SURFACE MODIFICATION OF GRAPHENE NANOFILLERS TO IMPROVE THE THERMAL AND MECHANICAL PROPERTIES OF POLYBUTYLENE SUCCINATE-GRAPHENE NANOCOMPOSITES

ANIS SAKINAH BINTI ZAINAL ABIDIN

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Chemical Engineering.

(Supervisor’s Signature)
Full Name: DR. KAMAL YUSOH
Position: ASSOCIATE PROFESSOR
Date: 1st JUN 2018

(Co-supervisor’s Signature)
Full Name: DR. SHAIDATUL SHIMA JAMARI
Position: SENIOR LECTURER
Date: 1st JUN 2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : ANIS SAKINAH BINTI ZAINAL ABIDIN
ID Number : PKC14010
Date : 1st JUN 2018
SURFACE MODIFICATION OF GRAPHENE NANOFILLERS TO IMPROVE
THE THERMAL AND MECHANICAL PROPERTIES OF POLYBUTYLENE
SUCCINATE-GRAPHENE NANOCOMPOSITES

ANIS SAKINAH BINTI ZAINAL ABIDIN

Thesis submitted in fulfilment of the requirements
for the award of the degree of
Doctor of Philosophy

Faculty of Chemical & Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

JUN 2018
ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah for the chance to pursue my study in Doctorate degree and the strengths in completing this thesis. My sincere gratitude to my supervisor Associate Prof. Dr. Kamal Yusoh for his endless support and guidance throughout my PhD journey. His guidance has eased the journey of this research. My deepest appreciation to my co-supervisor, Dr. Shaidatul Shima Jamari for her support and sharing her experience regarding this research.

I would also like to thank all the technicians and staff of Faculty of Chemical and Engineering and Natural Resources for their cooperation and help during my experimental work and regarding my postgraduate affairs. My acknowledgement also goes to Prof. Dr. Luqman Chuah Abdullah for inspiring and believing in me to pursue my study regardless all the constrains and hardship.

My sincere thanks also go to my fellow research mates especially Abu Hannifa, Zulhelmi, and Fadwa Sameeha for stimulating discussion and their help and kindness during the hardest time in my study. Thanks for the friendship and memorable experience we have had for the past three years.

My deepest gratitude to my beloved parents, Sadiah Baharom and Zainal Abidin; parents-in-law, Suarni Ishak and A Rahman; sisters and brothers, Sumaiya, Irfan, Zuhair, and Atifa for their prayers, encouragement, and support. Last but not least, thank you to the greatest gift in my life, my husband, sons, and lovely daughter; Ahmad Shafik A Rahman, Umar, Asma’Aamani, and Adam for their love, patience, and support during the hard time, sleepless nights, and long working hours in the lab. All of you are the reason I managed to get through the roller-coaster journey during my study. Those who indirectly contributed in this research, thank you very much.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS xviii

LIST OF ABBREVIATIONS xix

CHAPTER 1 INTRODUCTION 1

1.1 Motivation 1

1.2 Problem Statement 2

1.3 Research Objectives 4

1.4 Research Scopes 5

1.5 Significance of Research 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Graphene and its derivatives 9

2.3 Graphene oxide 10

 2.3.1 Synthesis and structural models of graphene oxide 10
2.3.2 Reduction of graphene oxide and its derivatives 13
2.3.3 Surface modification of graphene oxide 14
2.3.4 Exfoliation of graphene and its derivatives in solvent medium 19
2.4 Polybutylene succinate 27
 2.4.1 Characterization and properties of PBS 28
2.5 Polymeric nanocomposite 32
2.6 Polymer grafted aliphatic alkylamine graphene-based nanocomposite 33
2.7 Polybutylene succinate graphene-based nanocomposite 40
 2.7.1 Preparation of PBS graphene-based nanocomposite 44
 2.7.2 In situ reduction of graphene and its derivatives during compoising process 47
2.8 Morphological study and chemical properties of graphene nanofiller and polymer nanocomposite 49
2.9 Thermal and crystallization behaviour of nanofiller and polymer nanocomposite 55
2.10 Mechanical behaviour of polymer nanocomposite 56
2.11 Response surface methodology 57
2.12 Summary 63

