s + 2.

Proposition 3.9 is a special case of Proposition 3.8 that gives the compatibility

conditions when one of the actions is trivial with G and H are cyclic groups.

Proposition 3.9 (Mohamad, 2012)
Let Cm = 〈x〉 and Cn = 〈y〉 be finite cyclic groups and act on each other. If one of the

actions is trivial, then any pair of actions of Cm = 〈x〉 and Cn = 〈y〉 are compatible.

3.4 Graph Theory

The concept of compatible actions of the nonabelian tensor product can be

represented by a graph. By letting the elements of Aut(G) and Aut(H) be the vertices

with two vertices of σ ∈ Aut(G) and σ′ ∈ Aut(H) connected by an edge if (σ, σ′) is a
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compatible pair of actions, we obtain a graph which we call the compatible action graph

of G and H. In this section, some fundamental concepts that are related to graph theory

are given. First, the definition of a graph is stated as follows.

Definition 3.3 : Graph (Rosen, 2012)
A graph G =(V, E) consists of a nonempty set of vertices, V (or nodes) and a set of

edges, E. Each edge has either one or two vertices associated with it, which is called its

endpoints. An edge is said to connect its endpoints.

The definition of directed graph is given as below.

Definition 3.4 : Directed Graph (Rosen, 2012)
A directed graph (or digraph) (V, E) consists of a nonempty set of vertices V and a set

of directed edges (or arcs) E. Each directed edge is associated with an ordered pair of

vertices. The directed edge associated with the ordered pair (u, v) is said to start at u and

end at v.

In a graph with directed edges, the degree of the vertex has two types which are

the in-degree of a vertex and the out-degree of a vertex. In the following definition, the

degree of a vertex for a directed graph is presented.

Definition 3.5 : Degree of a Vertex (Rosen, 2012)
In a graph with directed edges, the in-degree of a vertex v, denoted by deg−(v), is the

number of edges with v as their terminal vertex. The out-degree of v, denoted by

deg+(v), is the number of edges with v as their initial vertex. (Note that a loop at a vertex

contributes one to both the in-degree and the out-degree of this vertex.)

The definition of bipartite graph is given as follows.

Definition 3.6 : Bipartite Graph (Rosen, 2012)
A graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V1
and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2 (so that

no edge in G connects either two vertices in V1 or two vertices in V2). When this condition

holds, we call the pair (V1, V2) a bipartition of the vertex set V of G.
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The definition of a path for directed graphs is given in Definition 3.7.

Definition 3.7 : Path (Rosen, 2012)
Let n be a non- negative integer and G a directed graph. A path of length n from u to v in

G is a sequence of edges e1, e2, . . . , en of G such that e1 is associated with (x0, x1), e2 is

associated with (x1, x2), and so on, with en associated with (xn−1, xn), where x0 = u and

xn = v. When there are no multiple edges in the directed graph, this path is denoted by its

vertex sequence x1, x2, . . . , xn. A path of length greater than zero that begins and ends at

the same vertex is called a circuit or cycle. A path or circuit is called simple if it does not

contain the same edge more than once.

The connectivity of a directed graph exists when there is a path which starts and

ends at the same vertex. The definition of a connected directed graph is given below.

Definition 3.8 : Connected Graph (Rosen, 2012)
A directed graph is connected if there is a path from a to b and from b to a whenever a

and b are vertices in the graph.

The definition for the order of a graph is given below.

Definition 3.9 : Order of a Graph (Bollobás, 2013)
The order of a graph G is the number of vertices in G. It is denoted by |G |. Thus,

|G | = |V(G)|.

3.5 The GAP Programmes for Compatibility

The GAP software is a free computer software for computational discrete algebra

with the main emphasis on computational group theory. The GAP software provides a

programming language, a library of functions and algebraic objects such as the ordinary

groups. In this section, a GAP algorithm is used to find the total number of compatible

pairs of actions. Let G and H be cyclic 2-groups with order 2m and 2n, respectively. Then,

the outputs of the coding below gives the list of automorphisms with their specific order

that satisfy the compatibility conditions and give the total of number of compatible pairs

of actions.
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NumberCompatibleAction:= function(m,n)

local a,b,c,d,e,f,g, xyx,yxy;

g:=0;

for a in [0..m-1] do

for b in [0..n-1] do

c:=a;

d:=b;

if Gcd(m, a)=1 and Gcd(n, b)=1 then

for e in [2..m-1] do

if c<>1 then

c:=aˆe mod m;

fi;

if c=1 then

c:=e;

break;

fi;

od;

for b in [0..n-1] do

if d<>1 then

d:=bˆf mod n;

fi;

if d=1 then

d:=f;

break;

fi;

od;

fi;

xyx:=aˆb mod m;

yxy:=bˆa mod n;

if xyx=a and yxy=b then

g:=g+1;

Print("a=",a," (order action=",c,")",

",b=",b," (order action=",d,")");

Print(" Compatible","\n");

fi;

od;

od;

Print(" No of Compatible = ",g);

end;
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Some outputs from the routine are given in Appendix A. By Proposition 3.4 and

Theorem 3.4, the value of m should start from four so that the actions will have order

greater than two and the value of n starts from one. A summary of the outputs is given in

Table 3.1 which shows the number of compatible pairs of actions for C2m ⊗ C2n for some

specific values of m and n.

Table 3.1: The Number of Compatible Pairs of Actions for C2m ⊗ C2n

m n compatible pair m n compatible pair m n compatible pair
4 1 15 5 1 24 6 1 41
4 2 18 5 2 28 6 2 46
4 3 24 5 3 36 6 3 56
4 4 36 5 4 52 6 4 76
4 5 52 5 5 84 6 5 116
4 6 68 5 6 116 6 6 196
4 7 100 5 7 148 6 7 260
4 8 164 5 8 212 6 8 324
4 9 292 5 9 340 6 9 452

m n compatible pair m n compatible pair m n compatible pair
7 1 74 8 1 139 9 1 268
7 2 80 8 2 146 9 2 276
7 3 92 8 3 160 9 3 292
7 4 116 8 4 188 9 4 324
7 5 164 8 5 244 9 5 388
7 6 260 8 6 356 9 6 516
7 7 452 8 7 580 9 7 772
7 8 580 8 8 1028 9 8 1284
7 9 708 8 9 1284 9 9 2308

The example that follows focuses on the inquiry on finding the equality of the

number of the compatible pair of actions of 2-power order for G ⊗ H is equal with H ⊗G

for the case of G , H.

Example 3.1 Let G = C24 and H = C28 . Table 3.1 illustrates that there are 164

compatible pairs of actions for G ⊗ H wheres there are 188 for H ⊗ G. Therefore, the

number of compatible pairs of actions for G ⊗ H and H ⊗ G are not necessarily equal

when G , H.
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3.6 Conclusion

In this chapter, the works done by other researchers have been discussed. The

GAP algorithm has been developed to compute the number of compatible pairs of actions

for the given groups, in which the outputs can verify some results of the necessary and

sufficient condition for the cyclic 2-groups to act compatibly with each other.
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CHAPTER 4

THE EXACT NUMBER OF COMPATIBLE PAIRS OF ACTIONS FOR CYCLIC
2-GROUPS

4.1 Introduction

The main concern of this chapter is to determine the number of compatible pairs

of actions for a given pair of cyclic 2-groups. Throughout this chapter, the number of

compatible pairs of actions between two cyclic 2-groups has been found by using

necessary and sufficient conditions of two cyclic 2-groups to act compatibly on each

other. First, the number of compatible pairs of actions with specific order are counted.

Then, the total number of compatible pairs of actions are obtained. In addition, some

properties of automorphisms are given.

4.2 The Compatible Pairs of Actions with Specific Order for Cyclic 2-Groups

In this section, the compatible pairs of actions with a specific order for the cyclic

2-groups is discussed. There are three separate cases since the order of action is included

as one of the equivalent conditions for actions that act compatibly with each other.

We begin by considering the number of compatible pairs of actions when the

action has order one.

Proposition 4.1
Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 1, n ≥ 1. If G acts

trivially on H, then the number of compatible pairs of actions is 2n−1.

23



Proof

By Proposition 3.8, when G acts trivially on H, for any action of H on G, the mutual

actions are compatible. Thus, by Theorem 3.1 the number of compatible pairs of actions

is 2n−1 since |Aut(H)| = 2n−1. �

Next, the number of compatible pairs of actions where one of the actions has order

two is determined.

Proposition 4.2
Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 2, n ≥ 3.

Furthermore, let σ ∈ Aut(G) with |σ | = 2 and σ′ ∈ Aut(H) such that the pair (σ, σ′) acts

compatibly with each other.

i. If σ (x) = xt with t ≡ −1 (mod 2m) or t ≡ 2m−1−1 (mod 2m), then there are eight

compatible pairs (σ, σ′).

ii. If σ (x) = xt with t ≡ 2m−1 + 1 (mod 2m), then there are 2r−1 compatible pairs

(σ, σ′) where r = min{m + 1, n}.

Proof

By Theorem 3.3, there are two cases to consider.

i. Case 1: σ(x) = xt with t ≡ −1 (mod 2m) or t ≡ 2m−1 − 1 (mod 2m). First, if σ′

is the trivial automorphism, then the mutual actions are compatible. Thus, two

compatible pairs of actions of the form (σ, 1) exists. Next, consider |σ′| = 2 , then

by Theorem 3.3(i), the pair (σ, σ′) is compatible. Since there are 3 possibilities

for σ′ so that |σ′| = 2, it follows that the number of compatible pairs in this

particular case is six. Next, consider |σ′| > 2. By Theorem 3.3(i), the pair

(σ, σ′) is not compatible. Therefore, if σ (x) = xt with t ≡ −1 (mod 2m) or

t ≡ 2m−1 − 1 (mod 2m), then there are eight compatible pairs of actions (σ, σ′).

ii. Case 2: σ(x) = xt with t ≡ 2m−1 + 1 (mod 2m). By Theorem 3.3(ii), σ is

compatible with all σ′ provided s′ ≤ n and s′ ≤ m + 1 or we can assume that

s′ ≤ min {n,m + 1}. Suppose that r = min{n,m + 1}. Then, we have that all

σ′ where |σ′| ≤ 2r are compatible with σ when |σ′| = 2s′. By Theorem 3.1,
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there are 2n−1 number of automorphisms in Aut(H). Therefore, the number of

compatible pairs of actions is 2r−1 where r = min{m + 1, n}.

�

The number of compatible pairs of actions for cyclic 2-groups when one of the

actions has an order two is presented in the next theorem.

Theorem 4.1
Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 2, n ≥ 3.