CHAPTER 3 METHODOLOGY 65

3.1 Introduction 65
3.2 Materials 66
 3.2.1 Graphite 66
 3.2.2 Sulfuric acid 98% 67
 3.2.3 Sodium nitrate 67
 3.2.4 Potassium permanganate 68
 3.2.5 Hydrochloric acid 30% 68
3.2.6 Hydrogen peroxide 30% 68
3.2.7 Potassium persulfate 69
3.2.8 Phosphorus pentoxide 69
3.2.9 Phosphoric acid 85% 70
3.2.10 Octadecylamine 70
3.2.11 Ethanol 71
3.2.12 Chloroform 71
3.2.13 Methanol 72
3.2.14 Polybutylene succinate 72

3.3 Production of graphene oxide 73
3.3.1 Natural graphite oxidation via Hummer’s method (HGO) 73
3.3.2 Expanded graphite oxidation via Hummer’s method (KGO) 74
3.3.3 Natural graphite oxidation via Tour’s method (IGO) 74
3.3.4 Expanded graphite oxidation via Tour’s method (KIGO) 75

3.4 Covalent functionalisation of graphene oxide with octadecylamine to produce chemical modified graphene (GOODA) 76

3.5 Fabrication of PBS/GOODA nanocomposite 76

3.6 Fabrication of TTPBS/GOODA nanocomposite 77

3.7 Characterisation of nanofiller and PBS nanocomposite 78
3.7.1 Fourier transform infrared spectroscopy (FTIR) 78
3.7.2 X-ray photoelectron spectra (XPS) 79
3.7.3 X-ray diffraction analysis (XRD) 79
3.7.4 Contact angle 80
3.7.5 Thermal gravimetric analysis (TGA) 81
3.7.6 Field emission scanning electron microscope (FESEM) 81
3.7.7 Dispersion test 81
3.7.8 Atomic force microscopy (AFM) 82
3.7.9 Raman spectroscopy 82
3.7.10 Transmission electron microscopy (TEM) 82
3.7.11 Differential scanning calorimetry (DSC) 83
3.7.12 Tensile test 83
3.8 Response Surface Methodology 83
3.8.1 Factorial analysis 84
3.8.2 Optimisation 85

CHAPTER 4 RESULTS AND DISCUSSION 88

4.1 Introduction 88
4.2 Comparison and characterisation of graphene oxide 89
 4.2.1 Study of morphology and structural analysis 89
 4.2.2 Study of chemical composition and oxidation route for graphene oxide 91
 4.2.3 Thermal properties of graphene oxide 95
4.3 Correlation between Raman spectra and XPS analysis for estimating degree of oxidation in graphene oxide 97
4.4 Characterisation of graphene oxide functionalised with octadecylamine (GOODA) 103
 4.4.1 Study of morphology and structural analysis 103
 4.4.2 Study of chemical composition and functionalisation route for graphene oxide/octadecylamine 109
 4.4.3 Thermal properties of graphene oxide/octadecylamine 114
4.5 Characterisation of polybutylene succianate/graphene oxide octadecylamine (PBS/GOODA) 116
 4.5.1 Determination of morphology for PBS/GOODA nanocomposite 116
4.5.2 Determination of structure for PBS/GOODA nanocomposite

4.5.3 Mechanical properties of PBS/GOODA nanocomposite

4.5.4 Thermal stability of PBS/GOODA nanocomposite

4.5.5 Understanding the mechanism route of GOODA filler in PBS matrix

4.6 Characterisation of thermally treated polybutylene succinate)/graphene oxide octadecylamine (TTPBS/GOODA)

4.6.1 Determination of morphology for TTPBS/GOODA nanocomposite

4.6.2 Determination of structure for TTPBS/GOODA nanocomposite

4.6.3 Mechanical properties of TTPBS/GOODA nanocomposite

4.6.4 Thermal stability of TTPBS/GOODA nanocomposite

4.6.5 Understanding the mechanism route of GOODA filler in thermally treated PBS matrix

4.7 Comparison study between PBS/GOODA and TTPBS/GOODA

4.7.1 Visual comparison of PBS/GOODA and TTPBS/GOODA nanocomposites

4.7.2 Morphology and structure of PBS/GOODA and TTPBS/GOODA nanocomposites

4.7.3 Thermal stability of PBS/GOODA and TTPBS/GOODA nanocomposites

4.7.4 Mechanical properties of PBS/GOODA and TTPBS/GOODA nanocomposites

4.8 Factorial analysis and optimisation of tensile strength for TTPBS/GOODA using response surface methodology

4.8.1 Factorial analysis

4.8.2 Optimisation

4.8.3 Validation
CHAPTER 5 CONCLUSION

5.1 Conclusion 181

5.2 Future works 183

REFERENCES 185

LIST OF PUBLICATION 204

APPENDIX A 205
LIST OF TABLES

Table 2.1 Studies on graphene oxide modified with alkylamine 20
Table 2.2 Properties of PBS compared with other polymers 29
Table 2.3 Summary of polymer grafted aliphatic alkylamine graphene-based nanocomposite 41
Table 2.4 Summary of reported methods of preparation for PBS/graphene system 45
Table 3.1 Properties of graphite 66
Table 3.2 Physical and chemical properties of sulfuric acid 98% 67
Table 3.3 Physical and chemical properties of sodium nitrate 67
Table 3.4 Physical and chemical properties of potassium permanganate 68
Table 3.5 Physical and chemical properties of hydrochloric acid 30% 68
Table 3.6 Physical and chemical properties of hydrogen peroxide 30% 69
Table 3.7 Physical and chemical properties of potassium persulfate 69
Table 3.8 Physical and chemical properties of phosphorus pentoxide 70
Table 3.9 Physical and chemical properties of phosphoric acid 85% 70
Table 3.10 Physical and chemical properties of octadecylamine 71
Table 3.11 Physical and chemical properties of ethanol 71
Table 3.12 Physical and chemical properties of chloroform 72
Table 3.13 Physical and chemical properties of methanol 72
Table 3.14 Physical and chemical properties of poly(1,4-butylene succinate), extended with 1,6-diisocyaanatohexane 73
Table 3.15 Weight percentage of PBS/GOODA nanocomposite prepared 76
Table 3.16 Weight percentage of TTPBS/GOODA nanocomposite prepared 77
Table 3.17 Experimental factors and ranges 84
Table 3.18 Experimental run for screening analysis 85
Table 3.19 Experimental ranges and levels of independent variable 85
Table 3.20 Experimental design and actual responses of tensile strength 86
Table 4.1 XRD data of graphene oxide for HGO, KGO, IGO and KIGO methods 91
Table 4.2 Composition of the samples corresponding to area percentage and calculated percentage of sp² carbon-carbon bonds and oxidised carbon bonds obtained from XPS 92
Table 4.3 Thermal stability parameters of HGO, KGO, IGO and KIGO 96
Table 4.4 Raman and XPS data of graphene oxides prepared with different degrees of oxidation 102
<table>
<thead>
<tr>
<th>Table 4.5</th>
<th>Compositions of GO and GOOA from C1s and N1s XPS spectrum</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.6</td>
<td>Thermal stability parameters of GO and GOOA</td>
<td>116</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>XRD results and crystal size for PBSGOOA nanocomposites with different loadings</td>
<td>120</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>DSC result of PBS nanocomposite as a function of GOOA loadings</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Thermal stability parameters of PBS and PBS/GOOA nanocomposites with different loadings</td>
<td>129</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>XRD results and crystal size for TTPBS/GOOA nanocomposite with different loadings</td>
<td>137</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>DSC results of TTPBS nanocomposite as a function of GOOA loadings</td>
<td>143</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Thermal stability parameters of PBS and TTPBS/GOOA nanocomposite with different loadings in nitrogen atmosphere</td>
<td>144</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>XRD results and crystal size for PBSGOOA and TTPBS/GOOA nanocomposite with different loadings</td>
<td>153</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>DSC results of PBS, PBS/GOOA, and TTPBS/GOOA at 0.1, 0.3, and 0.7 wt%</td>