Furthermore, let σ ∈ Aut(G) with |σ | = 2. Then there are 2r−1 + 8 compatible pairs of

actions (σ, σ′) where σ′ ∈ Aut(H)with r = min {m + 1, n}.

Proof

By Proposition 4.2, there are 2r−1 + 8 compatible pairs of actions (σ, σ′) where

σ′ ∈ Aut(H) with r = min{m + 1, n}. �

Next, the number of compatible pairs of actions for cyclic 2-groups where one

of the actions has an order greater than two is determined. By Theorem 3.4, there are

two cases for the compatible conditions for any two automorphisms with specific order,

namely for σ (g) = gt with t ≡ −5 j (mod 2m) and σ (g) = gt with t ≡ 5 j (mod 2m) given

in Lemmas 4.1 and 4.2 respectively.

Lemma 4.1
Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let σ ∈ Aut(G) with |σ | = 2s, s ≥ 2 and σ′ ∈ Aut(H). If σ (g) = gt with

t ≡ −5 j (mod 2m), then there are 2s compatible pairs (σ, σ′).

Proof

By Proposition 3.4, there exist 2s automorphisms of G of order 2s for s = 2, 3, . . . , n − 2.

Suppose that σ (g) = gt with t ≡ −5 j (mod 2m), thus only 2s−1 number of

automorphisms are considered. Next, by Theorem 3.4(i), (σ, σ′) is a compatible pair

when σ′(h) = ht ′ with t′ ≡ 1 (mod 2n) or t′ ≡ 2n−1 + 1 (mod 2n), then the number of

compatible pairs (σ, σ′) is 2s−1 + 2s−1 = 2s. �
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Lemma 4.2
Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let σ ∈ Aut(G) with |σ | = 2s, s ≥ 2 and σ′ ∈ Aut(H) with |σ′| = 2s′. If

σ (g) = gt with t ≡ 5 j (mod 2m), then there are 2r ′−1 compatible pairs (σ, σ′) with r′ =

min{m, n}.

Proof

Suppose that σ (g) = gt with t ≡ 5 j (mod 2m). Then by Proposition 3.4, only 2s−1

automorphisms are considered. By Theorem 3.4(ii), σ is compatible with all σ′ provided

s′ ≤ n − s and s′ ≤ m − s or simply presented as s′ ≤ min {n − s,m − s}. Suppose that

r′ = min{n,m}, hence all σ′ where |σ′| ≤ 2r ′−s are compatible with σ when |σ′| = 2s′.

Thus, if all actions of order 2s′ are considered where s′ ≥ 2, then there are

22 + 23 + · · · + 2r ′−s = 2r ′−s+1 − 4 compatible pairs of actions (σ, σ′). By Theorem

3.4(ii), only
2r ′−s+1 − 4

2
= 2r ′−s − 2 compatible pairs of actions (σ, σ′) when σ (g) = gt

with t ≡ 5 j (mod 2m) since 2s−1 automorphism are considered under this case.

By Theorem 3.4, σ is also compatible with the trivial action and one action with

|σ′| = 2. Thus, the number of the compatible pair of actions for σ with specific order

is 2r ′−s − 2 + 2 = 2r ′−s. By Proposition 3.3, there are 2s−1 automorphisms of order 2s.

Therefore, the number of compatible pairs of actions for |σ | = 2s is 2s−1(2r ′−s) = 2r ′−1

where r′ = min{m, n}. �

4.3 The Total Number of Compatible Pairs of Actions for Cyclic 2-Groups

This section gives the total number of compatible pairs of actions for two cyclic

2-groups as follows.

Lemma 4.3
Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let σ ∈ Aut(G) with |σ | = 2s, s ≥ 2 and σ′ ∈ Aut(H). The number of

compatible pairs of actions (σ, σ′) is (2m−1 − 4) + (m − 3)(2r ′−1) provided

r′ = min{m, n}.
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Proof

Lemmas 4.1 and 4.2 give the number of compatible pairs of actions when one of the

actions has an order 2s for particular s and s ≥ 2. Now, the total number of (σ, σ′) for all

s ≥ 2 is given as follows.

i. By Lemma 4.1, there are 2s compatible pairs of actions and note that, the highest

order of σ in Aut(C2m) is 2m−2. By Proposition 3.4, there exist 2s automorphisms

of order 2s. Thus, if all actions of order 2s are considered where s = 2, 3, . . . ,m−

2, then the number of the compatible pair of actions is

22 + 23 + 24 + · · · + 2m−2 = 2m−1 − 4.

ii. By Lemma 4.2, there are 2r ′−1 compatible pairs of actions and note that, the

highest order of σ in Aut(C2m) is 2m−2. By Proposition 3.4, there exist 2s

automorphisms of order 2s. Thus, if all actions order of 2s are considered where

s = 2, 3, . . . ,m − 2, there are

2r ′−1 + 2r ′−1 + · · · + 2r ′−1 = (m − 3)2r ′−1

compatible pairs of actions (σ, σ′) provided r′ =min{m, n}.

Thus, the number of compatible pairs of actions when one of the actions has an order

greater than two for both cases is given as 2m−1 − 4 + (m − 3)2r ′−1. �

Theorem 4.2
Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. Then, there

exist

(m − 3)(2r ′−1) + 2r−1 + 2m−1 + 2n−1 + 4

compatible pairs of actions where r = min{m + 1, n} and r′ = min{m, n}.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let σ ∈ Aut(G) and σ′ ∈ Aut(H). Proposition 4.1, Theorem 4.1 and

Lemma 4.3 give the number of compatible pairs (σ, σ′) with specific order. Thus, three

cases considered which are |σ | = 1, 2 and 2s where s ≥ 2.
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i. Suppose that |σ | = 1. By Proposition 4.1, when one of the actions is trivial, then

the number of compatible pairs of actions is 2n−1

ii. Suppose that |σ | = 2. By Theorem 4.1, there are 2r−1 + 8 compatible pairs of

actions where r = min{m + 1, n} and m ≥ 2.

iii. Suppose that |σ | = 2s where s ≥ 2. By Lemma 4.3, the number of compatible

pairs of actions for this case is 2m−1 − 4 + (m − 3)2r ′−1 where r′ = min{m, n} and

m ≥ 4.

Hence, the number of compatible pairs of actions for the cyclic 2-groups is

2n−1 + 2r−1 + 8 + 2m−1 − 4 + (m − 3)(2r ′−1) = (m − 3)(2r ′−1) + 2r−1 + 2m−1 + 2n−1 + 4.

�

By using Theorem 4.2, the number of compatible pairs of actions for cyclic 2-

groups can be computed. The following example shows the number of compatible pairs

of actions for cyclic 2-groups.

Example 4.1

Let G = C24 and H = C26 be cyclic groups. Now, consider the action of G and H act

on each other such that hg = gk and gh = hl for g ∈ G, h ∈ H and k, l ∈ Z. Table

4.1 illustrates the compatible pair of actions for C24 ⊗ C26 given by GAP software. From

the table, there are 68 compatible pairs of actions for C24 ⊗ C26 . By Theorem 4.2, the

number of compatible pairs of actions is (4 − 3)(24−1) + 25−1 + 26−1 + 24−1 + 4 = 68.

Hence, the result obtained by Theorem 4.2 is the same as that given in Table 4.1 for the

case m = 4, n = 6.
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Table 4.1: Compatible Pairs of Actions for C24 ⊗ C26

|gk | k l |hl | |gk | k l |hl | |gk | k l |hl |

1 1 1 1 1 1 47 4 2 9 41 8
1 1 3 16 1 1 49 4 2 9 47 4
1 1 5 16 1 1 51 16 2 9 49 4
1 1 7 8 1 1 53 16 2 9 55 8
1 1 9 8 1 1 55 8 2 9 57 8
1 1 11 16 1 1 57 8 2 9 63 2
1 1 13 16 1 1 59 16 2 15 1 1
1 1 15 4 1 1 61 16 2 15 31 2
1 1 17 4 1 1 63 2 2 15 33 2
1 1 19 16 2 7 1 1 2 15 63 2
1 1 21 16 2 7 31 2 4 3 1 1
1 1 23 8 2 7 33 2 4 3 33 2
1 1 25 8 2 7 63 2 4 5 1 1
1 1 27 16 2 9 1 1 4 5 17 4
1 1 29 16 2 9 7 8 4 5 33 2
1 1 31 2 2 9 9 8 4 5 49 4
1 1 33 2 2 9 15 4 4 11 1 1
1 1 35 16 2 9 17 4 4 11 33 2
1 1 37 16 2 9 23 8 4 13 1 1
1 1 39 8 2 9 25 8 4 13 17 4
1 1 41 8 2 9 31 2 4 13 33 2
1 1 43 16 2 9 33 2 4 13 49 4
1 1 45 16 2 9 39 8

4.4 Compatible Pairs of Actions for Cyclic 2-Groups of the Same Order

This section focuses on the total number of compatible pairs of actions between

two same cyclic 2-groups with the same order of actions. First, the necessary and

sufficient conditions for the cyclic 2-groups of the same order that act compatibly on

each other are given.

Proposition 4.3

Let G = H = 〈g〉 � C2m be cyclic groups, where m ≥ 4. Furthermore, let σ ∈ Aut(G)

and σ′ ∈Aut(H) with |σ | = |σ′| = 2k where k ≥ 0. Then, (σ, σ′) is a compatible pairs of

actions if 2k ≤ m.

29



Proof

Let G = H = 〈g〉 � C2m be cyclic groups, where m ≥ 1. Furthermore, let σ ∈ Aut(G)

and σ′ ∈Aut(H) with |σ | = |σ′| = 2k . Then, there are three cases to be considered as

follows:

i. Assume that k = 0. Then |σ | = |σ′| = 20 = 1. By Proposition 3.8, when one of

the actions is trivial, then it will be compatible with all actions. Therefore, (σ, σ′)

is a compatible pairs of actions if k = 0.

ii. Assume that k = 1. Then |σ | = |σ′| = 21 = 2. Furthermore, let G = 〈g〉 � Cm

and H = 〈h〉 � Cn where m and n are even integers with the actions of h on g and

g on h given by

hg = gk and gh = hl

for g ∈ G, h ∈ H and k, l ∈ Z. The values of k and l must be odd since

gcd(2, k) = gcd(2, l) = 1 for automorphisms. Thus, k = 2a + 1 and l = 2b+ 1 for

positive integers a and b and hence k ≡ 1 (mod 2) and l ≡ 1 (mod 2). Since the

actions both have order two, by Proposition 3.6 it follows that (
gh)g′ = hg′ and

(hg)h′ = gh′. Therefore, the actions always act compatibly if they have order two.

iii. Assume that k ≥ 2. Then |σ | = |σ′| = 2k where k ≥ 0. Let hg = gt , t = δ2m−k+1

and gh = hs, s = ε2m−k + 1. Then, gcd (δ, 2) = gcd (ε, 2) = 1. We have

t = 2k · δ2m−2k + 1. Thus

hgh = gt h = g(g
2k

(...(g
2k︸     ︷︷     ︸

x−times

h))) = gh

with x = δ2m−2k , 2k ≤ m.