<td>155</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Thermal stability parameters of PBS, PBS/GOOA, and TTPBS/GOOA nanocomposite with different loadings in nitrogen atmosphere</td>
<td>157</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Experimental results</td>
<td>163</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>ANOVA for tensile strength of TTPBS/GOOA</td>
<td>164</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Main and interaction factor effects contribution to tensile strength</td>
<td>165</td>
</tr>
<tr>
<td>Table 4.19</td>
<td>Suggested combination for desired response of tensile strength properties of TTPBS/GOOA nanocomposite</td>
<td>171</td>
</tr>
<tr>
<td>Table 4.20</td>
<td>Experimental design for the optimisation of the tensile strength</td>
<td>172</td>
</tr>
<tr>
<td>Table 4.21</td>
<td>Analysis of variance (ANOVA) for response surface model of tensile strength</td>
<td>173</td>
</tr>
<tr>
<td>Table 4.22</td>
<td>Range of input parameters and response</td>
<td>179</td>
</tr>
<tr>
<td>Table 4.23</td>
<td>Recommend optimum parameters for maximum tensile strength of the TTPBS/GOOA nanocomposite</td>
<td>179</td>
</tr>
<tr>
<td>Table 4.24</td>
<td>Results of validation experiment conducted at optimum combination</td>
<td>180</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1 GO chemical structure based on the Lerf–Klinowski model 11
Figure 2.2 Schematic illustration for the functionalisation of amine group in graphene oxide via epoxide ring opening and interaction of amine at carboxylic group 18
Figure 2.3 Illustration of liquid exfoliation mechanism via sonication 24
Figure 2.4 Proposed mechanism of TiO$_2$/graphene via sonochemical method 26
Figure 2.5 Polybutylene succinate chemical structure 28
Figure 2.6 DSC melting endotherms of PBS isothermally crystallised from the melt at different temperatures and cold crystallised at 10 °C 30
Figure 2.7 XRD diffraction peaks for pure PBS and polybutylene succinate/carbon nanotube (PBS/CNT) samples 31
Figure 2.8 Three main types of filler dispersion in polymer matrix 33
Figure 2.9 Chemical interaction between alkylamine-GO and PP matrix 37
Figure 2.10 Illustration and TEM images of (a) PANi/GO via solution polymerisation and (b) PANi/GODA via emulsion polymerisation process 39
Figure 2.11 Illustration of interaction between alkylamine on GO nanofiller with polymer matrix 40
Figure 2.12 TEM micrograph of graphene oxide by Hummer’s method at 2 μm magnification 50
Figure 2.13 FESEM image of graphene oxide flakes synthesised using modified Hummer’s method 51
Figure 2.14 XPS spectra of GO with different degrees of oxidation 52
Figure 2.15 Raman spectra of graphite, GO, and functionlised graphene sheets (FGS) 53
Figure 2.16 TEM micrographs of 3 wt% (a) graphite and (b) functionalised graphite sheets in PEN nanocomposite 55
Figure 2.17 Contour plots with various shapes of response surface where each surface response represents (a) maximum, (b) plateau, (c) maximum outside experimental region, (d) minimum, and (e) saddle 59
Figure 2.18 CCD for (a) two variables and (b) three variables where (●)factorial design, (○) axial points, and (□)central points 60
Figure 2.19 Response surface for self-cleaning activity of wool fabric as a function of Ag/TiO$_2$/citric acids/sodium hypophosphite concentration against (a) sunlight, (b) UV-A, (c) UV-C, and (d) water absorption 62
Figure 3.1 Structure of graphite 66
Figure 3.2 Structure of poly(1,4-butylene succinate), extended with 1,6-diisocyaanatohexane
Figure 3.3 Summary of oxidation procedures from graphite to GO
Figure 3.4 Illustration of experimental procedure for PBS/GOODA and TTPBS/GOODA nanocomposite
Figure 3.5 Overall flow chart of experimental procedures for this research
Figure 4.1 X-ray diffraction peaks of the synthesised GO by different methods
Figure 4.2 X-ray photoelectron spectra and deconvoluted peaks of graphene oxide for HGO, KGO, IGO, and KIGO methods
Figure 4.3 FTIR spectra of graphene oxide for HGO, KGO, IGO, and KIGO methods
Figure 4.4 TGA plots of graphene oxide for HGO, KGO, IGO, and KIGO methods
Figure 4.5 DTG thermograms of graphene oxide for HGO, IGO, KGO and KIGO methods
Figure 4.6 Changes in Raman properties with variation of G\(_{\text{carbon}}\)/O\(_{\text{carbon}}\) ratio in all samples: (a) no relationship between G\(_{\text{carbon}}\)/O\(_{\text{carbon}}\) ratio from XPS analysis and I\(_D\)/I\(_G\) ratio from Raman spectra for each samples and (b) variation in G\(_{\text{carbon}}\)/O\(_{\text{carbon}}\) ratio as a function of I\(_D\)/I\(_G\)
Figure 4.7 Two-peak fits for HGO, KGO, IGO, and KIGO for G\(_{\text{app}}\) band of Raman spectra
Figure 4.8 Relationship of G\(_{\text{carbon}}\)/O\(_{\text{carbon}}\) ratio from XPS analysis and D\(_{\text{inf}}\)(FWHM) – G\(_{\text{app}}\)(FWHM) from Raman spectra (a) strong relationship between G\(_{\text{carbon}}\)/O\(_{\text{carbon}}\) ratio and D\(_{\text{inf}}\)(FWHM) – G\(_{\text{app}}\)(FWHM) and (b) linear regression between G\(_{\text{carbon}}\)/O\(_{\text{carbon}}\) ratio and D\(_{\text{inf}}\)(FWHM) – G\(_{\text{app}}\)(FWHM) with line of best fit
Figure 4.9 AFM image and height profile of the GO nanosheets
Figure 4.10 AFM image and height profile of the GOODA nanosheets
Figure 4.11 FESEM images of (a) GO and (b) GOODA samples
Figure 4.12 TEM image of GOODA sample
Figure 4.13 Dispersion of GO and GOODA in choloform (a) after 1-h sonication and (b) 1 day after the sonication
Figure 4.14 Water contact angle values of (a) GO and (b) GOODA samples
Figure 4.15 XRD peaks of GO and GOODA
Figure 4.16 C1s X-ray photoelectron spectra and deconvoluted peaks for (a) GO and (b) GOODA
Figure 4.17 N1s X-Ray photoelectron spectra and deconvoluted peaks for (a) GO and (b) GOODA
Figure 4.18 FTIR spectra of GO and GOODA nanofillers
Figure 4.19 Structure change of GOODA from GO
Figure 4.20 Raman spectra of graphite, GO, and GOODA
Figure 4.21 TGA plots for GO and GOODA
Figure 4.22 DTG thermograms for GO and GOODA
Figure 4.23 FESEM images for the fractured surface of (a) PBS, (b) PBS/GOODA 0.1%, (c) PBS/GOODA 0.7%, and (d) PBS/GOODA 1% films
Figure 4.24 XRD peaks of pure PBS and PBS/GOODA nanocomposite
Figure 4.25 Tensile strength of PBS/GOODA nanocomposite with different GOODA loadings
Figure 4.26 Young’s modulus for PBS/GOODA nanocomposite with different GOODA loadings
Figure 4.27 Elongation at break for PBS/GOODA nanocomposite with different GOODA loadings
Figure 4.28 DSC cooling curves of PBS/GOODA nanocomposite
Figure 4.29 DSC melting curves of PBS/GOODA nanocomposite
Figure 4.30 TGA curves for PBS and PBS/GOODA nanocomposite with different loadings
Figure 4.31 DTG thermograms for PBS and PBS/GOODA nanocomposite with different loadings
Figure 4.32 FTIR spectra of PBS/GOODA nanocomposites focused on amine/amide group area
Figure 4.33 Proposed reaction mechanism between PBS matrix and amine-modified GO
Figure 4.34 FESEM images for the fractured surface of (a) PBS, (b) TTPBS/GOODA 0.1%, (c) TTPBS/GOODA 0.7%, and (d) TTPBS/GOODA 1% films
Figure 4.35 TEM images of (a) TTPBS/GOODA 0.1% and (b) TTPBS/GOODA 0.7%
Figure 4.36 XRD peaks for TTPBS/GOODA with different loadings
Figure 4.37 Tensile strength for TTPBS/GOODA nanocomposite with different GOODA loadings
Figure 4.38 Young’s modulus for TTPBS/GOODA nanocomposite with different GOODA loadings
Figure 4.39 Elongation at break for TTPBS/GOODA nanocomposite with different GOODA loadings
Figure 4.40 DSC cooling curves of TTPBS/GOODA nanocomposite
Figure 4.41 DSC melting curves of TTPBS/GOODA nanocomposite
Figure 4.42 TGA curves for PBS and TTPBS/GOODA nanocomposite with different loadings 144
Figure 4.43 DTG thermograms for PBS and TTPBS/GOODA nanocomposite with different loadings 145
Figure 4.44 FTIR spectra of TTPBS/GOODA nanocomposites focused on amine/amide group area 147
Figure 4.45 Illustration of chemical structure in TTPBS/GOODA nanocomposite after thermal treatment process 147
Figure 4.46 FTIR spectra of PBS/GOODA and TTPBS/GOODA nanocomposite at 0.1 wt% 148
Figure 4.47 PBS/GOODA and TTPBS/GOODA at 0.5 wt% GOODA loading 149
Figure 4.48 FESEM images of fractured surface of (a) neat PBS, (b) PBS/GOODA 0.1 wt%, and (c) TTPBS/GOODA 0.1 wt% nanocomposites 150
Figure 4.49 X-ray diffraction patterns of neat PBS, PBS/GOODA and TTPBS/GOODA nanocomposite at 0.1, 0.3, and 0.7 wt% 152
Figure 4.50 DSC cooling curves for PBS, PBS/GOODA, and TTPBS/GOODA at 0.1, 0.3, and 0.7 wt% 154
Figure 4.51 DSC melting curves for PBS, PBS/GOODA, and TTPBS/GOODA at 0.1, 0.3, and 0.7 wt% 154
Figure 4.52 TGA curve of PBS, PBS/GOODA, and TTPBS/GOODA at 0.1, 0.3, and 0.7 wt% 156
Figure 4.53 Illustration of tortuous path (red arrow) created by the interaction between PBS matrix and GOODA nanofiller 157
Figure 4.54 DTG curves of PBS, PBS/GOODA, and TTPBS/GOODA at 0.1, 0.3, and 0.7 wt% 158
Figure 4.55 Tensile strength of PBS, PBS/GOODA, and TTPBS/GOODA at 0.1, 0.3, and 0.7 wt% 160
Figure 4.56 Young’s modulus of PBS, PBS/GOODA, and TTPBS/GOODA at 0.1, 0.3, and 0.7 wt% 161
Figure 4.57 Elongation at break of PBS, PBS/GOODA, and TTPBS/GOODA at 0.1, 0.3, and 0.7 wt% 162
Figure 4.58 Predicted versus actual data for tensile strength of TTPBS/GOODA 164
Figure 4.59 Interaction graph between reduction temperature and filler loading 168
Figure 4.60 Interaction graph between heating time and ultrasonic power 169
Figure 4.61 Interaction graph between heating time and filler loading 170
Figure 4.62 Normal probability plot of residuals 174
Figure 4.63 Plot of residual versus predicted response 174
Figure 4.64 Comparison between the predicted and actual experiment values for the tensile strength