Then, let
hgh = gh. Then gt h = gh or equivalently gt−1h = h. Hence

t − 1 ≡ 0 mod 2k or m − k ≥ k.

Next, suppose s = ε2m−k + 1 = 2k · ε2m−2k + 1 with m − 2k ≥ 0, since both same
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groups. Thus,
ghg = hs

g = h(h
gk

(...(h
2k︸     ︷︷     ︸

y−times

g))) = hg

with y = ε2m−2k .

Now suppose
ghg = hg. Then hs

g = hg or equivalently hs−1
g = g. Hence

s − 1 ≡ 0 mod 2k or m − k ≥ k or 2k ≤ m. Therefore, (σ, σ′) is compatible

pairs of action if 2k ≤ m where k ≥ 2.

As conclusion, (σ, σ′) is a compatible pair of actions if 2k ≤ m where k ≥ 0. �

By using Proposition 4.3, the number of compatible pairs of nontrivial actions

between two cyclic 2-groups with the same order of actions of the same order are

determined. The result is given in Proposition 4.4.

Proposition 4.4

Let G = H = 〈g〉 � C2m be cyclic groups, m ≥ 4. Furthermore, let σ ∈ Aut(G) and

σ′ ∈ Aut(H) with |σ | = |σ′| = 2k .

i. If k = 0, then the number of compatible pair of actions is one.

ii. If k = 1, then the number of compatible pairs of actions is nine.

iii. If k ≥ 2, then the number of compatible pairs of actions is 22k−2.

Proof

Let G = H = 〈g〉 � C2m be cyclic groups, m ≥ 4. Furthermore, let σ ∈ Aut(G) and

σ′ ∈Aut(H) with |σ | = |σ′| = 2k .

i. Let k = 0. There is one automorphism of order one for each σ and σ′. Thus,

there is one compatible pair of actions only.

ii. Let k = 1. There are three actions that have order two and by Proposition 4.3, all

actions are always compatible with both actions that have order two. Thus, there

are nine compatible pairs of actions.
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iii. Let k ≥ 2. By Proposition 3.4, there exist 2k automorphisms of order 2k and

only half of them are considered by Theorem 3.4. Then, the particular number of

automorphisms under this case are 2k−1. Furthermore, by Proposition 4.3, (σ, σ′)

is a compatible pair of actions if k + k ≤ m. Thus, 2k−1 · 2k−1 = 22k−2 is the

number of compatible pairs of actions that have order 2k when k ≥ 2.

�

Particularly, the number of compatible pairs of actions when both actions have

order greater than two for 2-cyclic groups of the same order with the same order of actions

is given as follows:

Lemma 4.4

Let G = H = 〈g〉 � C2m be cyclic groups, m ≥ 4. Furthermore, let σ ∈ Aut(G) and

σ′ ∈ Aut(H) with |σ | = |σ′| = 2k for k ≥ 2. The total number of compatible pairs of

actions (σ, σ′) is
m−3∑
k=2

22k−2.

Proof

Let G = H = 〈g〉 � C2m be cyclic groups, m ≥ 4. Furthermore, let σ ∈ Aut(G)

and σ′ ∈ Aut(H) with |σ | = |σ′| = 2k for k ≥ 2. By Proposition 4.4, there are 22k−2

compatible pairs of actions when k ≥ 2. Consider the highest order of σ in Aut(C2m) is

2m−3. Hence, the number of compatible pairs of actions is

22(2)−2 + 22(3)−2 + 22(4)−2 + · · · + 22(m−3)−2 =
m−3∑
k=2

22k−2

Therefore, the number of compatible pairs of actions is
m−3∑
k=2

22k−2. �

As a result, the total number of compatible pairs of actions for two same cyclic

2-groups with the same order of actions is stated in the following theorem.

Theorem 4.3

Let G = H = 〈g〉 � C2m be groups, m ≥ 4. Furthermore, let σ ∈ Aut(G) and σ′ ∈ Aut(H)

with |σ | = |σ′| = 2k for k = 0, 1, . . . , 2m−3. Then, there exist
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m−3∑
k=2

22k−2 + 10

compatible pairs of actions (σ, σ′).

Proof

Let G = H = 〈g〉 � C2m be groups, m ≥ 4. Furthermore, let σ ∈ Aut(G) and σ′ ∈ Aut(H)

with |σ | = |σ′| = 2k for k = 0, 1, . . . , 2m−3. By Proposition 4.4, there are three cases

represented by k = 0, k = 1 and k ≥ 2. Thus, three cases are considered:

i. By Proposition 4.4(i), only one compatible pairs of actions exists when k = 0.

ii. By Proposition 4.4(ii), there are nine compatible pairs of actions when k = 1.

iii. When k ≥ 2, the total number of compatible pairs of actions is
m−3∑
k=2

22k−2 by

Lemma 4.4.

Therefore, the number of compatible pairs of actions for two cyclic 2-groups

with the same order of actions is 1 + 9 +
m−3∑
k=2

22k−2 =
m−3∑
k=2

22k−2 + 10. �

Next, a corollary that gives the presentations of all automorphisms of the cyclic

2-groups with specific order is given as below.

Corollary 4.1

Let G = 〈g〉 � C2n , n ≥ 4. Every σ ∈ Aut(G) can be represented as σ = τiρ j with

i = 0, 1 and j = 0, 1, . . . , 2n−2 − 1 and τiρ j(g) = gt where t ≡ (−1)i · 5 j (mod 2n).

i. If i = 0 and j = 0, then t ≡ 1 (mod 2n) and |σ | = 1.

ii. If i = 1 and j = 0, then t ≡ −1 (mod 2n) and |σ | = 2.

iii. If i = 0 and j = 2n−3, then t ≡ 2n−1 − 1 (mod 2n) and |σ | = 2.

iv. If i = 1 and j = 2n−3, then t ≡ 2n−1 + 1 (mod 2n) and |σ | = 2.

v. If i = 0 and j , 2n−3 and j , 0, then |σ | > 2.

vi. If i = 1 and j , 2n−3 and j , 0, then |σ | > 2.
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Proof

By Theorem 3.2, σ ∈ Aut(G) can be represented as σ = τiρ j with i = 0, 1 and j =

0, 1, . . . , 2n−2 − 1 and τiρ j(g) = gt where t ≡ (−1)i · 5 j (mod 2n). Let i = 0 and j = 0.

Then, t ≡ (−1)0 · 50 (mod 2n) ≡ 1 (mod 2n) which gives |σ | = 1. Assume σ be an

automorphisms of order two. By Corollary 3.5, there exist three automorphisms of order

two which are t ≡ −1 (mod 2n) when i = 1 and j = 0, t ≡ 2n−1 − 1 (mod 2n) when i = 0

and j = 2n−3 and t ≡ 2n−1 + 1 (mod 2n) when i = 1 and j = 2n−3. Then, by letting i = 0

or i = 1 with j , 2n−3 and j , 0, the automorphisms have order greater than two. �

4.5 Conclusion

The number of compatible pairs of actions for two cyclic 2-groups have been

computed. From the results, the number of the compatible pairs of actions between two

cyclic 2-groups,C2m and C2n is 4 + (m − 3)(2r ′−1) + 2r−1 + 2m−1 + 2n−1 where m ≥ 4, n ≥

3 provided r = min{m + 1, n} and r′ = min{m, n}. Next, the total number of compatible

pairs of actions for same cyclic 2-groups with the same order of actions is
m−3∑
k=2

22k−2 + 10

where k is the order of actions exist in Aut(C2m). The results in this chapter will be used

in the next chapter in introducing a new graph, namely the compatible action graph.
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CHAPTER 5

THE COMPATIBLE ACTION GRAPH

5.1 Introduction

In this chapter, a new graph namely the compatible action graph is introduced

by extending the results on the compatible pairs of actions for cyclic 2-groups. Some

properties of compatible action graphs and special types of compatible action graphs are

investigated.

5.2 Motivation of Compatible Action Graph

The idea which made us investigate the compatible action graph for subgroups of

the cyclic 2-groups is that, usually we think that the compatible pairs of actions for the

subgroup H from the group G should exist in the group G, but it is not necessary. The

following example is given to show that there are compatible pairs of actions which exist

in the subgroup C24 ⊗ C24 but not in the group C25 ⊗ C25

Example 5.1

Let G = 〈g〉 � C25 and H = 〈h〉 � C25 be cyclic 2-groups. Furthermore, let σ ∈ Aut(G)

and σ′ ∈ Aut(H) be two actions such that σ(g) = g5 and σ′(h) = h5 or equivalently
gh = h5 and hg = g5.
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Then, for the first compatibility condition,

hgh = g5h

= h5
5

= h21 since 55 ≡ 21 (mod 25)

, gh.

Thus, (σ, σ′) is not compatible in C25 ⊗ C25

Now, let G = 〈g〉 � C24 and H = 〈h〉 � C24 be cyclic 2-groups. Furthermore,

let σ(g) = g5 and σ′(h) = h5 or equivalently gh = h5 and hg = g5. Then, for the first

compatibility condition,

hgh = g5h

= h5
5

= h5 since 55 ≡ 5 (mod 24)

= gh.

Similarly, the second compatibility conditions is also satisfied. Thus, (σ, σ′) is compatible

in C24 ⊗ C24

Generally, Example 5.2 illustrated the idea and the intersection between the group

and the subgroup.

Example 5.2

Let G � C25 be a cyclic 2-groups. Furthermore, let H � C24 be a subgroup of G. For the

nonabelian tensor product of the subgroup, C24 ⊗ C24 , there are three compatible pairs of

actions (σ, σ′), which are (g5, h5), (g7, h7) and (g15, h15) are compatible in C24 ⊗ C24 but

not in C25 ⊗ C25 .

However, there are some compatible pairs of actions (σ, σ′) such as

(g5, h9), (g9, h5), (g9, h9), (g9, h13)and(g13, h9) are compatible in C24 ⊗ C24 and also
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C25 ⊗ C25 . Thus, all of the compatible pairs of actions represented as intersection

between both nonabelian tensor product.

Therefore, to find the number of compatible pairs of actions that exist in group G

as well as its subgroup H, the compatible action graph has been introduced.

5.3 Properties of Compatible Action Graph

In this section, a graph namely compatible action graph is introduced and its

properties has been studied. The definition of compatible action graph is given as

follows.