Figure 4.65 Interaction of filler loading and heating time on tensile strength of TTPBS/GOODA shown by (a) contour plot graph, (b) 3D-response surface curve, and (c) interaction of heating time and filler loading to tensile strength

Figure 4.66 Interaction of heating time and dispersion time on tensile strength of TTPBS/GOODA shown by (a) contour plot graph, (b) 3D-response surface curve, and (c) interaction of heating time and dispersion time to tensile strength

Figure 4.67 Interaction of filler loading and dispersion time on tensile strength of TTPBS/GOODA shown by (a) contour plot graph, (b) 3D-response surface curve, and (c) interaction of filler loading and dispersion time to tensile strength
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of regression</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>S</td>
<td>Siemens</td>
</tr>
<tr>
<td>$T_{5%}$</td>
<td>Temperature at 5wt% weight loss</td>
</tr>
<tr>
<td>$T_{50%}$</td>
<td>Temperature at 50 wt% weight loss</td>
</tr>
<tr>
<td>$T_{100%}$</td>
<td>End temperature at 100% mass loss</td>
</tr>
<tr>
<td>T_c</td>
<td>Crystallisation temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximum decomposition temperature</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>X_c</td>
<td>Degree of crystallinity</td>
</tr>
<tr>
<td>ΔH_m</td>
<td>Melting enthalpy</td>
</tr>
<tr>
<td>ΔH_c</td>
<td>Crystallisation enthalpy</td>
</tr>
<tr>
<td>θ</td>
<td>Scattering angle</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength of the X-ray</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AAc Poly(acrylic acid)
ABS Acrylonitrile butadiene styrene
AFM Atomic force microscopy
Ag Argentum
ANOVA Analysis of Variance
ATRP Atom transfer radical polymerisation
BDO 1,4-butanediol
C Carbon
CCD Central composite design
CMG Chemically modified graphene
CNT Carbon nanotube
CVD Chemical vapour deposition
D'inf Defect derived D peak
DCC N,N'-dicyclohexylcarbodiimide
DDA Dodecylamine
DDAB Didodecyldimethylammonium
DDMAT S-1-dodecyl-S’-(α,α’-dimethyl-α’’-acetic acid) trithiocarbonate
DMDA N,N'-dimethylacetamide dimethyl acetal
DMF Dimethylformamide
DSC Differential scanning calorimetry
DTG Derivative thermogravimetric analysis
EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
FESEM Field emission scanning electron microscopy
FGS Functionalised graphene sheets
FTIR Fourier transform infrared spectroscopy
FWHM Full width at half maximum
G_app Apparent G
G_Carbon/O_Carbon Carbon-carbon and oxidised carbon bond ratio
GO Graphene oxide
GOODA Graphene oxideoctadecylamine
HA Hexylamine
HATU 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluoro phosphate
HDA Hexadecylamine
HDPE High density polyethylene
HGO Natural graphite oxidation via Hummer’s method
IFRPBS Intumescent flame retardant polybutylene succinate
IGO Natural graphite oxidation via Tour’s method
KGO Expanded graphite oxidation via Hummer’s method
KIGO Expanded graphite oxidation via Tour’s method
LDPE Low density polyethylene
LLDPE Linear low density polyethylene
MA-g-PP Maleic anhydride grafted polypropylene
MMT Montmorillonite
N_L Number of layers
NMP N-Methyl-2-pyrrolidone
OA Octylamine