Definition 5.1 : Compatible Action Graph

Let G and H be finite cyclic 2-groups and (σ, σ′) be a pair of compatible actions for the

nonabelian tensor product G ⊗ H, where σ ∈ Aut(G) and σ′ ∈ Aut(H). Then,

ΓG⊗H = ( V(ΓG⊗H), E(ΓG⊗H))

is a compatible action graph with the set of the vertices V(ΓG⊗H), which is the union of

Aut(G) and Aut(H), and the set of edges, E(ΓG⊗H) that connect these vertices which is

the set of all compatible pairs of actions (σ, σ′). That is

V(ΓG⊗H) =


Aut(G) ∪ Aut(H) if G , H

Aut(G) if G = H.

Furthermore, the vertices σ and σ′ are adjacent if they are compatible.

Next, the order of a compatible action graph for the cyclic 2-groups are studied.

By Definition 3.9, the order of Γ is defined as the cardinality of the vertex set of Γ. Since

the vertices of the compatible action graph are elements of Aut(G) and Aut(H), then the

order of the compatible action graph is the number of automorphisms of G and H.

Therefore, |ΓG⊗H | = |V(ΓG⊗H)|.
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The order of the compatible action graph is considered for two cases namely m , n

and m = n. Thus, the following proposition gives the order of the compatible action graph

for the cyclic 2-groups.

Proposition 5.1

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. Then, the

order of the compatible action graph of G and H is

i. |ΓG⊗H | = 2m−1 + 2n−1 if m , n.

ii. |ΓG⊗H | = 2m−1 if m = n.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. By

Definition 3.9, |ΓG⊗H | = |V(ΓG⊗H)|. Furthermore, by Definition 5.1, V(ΓG⊗H) is the set

of Aut(G) and Aut(H). There are two cases which are m , n and m = n need to be

considered.

i. Let m , n and note that |V(ΓG⊗H)| = |Aut(G)| + |Aut(H)| where |Aut(G)| = 2m−1

and |Aut(H)| = 2n−1. Then, |ΓG⊗H | = 2m−1 + 2n−1.

ii. Let m = n. Without loss of generality, let |G | = |H | = 2m. Since |V(ΓG⊗H)| =

|Aut(G)| and |Aut(G)| = 2m−1. Then, |ΓG⊗H | = 2m−1.

�

The compatible action graph of cyclic 2-groups is a directed graph since an

action of G on H is a mapping Φ : G → Aut(H). The compatible action graph may

contain a loop and the loop is only present for the case G = H. Thus, the loop

contributes one to both of the in-degree and the out-degree of the vertex. The compatible

action graph may not contain multiple directed edges because the presentation of

automorphism are not repeated given by the necessary and sufficient conditions of the

compatible on each other for cyclic 2-groups.

The following proposition gives the cardinality of the edge set for the compatible

action graph for the cyclic 2-groups.
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Proposition 5.2

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. Then,

|E(ΓG⊗H)| = (m − 3)(2r ′−1) + 2r−1 + 2m−1 + 2n−1 + 4

where r =min{m + 1, n} and r′ =min{m, n}.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. By

Definition 5.1, the E(ΓG⊗H)) is a nonempty set of all pairs of (σ, σ′) . Thus, by Theorem

4.2, |E(ΓG⊗H)| = (m − 3)(2r ′−1) + 2r−1 + 2m−1 + 2n−1 + 4 provided r =min{m + 1, n} and

r′ =min{m, n}. �

In the terminology of graphs, directed edges reflect the fact that the edges in a

directed graph have directions. The beginning vertex of direction is called the initial

vertex and the ending vertex is the terminal vertex. Thus, (σ, σ′) can be defined as the

edge of the compatible action graph with the directed edge and by Definition 3.6, the

vertex σ is considered as initial vertex and σ′ as terminal vertex. In addition, σ is to be

adjacent to σ′ and σ′ is to be adjacent from σ.

The following proposition presented the out-degree of vertex v for compatible

action graph.

Proposition 5.3

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let v ∈ V(ΓG⊗H) where v ∈ Aut(G) and v(g) = gt with

t ≡ (−1)i · 5 j (mod 2m) where i = 0, 1 and j = 0, 1, . . . , 2m−2 − 1 and

|v | = 2s, s = 0, 1, . . . ,m − 2. Then, deg+(v) is exactly one of the following

i. 2n−1 if i = 0 and j = 0.

ii. 4 if i = 0 or i = 1 and j = 2m−3

iii. 2r−1 if i = 1 and j = 0 provided r = min{m + 1, n}.

iv. 2s if i = 1, j , 0 and j , 2m−3.
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v. 2r ′−1 if i = 0, j , 0 and j , 2m−3 provided r′ = min{m, n}.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let v ∈ V(ΓG⊗H) where v ∈ Aut(G) and v(g) = gt with

t ≡ (−1)i · 5 j (mod 2m) where i = 0, 1 and j = 0, 1, . . . , 2m−2 − 1 and

|v | = 2s, s = 0, 1, . . . ,m − 2. There are five cases according to the deg+(v).

i. Let i = 0 and j = 0, then the action is trivial. By Proposition 4.1, the action is

compatible when the action of H on G is trivial. Thus, deg+(v) = 2n−1.

ii. By Proposition 4.2(i), there are eight compatible pairs of actions. Let i = 0

and j = 2m−3, then there are four compatible pairs of actions. The number of

compatible pairs of actions is the same when i = 1 and j = 2m−3. Particularly,

the compatible pairs of actions are four for i = 0 and four for i = 1. Therefore,

deg+(v) = 4 where i = 0 or i = 1 and j = 2m−3.

iii. By Proposition 4.2(ii), there are 2r−1 compatible pairs of actions for t ≡ 2m−1 +

1 (mod 2m) provided r =min{m + 1, n}. Thus, deg+(v) = 2r−1 where i = 1 and

j = 0.

iv. By Lemma 4.1, the number of compatible pairs of actions is 2s. Therefore,

deg+(v) = 2s when i = 1, j , 0 and j , 2n−3.

v. By Lemma 4.2, there are 2r ′−1 number of the compatible pairs of actions where

i = 0, j , 0 and j , 2m−3 provided r′ = min{m, n}. Thus, the deg+(v) = 2r ′−1.

�

By Definition 3.4, the graph with directed edges the in-degree of a vertex v,

denoted by deg−(v), is the number of edges with v as their terminal vertex. In the next

proposition, the in-degree of vertex v is presented.
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Proposition 5.4

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let v ∈ V(ΓG⊗H) where v ∈ Aut(H) and v(h) = ht with

t ≡ (−1)i · 5 j (mod 2n) where i = 0, 1 and j = 0, 1, . . . , 2n−2 − 1 and

|v | = 2s, s = 0, 1, . . . , n − 2. Then, deg−(v) is exactly one of the following

i. 2m−1 if i = 0 and j = 0.

ii. 4 if i = 0 or i = 1 and j = 2n−3.

iii. 2r−1 if i = 1 and j = 0 provided r =min{m + 1, n}.

iv. 2s′ if i = 1, j , 0 and j , 2n−3.

v. 2r ′−1 if i = 0, j , 0 and j , 2n−3 provided r′ = min{m, n}.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let v ∈ V(ΓG⊗H) where v ∈ Aut(H) and v(h) = ht with

t ≡ (−1)i · 5 j (mod 2n) where i = 0, 1 and j = 0, 1, . . . , 2m−2 − 1 and

|v | = 2s, s = 0, 1, . . . ,m − 2. There are five cases according to deg−(v).

i. Let i = 0 and j = 0, the action is trivial. By Proposition 4.1, the action is

compatible when the action of G on H is trivial. Thus, deg−(v) = 2m−1.

ii. By Proposition 4.2(i), there are eight compatible pairs of actions. Let i = 0

and j = 2n−3, then there are four compatible pairs of actions. The number of

compatible pairs of actions is the same when i = 1 and j = 2n−3. Particularly,

the compatible pairs of actions are four for i = 0 and four for i = 1. Therefore,

deg−(v) = 4 where i = 0 or i = 1 and j = 2n−3.

iii. By Proposition 4.2(ii), there are 2r−1 compatible pairs of actions provided

r =min{m + 1, n}. Thus, deg−(v) = 2r−1 where i = 1 and j = 0.

iv. By Lemma 4.1, the number of the compatible pairs of actions is 2s′. Thus,

deg−(v) = 2s′ where i = 1, j , 0 and j , 2n−3.
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v. By Lemma 4.2, given that there are 2r ′−1 number of the compatible pairs of

actions where i = 0, j , 0 and j , 2n−3 provided r′ = min{m, n}. Thus,

deg−(v) = 2r ′−1.

�

Particulary, the following corollary shows that the out-degree of vertex v and the

in-degree of vertex v are equal for the compatible action graph when G = H.

Corollary 5.1

Let G � C2m be a cyclic group where m ≥ 4. Then deg−(v) = deg+(v) for ΓG⊗G.

Proof

Let G � C2m be a cyclic group where m ≥ 4. By Propositions 5.3 and 5.4, the deg−(v) =

deg+(v) for any v ∈ V(ΓG⊗G). �

In the next section, properties of compatible action graph such as connectivity are

given. In addition, some results on the special types of graph such as the bipartite graph

and complete graph are also provided.

5.4 Types of Compatible Action Graphs

The previous section gives some properties of compatible action graphs

according to vertices and edges only. In this section, the connectivity, bipartite and

complete of compatible action graph are provided.

First, the connectivity of compatible actions graphs is investigated. A compatible

action graph is connected when there is a path between any pair of vertices. The

connectivity of the compatible action graph for the cyclic 2-groups is given in the

following theorem.

Theorem 5.1

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. Then,
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ΓG⊗H is a connected graph.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 1.

Furthermore, let v1 ∈ V(ΓG⊗H) with v1 ∈ Aut(G) and deg−(v1) = 2n−1. Then, v1 is

compatible with every v2 ∈ Aut(H) since |Aut(H)| = 2n−1.

Next, let v2 ∈ V(ΓG⊗H) with v2 ∈ Aut(H) and deg+(v2) = 2m−1. Then, v2 is

compatible with every v1 ∈ Aut(G) since |Aut(G)| = 2m−1. Thus, ΓG⊗H is a connected

graph. �

The above result shows that the compatible action graph is a connected graph.

Now, assume that G , H. Then, the compatible action graph has the property where

the vertex can be partitioned into two disjoints sets namely V1 and V2 or equivalently the

graph is bipartite. This result is provided in the next theorem.

Theorem 5.2

Let G � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. Then, ΓG⊗H is a

bipartite graph if and only if m , n.

Proof

Let G � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3. First, we need to

show that if ΓG⊗H is bipartite, then m , n. By using contradiction method, assume that

ΓG⊗H is bipartite and m = n is true. Assume that m = n, then Aut(C2m) = Aut(C2n).

Thus, there exist a loop which cannot be partitioned into two disjoint sets, which

contradicts on the assumption. Therefore, m , n.

Next, let m , n. By definition of compatible pairs of actions, if m , n, then any

v ∈ Aut(C2m) only compatible with some v′ ∈ Aut(C2n). Thus, clearly it can be

partitioned into two disjoint sets Aut(C2m) and Aut(C2n) respectively. Therefore, ΓG⊗H is

a bipartite graph. �

Next, the special type of graph, which is called as a complete graph is investigated.

The complete graph contains exactly one edge between each pair of vertices. The result
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shows the compatible action graphs is not the complete graph. The result is given as

follows

Theorem 5.3

Let G � C2m and H � C2n be cyclic groups where m ≥ 4, n ≥ 3. Then, ΓG⊗H is not a

complete graph.

Proof

By Proposition 5.2, the number of vertices for compatible action graphs is 2m−1 + 2n−1.

If a compatible action graph is a complete graph, the number of edges is [2m−1 + 2n−1]2.

By Proposition 5.1, there exist |E(ΓG⊗H)| = 2n−1 + 2r−1 + 4 + 2m−1 + (m − 3) 2r ′−1 edges

where r = min{m + 1, n} and r′ = min{m, n}. Thus,

|E(ΓG⊗H)| = 2n−1 + 2r−1 + 4 + 2m−1 + (m − 3) 2r ′−1 ≤ [2m−1 + 2n−1]2.

Therefore, the compatible action graph is not a complete graph. �

5.5 Conclusion

In this chapter, the compatible action graph is introduced. Consequently, some

properties of the compatible actions graph are stated such that the cardinality of the edge

set, order of a compatible action graph, the number of directed edges in the in-degree and

out-degree of a vertex and the connectivity, bipartite and the complete graph of compatible

action graph are given. In the next chapter, a subgraph of the compatible action graphs of

the cyclic 2-groups are investigated.
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CHAPTER 6

SOME SUBGRAPHS OF THE COMPATIBLE ACTION GRAPH

6.1 Introduction

Let C2m and C2n be cyclic groups where m ≥ 4, n ≥ 3. Furthermore, let C2m−i

and C2n−i be two subgroups of C2m and C2n where i = 1, 2, . . . ,min{m, n} − 2. Then, the

subgraph of compatible action graph has been defined for the subgroups C2m−i and C2n−i

by reducing two to the power of i of the order of the groups C2m and C2n . In addition,

the necessary and sufficient conditions for the cyclic 2-subgroups act on each other in a

compatible way are also given. Next, the intersection between the compatible action graph

and its subgraph which are ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
are found. Some of the properties

of the corresponding subgraphs of the compatible action graph are provided.

6.2 Compatibility Conditions for Subgroups of Cyclic 2-Groups

In this section, the necessary and sufficient conditions for the subgraphs of cyclic

2-groups act on each other in a compatible way for C2m−i ⊗ C2n−i for

i = 1, 2, . . . ,min{m, n} − 2 is given. Throughout this section, the reduction of 2-power

order or i is the same for both groups.

The following proposition gives necessary and sufficient conditions for C2m−i and

C2n−i to act compatibly on each other.
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Proposition 6.1

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let (σ, σ′) be a compatible pair of actions for C2m ⊗ C2n where σ(g) = gk

and σ′(h) = hl with k and l are odd integers. Then, (σ, σ′) is a compatible pair of

actions for C2m−i ⊗ C2n−i where σ(g) = gk (mod 2m−i) and σ′(h) = hl (mod 2n−i) with

i = 1, 2, . . . ,min{m, n} − 2.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let (σ, σ′) be a compatible pair of actions for C2m ⊗ C2n where σ(g) = gk

and σ′(h) = hl with k and l are odd integers. Without loss of generality, let C2m−i ≤ C2m ,

C2n−i ≤ C2n and C2m−i = 〈g
′〉, C2n−i = 〈h′〉 where g′ ∈ G and h′ ∈ H. Since (σ, σ′) is a

compatible pair of actions for C2m ⊗ C2n , then there exist mutual actions of G and H on

each other such that hg = gk and gh = hl . By Proposition 3.7, in order to show

σ(g) = gk (mod 2m−i) and σ′(h) = hl (mod 2n−i) is compatible pair of actions for

C2m−i ⊗ C2n−i , there are three conditions need to be satisfied as well.

By Proposition 3.7(i), the first condition that needs to be shown is

gcd(k, 2m−i) = gcd(l, 2n−i) = 1. Define σ : G → G by σ(g) = gk , then σ is an

automorphism if and only if gcd(k, 2m) = 1. Since k is an odd number and 2m−i is an

even number because it is a 2-power, therefore gcd(k, 2m−i) = 1. Similarly, there exists a

mutual action of G on H such that gh = hl . Since gcd(l, 2n) = 1, then gcd(l, 2n−i) = 1.

Hence, gcd(k, 2m−i) = gcd(l, 2n−i) = 1 and the first condition is satisfied.

By Proposition 3.7(ii), the second condition that needs to be satisfied are

k2
n−i
≡ 1 (mod 2m−i) and l2

m−i
≡ 1 (mod 2n−i). There exist mutual action of H on G such

that hg = gk , then g =
1Hg = h2

n−i

g = gk2
n−i

. Thus, k2
n−i
≡ 1 (mod 2m−i). Similarly,

there exist mutual action of G on H such that gh = hl , then l2
m−i
≡ 1 (mod 2n−i). Hence,

the second condition is satisfied.

By Proposition 3.7(iii), the third condition that needs to be considered is

k l−1 ≡ 1 (mod 2m−i) and lk−1 ≡ 1 (mod 2n−i). By Proposition 3.6, G and H act
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compatibly on each other if and only if (
gh)g = hg and (

hg)h = gh. From the first relation,
(gh)g = hlg = gkl and hg = gk . Thus, k l ≡ k (mod 2m−i) or equivalently

k l−1 ≡ 1 (mod 2m−i). Similarly, for the second relations, lk ≡ l (mod 2n−i) or

equivalently lk−1 ≡ 1 (mod 2n−i). Hence, the third condition is satisfied.

Conclusively, (gk mod 2m−i , hl mod 2n−i ) is a compatible pair of actions for

C2m−i ⊗ C2n−i . �

The properties for a subgraph of the compatible action graph are given in the next

section.

6.3 Properties of a Subgraph of the Compatible Action Graph

In this section, the number of the compatible pairs of actions for the intersection

between two subgroups can be presented as the intersection of the compatible action graph

and its subgraph has been determined. The properties of a subgraph of compatible actions

graph on the order of ΓC2m−i⊗C2n−i
are first investigated. By Proposition 5.1, the order of

ΓC2m−i⊗C2n−i
is considered for two cases namely m , n and m = n. Thus, the following

proposition gives the order of ΓC2m−i⊗C2n−i
for both cases.

Proposition 6.2

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with

i = 1, 2, . . . ,min{m, n} − 2. Then, |ΓC2m−i⊗C2n−i
| =

1

2i |ΓC2m⊗C2n |.

Proof

Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic groups where m ≥ 4, n ≥ 3.

Furthermore, let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with

i = 1, 2, . . . ,min{m, n} − 2.

By Proposition 5.1, the two cases are considered namely m = n and m , n. Thus,
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i. Suppose that m , n. By Proposition 5.1(i), |ΓC2m⊗C2n | = 2m−1 + 2n−1. Thus,

|ΓC2m−i⊗C2n−i
| = 2m−i−1 + 2n−i−1

=
1

2i (2
m−1 + 2n−1)

=
1

2i |ΓC2m⊗C2n |.

ii. Suppose that m = n. By Proposition 5.1(ii), |ΓC2m⊗C2n | = 2m−1. Thus,

|ΓC2m−i⊗C2n−i
| = 2m−i−1

=
1

2i (2
m−1)

=
1

2i |ΓC2m⊗C2n |.

In conclusion, |ΓC2m−i⊗C2n−i
| =

1

2i |ΓC2m⊗C2n | for both cases. �

The cardinality of the edge set needs to be found in order to investigate some

properties of ΓC2m−i⊗C2n−i
. By Proposition 5.3, there are five cases depend on deg+(v)

which need to be considered.

Case I: deg+(v) is 2n−1 if i = 0 and j = 0.

Lemma 6.1

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and i =

1, 2, . . . ,min{m, n}−2. Furthermore, let v ∈ Aut(G) be a vertex in ΓC2m⊗C2n ∩ΓC2m−i⊗C2n−i

such that deg+(v) = 2n−1 and |v | = 1. Then, |E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| =

1

2i (2
n−1).

Proof

Let v be a vertex in ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
such that deg+(v) = 2n−1. By Proposition 4.1,

there exist 2n−i−1 number of compatible pairs of actions for trivial actions. Thus,

|E(ΓC2m−i⊗C2n−i
) ∩ ΓC2m−i⊗C2n−i

)| = 2n−i−1

=
1

2i (2
n−1).
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Hence, |E(ΓC2m−i⊗C2n−i
) ∩ ΓC2m−i⊗C2n−i

)| =
1

2i(2
n−1) when deg+(v) = 2n−1. �

Case II: deg+(v) is 4 if i = 0 or i = 1 and j = 2m−3.

Lemma 6.2

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and i =

1, 2, . . . ,min{m, n}−2. Furthermore, let v ∈ Aut(G) be a vertex in ΓC2m⊗C2n ∩ΓC2m−i⊗C2n−i

such that deg+(v) = 4 and |v | = 2. Then, |E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| = 2.

Proof

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 2. Furthermore, let v ∈ Aut(G) be a vertex in

ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
such that deg+(v) = 4 and |v | = 2. Let G = 〈g〉 � C2m and

H = 〈h〉 � C2n be cyclic groups. Then, let σ ∈ Aut(G) with |σ | = 2 and σ′ ∈ Aut(H).

By Proposition 3.5, there are three automorphisms of order two. However, only two

automorphisms are covered in this case, σ(g) = gt where t ≡ 2m−1 − 1 (mod 2m) or

t ≡ −1 (mod 2m).

Assume that σ(g) = g2
m−1−1 (mod 2m) and σ(g) = g−1 (mod 2m). By Theorem 3.3,

the actions are compatible with |σ′| = 2 where σ′(h) = ht ′ with t′ ≡ 2n−1 + 1 (mod 2n),

t′ ≡ 2n−1 − 1 (mod 2n) or t′ ≡ −1 (mod 2n) and |σ′| = 1 . Thus, (σ, σ′) is compatible

pairs of actions for C2m ⊗ C2n .