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODA</td>
<td>Octadecylamine</td>
</tr>
<tr>
<td>PANi</td>
<td>Polyaniline</td>
</tr>
<tr>
<td>PBD</td>
<td>Polybutadiene</td>
</tr>
<tr>
<td>PBS</td>
<td>Polybutylene succinate</td>
</tr>
<tr>
<td>PBSA</td>
<td>Poly(butylene succinate-co-butylene adipate)</td>
</tr>
<tr>
<td>PBST</td>
<td>Polybutylene succinate co butylene terephthalate</td>
</tr>
<tr>
<td>PCL</td>
<td>Poly (e-caprolactone)</td>
</tr>
<tr>
<td>PCU</td>
<td>Poly(carbonate-urea) urethane</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PEDOT</td>
<td>Poly(3,4-ethylenedioxythiophene)</td>
</tr>
<tr>
<td>PEN</td>
<td>Poly(ethylene-2,6-naphthalate)</td>
</tr>
<tr>
<td>PEO</td>
<td>Polyethylene oxide</td>
</tr>
<tr>
<td>PET</td>
<td>Poly(ethylene terephthalate)</td>
</tr>
<tr>
<td>PESu</td>
<td>Poly(ethylene succinate)</td>
</tr>
<tr>
<td>PF</td>
<td>Phenol formaldehyde</td>
</tr>
<tr>
<td>PHBV</td>
<td>Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)</td>
</tr>
<tr>
<td>PI</td>
<td>Polyimide</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly (lactic acid)</td>
</tr>
<tr>
<td>PLLA</td>
<td>poly(l-lactide)</td>
</tr>
<tr>
<td>PMHS</td>
<td>Polymethylhydrosiloxane</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PMP</td>
<td>Poly(4-methyl-1-pentene)</td>
</tr>
<tr>
<td>PNC</td>
<td>Polymer nanocomposites</td>
</tr>
<tr>
<td>POM</td>
<td>Polarised microscope</td>
</tr>
<tr>
<td>POP</td>
<td>Poly(oxypropylene) diamine</td>
</tr>
<tr>
<td>POSS</td>
<td>Polyhedral oligomeric silsesquioxanes</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PRESS</td>
<td>Prediction error sum of squares</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PTA</td>
<td>Terephthalic acid</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvinyl alcohol</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>RAFT</td>
<td>Reversible Addition-Fragmentation chain Transfer</td>
</tr>
<tr>
<td>rGO</td>
<td>Reduced graphene oxide</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>SLG</td>
<td>Single layer graphene</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Single wall carbon nanotube</td>
</tr>
<tr>
<td>TEGO</td>
<td>Thermally exfoliated graphene oxide</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TPP</td>
<td>Triphenyl phosphate</td>
</tr>
<tr>
<td>TTOGODA</td>
<td>Thermal treated graphene oxide/octadecylamine</td>
</tr>
<tr>
<td>TTPBS/GOODA</td>
<td>Thermal treated polybutylene succinate/graphene oxide/octadecylamine</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>Ultrahigh molecular weight polyethylene</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Testing Machine</td>
</tr>
<tr>
<td>UV-A</td>
<td>Ultraviolet rays 400 Watt</td>
</tr>
<tr>
<td>UV-B</td>
<td>Ultraviolet rays 8 Watt</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
</tbody>
</table>