By Proposition 6.1, there are some of compatible pairs of actions that compatible

in C2m ⊗ C2n but not compatible in C2m−i ⊗ C2n−i because of σ(g) = g−1 (mod 2m)>2m−i ,

σ′ = h−1 (mod 2n)>2n−i and σ′ = h2
n−1+1 (mod 2n)>2n−i . A summary of intersection between

two compatible action graphs for deg+(v) = 4 are illustrated in Table 6.1.
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Table 6.1: The intersection between two compatible action graphs for deg+(v) = 4

C2m ⊗ C2n C2m−i ⊗ C2n−i Intersection
(2m−1 − 1 (mod 2m−i),
2m−1 − 1 (mod 2m−i))

No

(2m−1 − 1 (mod 2m), 2m−1 − 1 (mod 2m))

(2m−1 − 1 (mod 2m−i),
2m−1 + 1 (mod 2m−i))

No

(2m−1 − 1 (mod 2m−i),
−1 (mod 2m−i))

No

(2m−1 − 1 (mod 2m−i),
1 (mod 2m−i))

No

(−1 (mod 2m−i),
2m−1 − 1 (mod 2m−i))

No

(−1 (mod 2m−i),
2m−1 + 1 (mod 2m−i))

No

(−1 (mod 2m−i),
−1 (mod 2m−i))

Yes

(−1 (mod 2m−i),
1 (mod 2m−i))

Yes

Therefore, there exists two edges in ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
which are

(g−1 (mod 2m−i), h−1 (mod 2n−i)) and (g−1 (mod 2m−i), h1 (mod 2n−i)). �

Case III: deg+(v) is 2r−1 if i = 1 and j = 0 provided r = min{m + 1, n}.

Lemma 6.3

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 2. Furthermore, let v ∈ Aut(G) be a vertex in ΓC2m⊗C2n ∩

ΓC2m−i⊗C2n−i
such that deg+(v) = 2r−1 provided r = min{m + 1, n} and |v | = 2. Then,

|E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| = 0.

Proof

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 2. Furthermore, let v be a vertex in ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i

such that deg+(v) = 2r−1 and |v | = 2. Let G = 〈g〉 � C2m and H = 〈h〉 � C2n be cyclic

groups. Then, let σ ∈ Aut(G) with |σ | = 2 and σ′ ∈ Aut(H).
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By Proposition 3.5, there are three automorphisms of order two. However, only

one automorphism are covered in this case, σ(g) = gt where t ≡ 2m−1 + 1 (mod 2m).

By Theorem 3.3, the actions are compatible with |σ′| = 2 where σ′ = ht ′ with

t′ ≡ 2n−1 + 1 (mod 2n), t′ ≡ 2n−1 − 1 (mod 2n) or t′ ≡ −1 (mod 2n) and |σ′| = 1 . Thus,

(σ, σ′) is compatible pairs of actions for C2m ⊗ C2n .

By Proposition 6.1, there are some of compatible pairs of actions that compatible

in C2m ⊗C2n but not compatible in C2m−i ⊗C2n−i because of σ(g) = g2
m−1+1 (mod 2m)>2m−i .

Therefore, there is no compatible pairs of actions for this case. �

Case IV: deg+(v) is 2s if i = 1, j , 0 and j , 2m−3.

Lemma 6.4

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 2. Furthermore, let v ∈ Aut(G) be a vertex in

ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
where deg+(v) = 2s and |v | = 2s where s = 2, 3, . . . ,m − 2.

Then, |E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| =

1

2i+1 (2
m−1 − 2i+2 + (m − i − 3)2r ′−1) provided

r′ = min{m, n}.

Proof

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 2. Furthermore, let v ∈ Aut(G) be a vertex in

ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
where deg+(v) = 2s and |v | = 2s where s = 2, 4, . . . ,m − 2.

By Lemma 4.3, the cardinality of the edge set for compatible action graph is

(2m−1 − 4) + (m − 3)(2r ′−1) provided r′ = min{m, n}. Thus,

|E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| =

1

2
(2m−i−1 − 4) + (m − i − 3)(2r ′−i−1)

=
1

2i+1 (2
m−1 − 4(2i) + (m − i − 3)2r ′−1)

=
1

2i+1 (2
m−1 − 2i+2 + (m − i − 3)2r ′−1
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where s = 3, 4, . . . ,m − 2 provided r′ = min{m, n}. Nota that, min{m − i, n − i} =

min{m, n} − i = r′ − i. Hence the lemma have been proven. �

Case V: deg+(v) is 2r ′−1 if i = 0, j , 0 and j , 2m−3 provided r′ = min{m, n}.

Lemma 6.5

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and i =

1, 2, . . . ,min{m, n}−2. Furthermore, let v ∈ Aut(G) be a vertex in ΓC2m⊗C2n ∩ΓC2m−i⊗C2n−i

where deg+(v) = 2r ′−1 provided r′ = min{m, n} and |v | = 2s where s = i + 1. Then,

|E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| =

1

2i+1 (2
r ′−1 + 2i+1).

Proof

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 2. Furthermore, let v be a vertex in ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i

where deg+(v) = 2r ′−1 provided r′ = min{m, n} and |v | = 2s where s = i + 1.

By Lemmas 4.1 and 4.2, the number of compatible pairs of actions is 2r ′−1 + 2s

where s = i + 1. Thus,

|E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| =

1

2
(2r ′−i−1 + (2s−i)

=
1

2i+1 (2
r ′−1 + 2s)

=
1

2i+1 (2
r ′−1 + 2i+1).

Hence, the lemma has been proven. �

In general, the following theorem gives the cardinality of the edge set for the

intersection between the compatible action graph and its subgraph.

Theorem 6.1

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and i =

1, 2, . . . ,min{m, n}−2. Furthermore, let v ∈ Aut(G) be a vertex in ΓC2m⊗C2n ∩ΓC2m−i⊗C2n−i

and r′ = min{m, n}. Then,

|E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)| =

1

2i+1 (2
i+1 + 2m−1 + 2n + (m − i − 2)2r ′−1).
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Proof

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 2. Furthermore, let v be a vertex in ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
.

Lemmas 6.1, 6.2 6.3, 6.4, and 6.5 give the cardinality of the edge set with specific deg+(v).

Thus, the five cases are considered.

i. Suppose that deg+(v) = 2n−1. By Lemma 6.1, the cardinality of the edge set is
1

2i (2
n−1).

ii. Suppose that deg+(v) = 4. By Lemma 6.2, the cardinality of the edge set is two.

iii. Suppose that deg+(v) = 2r−1 provided r = min{m + 1, n}. By Lemma 6.3, there

is no cardinality of the edge set.

iv. Suppose that deg+(v) = 2s. By Lemma 6.4, the cardinality of the edge set is
1

2i+1 (2
r ′−1 + 2i+1).

v. Suppose that deg+(v) = 2r ′−1 provided r′ = min{m, n}. By Lemma 6.5, there

exists
1

2i+1 (2
m−1 − 2i+2 + (m − i − 3)2r ′−1) cardinality of the edge set.

Therefore,

|E(ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
)|

=
1

2i (2
n−1 + 2 +

1

2i+1 (2
m−1 + 2i+2 + (m − i − 3)2r ′−1) +

1

2i+1 (2
r ′−1 + 2i+1)

=
1

2i+1 (2
n + 2(2i+1) + 2m−1 − 2i+2 + (m − i − 3)2r ′−1 + 2r ′−1 + 2i+1)

=
1

2i+1 (2
i+1 + 2m−1 + 2n + (m − i − 2)2r ′−1)

provided r′ = min{m, n}. Hence, the theorem has been proven. �

The connectivity of ΓC2m−i⊗C2n−i
∩ ΓC2m−i⊗C2n−i

is given in the following theorem.

Theorem 6.2

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and i =

1, 2, . . . ,min{m, n}−3. Furthermore, let v ∈ Aut(G) be a vertex in ΓC2m⊗C2n∩ΓC2m−i⊗C2n−i
.

Then, ΓC2m−i⊗C2n−i
∩ ΓC2m−i⊗C2n−i

is a connected graph.
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Proof

Let ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
be two compatible action graphs with m ≥ 4, n ≥ 3 and

i = 1, 2, . . . ,min{m, n} − 3. Furthermore, let v ∈ Aut(G) be a vertex in

ΓC2m⊗C2n ∩ ΓC2m−i⊗C2n−i
and given that |v | = 1. Then, v is identity automorphism and it is

compatible with every other vertex in ΓC2m−i⊗C2n−i
∩ ΓC2m−i⊗C2n−i

. Therefore,

ΓC2m−i⊗C2n−i
∩ ΓC2m−i⊗C2n−i

is a connected graph. �

6.4 Conclusion

In this chapter, the intersection between the compatible action graph and its

subgraph which are ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
are discussed. The necessary and

sufficient conditions for the cyclic 2-subgroups act on each other in a compatible way

and some of the properties of the corresponding subgraphs of the compatible action

graph are provided.
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CHAPTER 7

SUMMARY AND CONCLUSION

7.1 Summary of the Research

This thesis begins with an introduction which contains research background,

problem statement, research objectives, research scope and research significance.

Chapter 2 focuses on the literature review. All related research done by other

researchers regarding nonabelian tensor products and graph theory were given.

Some definitions and preparatory results on the automorphism groups,

compatibility conditions, graph theory and GAP algorithms were given in Chapter 3. By

using the GAP, the number of compatible pairs of actions have been computed.

The number of compatible pairs of actions for the cyclic 2-groups have been

computed in Chapter 4. Three cases were considered, when one of the actions has order

one, two and greater than two. From the results, there exist

(m − 3)(2r ′−1) + 2r−1 + 2n−1 + 2m−1 + 4 compatible pairs of actions between C2m and C2n

with m ≥ 4, n ≥ 3 where r = min{m + 1, n} and r′ = min{m, n}. Then, the total number

of the compatible pairs of actions for 2-cyclic groups of same order with same order of

actions is 10 +
m−3∑
k=2

22k−2 where m ≥ 4 and k = 0, 1, . . . ,m − 2. In this chapter, the first

objective which is to determine the number of compatible pairs of actions between the

cyclic 2-groups is achieved.
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Next, the compatible actions graph is introduced and denoted by ΓG⊗H .

Properties of the compatible actions graph have been proven such that the cardinality of

the edge set, order of a compatible action graph, the number of directed edges, the

degree of vertex v and also the connectivity of a compatible action graph. Furthermore,

the some types of graph are presented such as bipartite graph and complete graph. Thus,

the second objective is achieved in Chapter 5.

In Chapter 6, the intersection between the compatible action graph and its

subgraph which are ΓC2m⊗C2n and ΓC2m−i⊗C2n−i
are discussed. The necessary and

sufficient conditions for the cyclic 2-subgroups act on each other in a compatible way are

given. Then, some of the properties of the corresponding subgraphs of the compatible

action graph such as the order of the graph, the cardinality of the edge set and the the

connectivity of corresponding subgraphs are provided.

7.2 Recommendation for Future Research

This research only focuses on determining the compatible pairs of actions as

stated in the objective of research without finding the nonabelian tensor product. Hence,

the extension from this research can be done by determining the exact number of the

nonabelian tensor product since a different compatible pair of actions will give a

different nonabelian tensor product even for the same group.

This research focused on the cyclic groups of 2-power order only. It may also be

done for the cyclic groups of p-power order, where p is an odd prime, namely to

determine the compatible pair of actions for the cyclic groups of the p-power order since

the homomorphism image of automorphism groups of the cyclic groups of p-power are

different.

In this research, our concern on the properties of the subgraph of the compatible

action graph, ΓC2m−i⊗C2n−j
where i = j. Thus, further research can be done to find the

properties of subgraph of compatible action graph where i , j which give the new

properties of the subgraph of the compatible action graph, ΓC2m−i⊗C2n−j
.
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APPENDIX A

THE OUTPUT OF GAP SOFTWARE

The outputs for the GAP coding given on pages 24 and 25 are stated below. This output

represents the list of automorphisms with their specific order that satisfied the compatible

condition and the total of number of compatible pairs of actions.

gap> CompatibleAction(16,16);

k=3 (order action=4),l=9 (order action=2) Compatible

k=5 (order action=4),l=5 (order action=4) Compatible

k=5 (order action=4),l=9 (order action=2) Compatible

k=5 (order action=4),l=13 (order action=4) Compatible

k=7 (order action=2),l=7 (order action=2) Compatible

k=7 (order action=2),l=9 (order action=2) Compatible

k=7 (order action=2),l=15 (order action=2) Compatible

k=9 (order action=2),l=3 (order action=4) Compatible

k=9 (order action=2),l=5 (order action=4) Compatible

k=9 (order action=2),l=7 (order action=2) Compatible

k=9 (order action=2),l=9 (order action=2) Compatible

k=9 (order action=2),l=11 (order action=4) Compatible

k=9 (order action=2),l=13 (order action=4) Compatible

k=9 (order action=2),l=15 (order action=2) Compatible

k=11 (order action=4),l=9 (order action=2) Compatible

k=13 (order action=4),l=5 (order action=4) Compatible

k=13 (order action=4),l=9 (order action=2) Compatible

k=13 (order action=4),l=13 (order action=4) Compatible
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k=15 (order action=2),l=7 (order action=2) Compatible

k=15 (order action=2),l=9 (order action=2) Compatible

k=15 (order action=2),l=15 (order action=2) Compatible

No of Compatible = 21

gap> CompatibleAction(32,32);

k=3 (order action=8),l=17 (order action=2) Compatible

k=5 (order action=8),l=9 (order action=4) Compatible

k=5 (order action=8),l=17 (order action=2) Compatible

k=5 (order action=8),l=25 (order action=4) Compatible

k=7 (order action=4),l=17 (order action=2) Compatible

k=9 (order action=4),l=5 (order action=8) Compatible

k=9 (order action=4),l=9 (order action=4) Compatible

k=9 (order action=4),l=13 (order action=8) Compatible

k=9 (order action=4),l=17 (order action=2) Compatible

k=9 (order action=4),l=21 (order action=8) Compatible

k=9 (order action=4),l=25 (order action=4) Compatible

k=9 (order action=4),l=29 (order action=8) Compatible

k=11 (order action=8),l=17 (order action=2) Compatible

k=13 (order action=8),l=9 (order action=4) Compatible

k=13 (order action=8),l=17 (order action=2) Compatible

k=13 (order action=8),l=25 (order action=4) Compatible

k=15 (order action=2),l=15 (order action=2) Compatible

k=15 (order action=2),l=17 (order action=2) Compatible

k=15 (order action=2),l=31 (order action=2) Compatible

k=17 (order action=2),l=3 (order action=8) Compatible

k=17 (order action=2),l=5 (order action=8) Compatible

k=17 (order action=2),l=7 (order action=4) Compatible

k=17 (order action=2),l=9 (order action=4) Compatible

k=17 (order action=2),l=11 (order action=8) Compatible

k=17 (order action=2),l=13 (order action=8) Compatible

k=17 (order action=2),l=15 (order action=2) Compatible

k=17 (order action=2),l=17 (order action=2) Compatible
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k=17 (order action=2),l=19 (order action=8) Compatible

k=17 (order action=2),l=21 (order action=8) Compatible

k=17 (order action=2),l=23 (order action=4) Compatible

k=17 (order action=2),l=25 (order action=4) Compatible

k=17 (order action=2),l=27 (order action=8) Compatible

k=17 (order action=2),l=29 (order action=8) Compatible

k=17 (order action=2),l=31 (order action=2) Compatible

k=19 (order action=8),l=17 (order action=2) Compatible

k=21 (order action=8),l=9 (order action=4) Compatible

k=21 (order action=8),l=17 (order action=2) Compatible

k=21 (order action=8),l=25 (order action=4) Compatible

k=23 (order action=4),l=17 (order action=2) Compatible

k=25 (order action=4),l=5 (order action=8) Compatible

k=25 (order action=4),l=9 (order action=4) Compatible

k=25 (order action=4),l=13 (order action=8) Compatible

k=25 (order action=4),l=17 (order action=2) Compatible

k=25 (order action=4),l=21 (order action=8) Compatible

k=25 (order action=4),l=25 (order action=4) Compatible

k=25 (order action=4),l=29 (order action=8) Compatible

k=27 (order action=8),l=17 (order action=2) Compatible

k=29 (order action=8),l=9 (order action=4) Compatible

k=29 (order action=8),l=17 (order action=2) Compatible

k=29 (order action=8),l=25 (order action=4) Compatible

k=31 (order action=2),l=15 (order action=2) Compatible

k=31 (order action=2),l=17 (order action=2) Compatible

k=31 (order action=2),l=31 (order action=2) Compatible

No of Compatible = 53

gap> CompatibleAction(64,64);

k=3 (order action=16),l=33 (order action=2) Compatible

k=5 (order action=16),l=17 (order action=4) Compatible

k=5 (order action=16),l=33 (order action=2) Compatible

k=5 (order action=16),l=49 (order action=4) Compatible
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k=7 (order action=8),l=33 (order action=2) Compatible

k=9 (order action=8),l=9 (order action=8) Compatible

k=9 (order action=8),l=17 (order action=4) Compatible

k=9 (order action=8),l=25 (order action=8) Compatible

k=9 (order action=8),l=33 (order action=2) Compatible

k=9 (order action=8),l=41 (order action=8) Compatible

k=9 (order action=8),l=49 (order action=4) Compatible

k=9 (order action=8),l=57 (order action=8) Compatible

k=11 (order action=16),l=33 (order action=2) Compatible

k=13 (order action=16),l=17 (order action=4) Compatible

k=13 (order action=16),l=33 (order action=2) Compatible

k=13 (order action=16),l=49 (order action=4) Compatible

k=15 (order action=4),l=33 (order action=2) Compatible

k=17 (order action=4),l=5 (order action=16) Compatible

k=17 (order action=4),l=9 (order action=8) Compatible

k=17 (order action=4),l=13 (order action=16) Compatible

k=17 (order action=4),l=17 (order action=4) Compatible

k=17 (order action=4),l=21 (order action=16) Compatible

k=17 (order action=4),l=25 (order action=8) Compatible

k=17 (order action=4),l=29 (order action=16) Compatible

k=17 (order action=4),l=33 (order action=2) Compatible

k=17 (order action=4),l=37 (order action=16) Compatible

k=17 (order action=4),l=41 (order action=8) Compatible

k=17 (order action=4),l=45 (order action=16) Compatible

k=17 (order action=4),l=49 (order action=4) Compatible

k=17 (order action=4),l=53 (order action=16) Compatible

k=17 (order action=4),l=57 (order action=8) Compatible

k=17 (order action=4),l=61 (order action=16) Compatible

k=19 (order action=16),l=33 (order action=2) Compatible

k=21 (order action=16),l=17 (order action=4) Compatible

k=21 (order action=16),l=33 (order action=2) Compatible

k=21 (order action=16),l=49 (order action=4) Compatible
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k=23 (order action=8),l=33 (order action=2) Compatible

k=25 (order action=8),l=9 (order action=8) Compatible

k=25 (order action=8),l=17 (order action=4) Compatible

k=25 (order action=8),l=25 (order action=8) Compatible

k=25 (order action=8),l=33 (order action=2) Compatible

k=25 (order action=8),l=41 (order action=8) Compatible

k=25 (order action=8),l=49 (order action=4) Compatible

k=25 (order action=8),l=57 (order action=8) Compatible

k=27 (order action=16),l=33 (order action=2) Compatible

k=29 (order action=16),l=17 (order action=4) Compatible

k=29 (order action=16),l=33 (order action=2) Compatible

k=29 (order action=16),l=49 (order action=4) Compatible

k=31 (order action=2),l=31 (order action=2) Compatible

k=31 (order action=2),l=33 (order action=2) Compatible

k=31 (order action=2),l=63 (order action=2) Compatible

k=33 (order action=2),l=3 (order action=16) Compatible

k=33 (order action=2),l=5 (order action=16) Compatible

k=33 (order action=2),l=7 (order action=8) Compatible

k=33 (order action=2),l=9 (order action=8) Compatible

k=33 (order action=2),l=11 (order action=16) Compatible

k=33 (order action=2),l=13 (order action=16) Compatible

k=33 (order action=2),l=15 (order action=4) Compatible

k=33 (order action=2),l=17 (order action=4) Compatible

k=33 (order action=2),l=19 (order action=16) Compatible

k=33 (order action=2),l=21 (order action=16) Compatible

k=33 (order action=2),l=23 (order action=8) Compatible

k=33 (order action=2),l=25 (order action=8) Compatible

k=33 (order action=2),l=27 (order action=16) Compatible

k=33 (order action=2),l=29 (order action=16) Compatible

k=33 (order action=2),l=31 (order action=2) Compatible

k=33 (order action=2),l=33 (order action=2) Compatible

k=33 (order action=2),l=35 (order action=16) Compatible

65



k=33 (order action=2),l=37 (order action=16) Compatible

k=33 (order action=2),l=39 (order action=8) Compatible

k=33 (order action=2),l=41 (order action=8) Compatible

k=33 (order action=2),l=43 (order action=16) Compatible

k=33 (order action=2),l=45 (order action=16) Compatible

k=33 (order action=2),l=47 (order action=4) Compatible

k=33 (order action=2),l=49 (order action=4) Compatible

k=33 (order action=2),l=51 (order action=16) Compatible

k=33 (order action=2),l=53 (order action=16) Compatible

k=33 (order action=2),l=55 (order action=8) Compatible

k=33 (order action=2),l=57 (order action=8) Compatible

k=33 (order action=2),l=59 (order action=16) Compatible

k=33 (order action=2),l=61 (order action=16) Compatible

k=33 (order action=2),l=63 (order action=2) Compatible

k=35 (order action=16),l=33 (order action=2) Compatible

k=37 (order action=16),l=17 (order action=4) Compatible

k=37 (order action=16),l=33 (order action=2) Compatible

k=37 (order action=16),l=49 (order action=4) Compatible

k=39 (order action=8),l=33 (order action=2) Compatible

k=41 (order action=8),l=9 (order action=8) Compatible

k=41 (order action=8),l=17 (order action=4) Compatible

k=41 (order action=8),l=25 (order action=8) Compatible

k=41 (order action=8),l=33 (order action=2) Compatible

k=41 (order action=8),l=41 (order action=8) Compatible

k=41 (order action=8),l=49 (order action=4) Compatible

k=41 (order action=8),l=57 (order action=8) Compatible

k=43 (order action=16),l=33 (order action=2) Compatible

k=45 (order action=16),l=17 (order action=4) Compatible

k=45 (order action=16),l=33 (order action=2) Compatible

k=45 (order action=16),l=49 (order action=4) Compatible

k=47 (order action=4),l=33 (order action=2) Compatible

k=49 (order action=4),l=5 (order action=16) Compatible
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k=49 (order action=4),l=9 (order action=8) Compatible

k=49 (order action=4),l=13 (order action=16) Compatible

k=49 (order action=4),l=17 (order action=4) Compatible

k=49 (order action=4),l=21 (order action=16) Compatible

k=49 (order action=4),l=25 (order action=8) Compatible

k=49 (order action=4),l=29 (order action=16) Compatible

k=49 (order action=4),l=33 (order action=2) Compatible

k=49 (order action=4),l=37 (order action=16) Compatible

k=49 (order action=4),l=41 (order action=8) Compatible

k=49 (order action=4),l=45 (order action=16) Compatible

k=49 (order action=4),l=49 (order action=4) Compatible

k=49 (order action=4),l=53 (order action=16) Compatible

k=49 (order action=4),l=57 (order action=8) Compatible

k=49 (order action=4),l=61 (order action=16) Compatible

k=51 (order action=16),l=33 (order action=2) Compatible

k=53 (order action=16),l=17 (order action=4) Compatible

k=53 (order action=16),l=33 (order action=2) Compatible

k=53 (order action=16),l=49 (order action=4) Compatible

k=55 (order action=8),l=33 (order action=2) Compatible

k=57 (order action=8),l=9 (order action=8) Compatible

k=57 (order action=8),l=17 (order action=4) Compatible

k=57 (order action=8),l=25 (order action=8) Compatible

k=57 (order action=8),l=33 (order action=2) Compatible

k=57 (order action=8),l=41 (order action=8) Compatible

k=57 (order action=8),l=49 (order action=4) Compatible

k=57 (order action=8),l=57 (order action=8) Compatible

k=59 (order action=16),l=33 (order action=2) Compatible

k=61 (order action=16),l=17 (order action=4) Compatible

k=61 (order action=16),l=33 (order action=2) Compatible

k=61 (order action=16),l=49 (order action=4) Compatible

k=63 (order action=2),l=31 (order action=2) Compatible

k=63 (order action=2),l=33 (order action=2) Compatible
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k=63 (order action=2),l=63 (order action=2) Compatible

No of Compatible = 133

gap> CompatibleAction(64,32);

k=3 (order action=16),l=17 (order action=2) Compatible

k=5 (order action=16),l=17 (order action=2) Compatible

k=7 (order action=8),l=17 (order action=2) Compatible

k=9 (order action=8),l=9 (order action=4) Compatible

k=9 (order action=8),l=17 (order action=2) Compatible

k=9 (order action=8),l=25 (order action=4) Compatible

k=11 (order action=16),l=17 (order action=2) Compatible

k=13 (order action=16),l=17 (order action=2) Compatible

k=15 (order action=4),l=17 (order action=2) Compatible

k=17 (order action=4),l=5 (order action=8) Compatible

k=17 (order action=4),l=9 (order action=4) Compatible

k=17 (order action=4),l=13 (order action=8) Compatible

k=17 (order action=4),l=17 (order action=2) Compatible

k=17 (order action=4),l=21 (order action=8) Compatible

k=17 (order action=4),l=25 (order action=4) Compatible

k=17 (order action=4),l=29 (order action=8) Compatible

k=19 (order action=16),l=17 (order action=2) Compatible

k=21 (order action=16),l=17 (order action=2) Compatible

k=23 (order action=8),l=17 (order action=2) Compatible

k=25 (order action=8),l=9 (order action=4) Compatible

k=25 (order action=8),l=17 (order action=2) Compatible

k=25 (order action=8),l=25 (order action=4) Compatible

k=27 (order action=16),l=17 (order action=2) Compatible

k=29 (order action=16),l=17 (order action=2) Compatible

k=31 (order action=2),l=15 (order action=2) Compatible

k=31 (order action=2),l=17 (order action=2) Compatible

k=31 (order action=2),l=31 (order action=2) Compatible

k=33 (order action=2),l=3 (order action=8) Compatible

k=33 (order action=2),l=5 (order action=8) Compatible
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k=33 (order action=2),l=7 (order action=4) Compatible

k=33 (order action=2),l=9 (order action=4) Compatible

k=33 (order action=2),l=11 (order action=8) Compatible

k=33 (order action=2),l=13 (order action=8) Compatible

k=33 (order action=2),l=15 (order action=2) Compatible

k=33 (order action=2),l=17 (order action=2) Compatible

k=33 (order action=2),l=19 (order action=8) Compatible

k=33 (order action=2),l=21 (order action=8) Compatible

k=33 (order action=2),l=23 (order action=4) Compatible

k=33 (order action=2),l=25 (order action=4) Compatible

k=33 (order action=2),l=27 (order action=8) Compatible

k=33 (order action=2),l=29 (order action=8) Compatible

k=33 (order action=2),l=31 (order action=2) Compatible

k=35 (order action=16),l=17 (order action=2) Compatible

k=37 (order action=16),l=17 (order action=2) Compatible

k=39 (order action=8),l=17 (order action=2) Compatible

k=41 (order action=8),l=9 (order action=4) Compatible

k=41 (order action=8),l=17 (order action=2) Compatible

k=41 (order action=8),l=25 (order action=4) Compatible

k=43 (order action=16),l=17 (order action=2) Compatible

k=45 (order action=16),l=17 (order action=2) Compatible

k=47 (order action=4),l=17 (order action=2) Compatible

k=49 (order action=4),l=5 (order action=8) Compatible

k=49 (order action=4),l=9 (order action=4) Compatible

k=49 (order action=4),l=13 (order action=8) Compatible

k=49 (order action=4),l=17 (order action=2) Compatible

k=49 (order action=4),l=21 (order action=8) Compatible

k=49 (order action=4),l=25 (order action=4) Compatible

k=49 (order action=4),l=29 (order action=8) Compatible

k=51 (order action=16),l=17 (order action=2) Compatible

k=53 (order action=16),l=17 (order action=2) Compatible

k=55 (order action=8),l=17 (order action=2) Compatible
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k=57 (order action=8),l=9 (order action=4) Compatible

k=57 (order action=8),l=17 (order action=2) Compatible

k=57 (order action=8),l=25 (order action=4) Compatible

k=59 (order action=16),l=17 (order action=2) Compatible

k=61 (order action=16),l=17 (order action=2) Compatible

k=63 (order action=2),l=15 (order action=2) Compatible

k=63 (order action=2),l=17 (order action=2) Compatible

k=63 (order action=2),l=31 (order action=2) Compatible

No of Compatible = 69

gap> CompatibleAction(32,16);

k=3 (order action=8),l=9 (order action=2) Compatible

k=5 (order action=8),l=9 (order action=2) Compatible

k=7 (order action=4),l=9 (order action=2) Compatible

k=9 (order action=4),l=5 (order action=4) Compatible

k=9 (order action=4),l=9 (order action=2) Compatible

k=9 (order action=4),l=13 (order action=4) Compatible

k=11 (order action=8),l=9 (order action=2) Compatible

k=13 (order action=8),l=9 (order action=2) Compatible

k=15 (order action=2),l=7 (order action=2) Compatible

k=15 (order action=2),l=9 (order action=2) Compatible

k=15 (order action=2),l=15 (order action=2) Compatible

k=17 (order action=2),l=3 (order action=4) Compatible

k=17 (order action=2),l=5 (order action=4) Compatible

k=17 (order action=2),l=7 (order action=2) Compatible

k=17 (order action=2),l=9 (order action=2) Compatible

k=17 (order action=2),l=11 (order action=4) Compatible

k=17 (order action=2),l=13 (order action=4) Compatible

k=17 (order action=2),l=15 (order action=2) Compatible

k=19 (order action=8),l=9 (order action=2) Compatible

k=21 (order action=8),l=9 (order action=2) Compatible

k=23 (order action=4),l=9 (order action=2) Compatible

k=25 (order action=4),l=5 (order action=4) Compatible
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k=25 (order action=4),l=9 (order action=2) Compatible

k=25 (order action=4),l=13 (order action=4) Compatible

k=27 (order action=8),l=9 (order action=2) Compatible

k=29 (order action=8),l=9 (order action=2) Compatible

k=31 (order action=2),l=7 (order action=2) Compatible

k=31 (order action=2),l=9 (order action=2) Compatible

k=31 (order action=2),l=15 (order action=2) Compatible

No of Compatible = 29

gap> CompatibleAction(16,8);

k=3 (order action=4),l=5 (order action=2) Compatible

k=5 (order action=4),l=5 (order action=2) Compatible

k=7 (order action=2),l=3 (order action=2) Compatible

k=7 (order action=2),l=5 (order action=2) Compatible

k=7 (order action=2),l=7 (order action=2) Compatible

k=9 (order action=2),l=3 (order action=2) Compatible

k=9 (order action=2),l=5 (order action=2) Compatible

k=9 (order action=2),l=7 (order action=2) Compatible

k=11 (order action=4),l=5 (order action=2) Compatible

k=13 (order action=4),l=5 (order action=2) Compatible

k=15 (order action=2),l=3 (order action=2) Compatible

k=15 (order action=2),l=5 (order action=2) Compatible

k=15 (order action=2),l=7 (order action=2) Compatible

No of Compatible = 13
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