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Introduction 
The main goal of an optimization problem is to 

obtain the best combination of variables of a fitness 
function such that the value of the fitness is maximum 
or minimum. This can be done effectively by using a 
population-based optimization algorithm. 

A new population-based optimization algorithm 
termed as simulated Kalman filter (SKF) is inspired by 
the estimation capability of Kalman filter [1]. 
Designed from the procedure of Kalman filtering, 
which incorporates prediction, measurement, and 
estimation, the global minimum or maximum can be 
estimated. Measurement process, which is needed in 
Kalman filtering, is mathematically modelled and 
simulated. Agents interact with each other to update 
and optimize the solution during the search process. 

The concept of opposition-based learning (OBL) 
can be used to improve the performance of population-
based optimization algorithm [2]. The important idea 
behind the OBL is the concurrent consideration of an 
estimate and its corresponding opposite estimate 
which is closer to the global optimum. OBL was 
initially implemented to improve learning and back 
propagation in neural networks [3], and until now, it 
has been employed in various optimization 

algorithms, such as differential evolution [4], particle 
swarm optimization [5] and ant colony optimization 
[6]. 

In this research, inspired by the concept of current 
optimum opposition-based learning (COOBL) [7], we 
propose a modified SKF which is called as current 
optimum opposition-based simulated Kalman filter 
(COOBSKF) to enhance the performance of SKF. 
From the SKF perspective, this is the first attempt to 
improve its performance through COOBL strategy. 
The COOBSKF compares the fitness of an individual 
to its opposite and maintain the fitter one in the 
population. Experimental results show that the 
proposed algorithm can achieve better solution 
quality.  

The remainder of this paper is organized as 
follows: Section 2 briefly presents an overview of 
optimization algorithms and opposition-based 
learning application. Section 3 explains the standard 
simulated Kalman filter algorithm, the concept of 
opposition-based learning and the proposed enhance 
version of SKF. Section 4 provides the experimental 
settings and discusses the experimental results. 
Section 5 concludes the paper. 

ABSTRACT – Simulated Kalman filter (SKF) is a new population-based optimization algorithm inspired 
by estimation capability of Kalman filter. Each agent in SKF is regarded as a Kalman filter. Based on the 
mechanism of Kalman filtering, the SKF includes prediction, measurement, and estimation process to 
search for global optimum. The SKF has been shown to yield good performance in solving benchmark 
optimization problems. However, the exploration capability of SKF could be further improved. From 
literature, current optimum opposition-based learning (COOBL) has been employed to increase the 
diversity (exploration) of search algorithm by allowing current population to be compared with an 
opposite population. By employing this concept, more potential agents are generated to explore more 
promising regions that exist in the solution domain. Therefore, this paper intends to improve the 
exploration capability of SKF through the application of COOBL. The COOBL is employed after the 
estimation process of SKF. Experimental results over the IEEE Congress on Evolutionary Computation 
(CEC) 2014 benchmark functions indicate that current optimum opposition-based simulated Kalman 
filter (COOBSKF) improved the exploration capability of SKF significantly. The COOBSKF also has been 
compared with five other optimization algorithms and outperforms them all. 
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Related Work 
This part provides a brief overview of optimization 

algorithms followed by the application of OBL in 
optimization algorithms.  

Some of optimization algorithms are based on 
population-based where the search process is perform 
with multiple agents. One example of population-
based optimization algorithm is particle swarm 
optimization (PSO) [8]. In PSO, a swarm of agent 
searches for the global optimum solution by velocity 
and position updates, which are depending on current 
position of agent, personal best, and global best of the 
swarm. They move towards those particles which have 
better fitness values and finally attain the best solution. 

Another population-based optimization algorithm 
is gravitational search algorithm (GSA) [9]. GSA was 
designed according to the Newtonian gravity law and 
mass interactions. In the algorithm, agents and their 
performance is evaluated by their masses which rely 
on fitness function values. The location of each agent 
in the search space indicates a problem solution. The 
heaviest mass is the optimum solution in the search 
space and by lapse of time, masses are attracted by the 
heaviest mass and converged to the better solution.   

The concept of opposition-based learning is 
applicable to a wide range of optimization algorithms. 
Even though the proposed approach is originally 
embedded in differential evolution (DE), it is universal 
enough to be employed in other optimization 
algorithms. In [4], the OBL has been used to accelerate 
the convergence rate of DE. The proposed opposition-
based DE (ODE) implements the OBL at population 
initialization and also for generation jumping. Besides 
that, a comprehensive investigation was conducted by 
using 58 benchmark functions with a purpose to 
analyze the effectiveness of ODE. Various sets of 
experiments are performed separately to examine the 
influence of opposite points, dimensionality, 
population size and jumping rates on the ODE 
algorithm. 

Opposition-based differential evolution using the 
current optimum (COODE) was introduced for 
function optimization [7]. In the COODE, the 
optimum agent in the current population is 
dynamically functioned as the symmetry point 
between an estimate and its respective opposite 
estimate. The distance between opposite numbers and 
the global optimum is short enough to maintain a 
significant rate of applying OBL throughout the search 
process. 

Opposition-based particle swarm optimization 
(OPSO) is proposed by employing OBL to population 
initialization, generation jumping and the swarm's best 
particle [10]. Initially, swarms are initialized with 
random velocities and positions. The opposite swarm 
is determined by calculating the opposite of velocity 
and position, and then the fittest of swarm and 
opposite swarm is chosen as the next population. The 
similar approach is used in current generations by 

applying jumping rate and dynamic constriction 
factor, which is used to improve the convergence rate. 

In other report, the OBL technique has been used 
to enhance the quality of solutions and convergence 
rate of an ant colony system (ACS) [6]. Five versions 
of implementing opposition idea have been proposed 
to extend the solution construction phase of ACS, 
known as, free opposition, free quasi-opposition, 
synchronous opposition, opposite pheromone per 
node (OPN) and opposite pheromone per edge (OPE). 
Results of these algorithms on TSP problems indicate 
that only OPN technique shows significant 
improvement. 

Current optimum opposition-based simulated 
Kalman filter 
Simulated Kalman filter 

The simulated Kalman filter (SKF) [1, 11] 
algorithm is shown in Figure 1. The algorithm started 
with initialization of n agents, in which the positions 
of each agent are initialized randomly in the search 
space. The maximum number of iterations, tmax, is 
defined as the stopping condition for the algorithm. 
The initial value of error covariance estimate, 𝑃(0), 
the process noise value, 𝑄, and the measurement noise 
value, 𝑅, which are needed in Kalman filtering, are 
also determined during initialization stage. After that, 
each agent is subjected to fitness evaluation to 
generate initial solutions. The fitness values are 
checked and the agent having the best fitness value at 
every iteration, t, is recorded as Xbest(t). For function 
minimization problem, 
 
𝑿𝒃𝒆𝒔𝒕(𝑡) = min

1∈3,….,7
𝑓𝑖𝑡1(𝑿(𝑡))      (1) 

 
and for function maximization problem,  
 
𝑿𝒃𝒆𝒔𝒕(𝑡) = max

1∈3,….,7
𝑓𝑖𝑡1<𝑿(𝑡)=      (2) 

 
The best so far solution in SKF is named as Xtrue. The 
Xtrue is updated only if the Xbest(t) is better (𝑿𝒃𝒆𝒔𝒕(𝑡) <
𝑿𝒕𝒓𝒖𝒆 for minimization problem, or 𝑿𝒃𝒆𝒔𝒕(𝑡) > 𝑿𝒕𝒓𝒖𝒆 
for maximization problem) than the Xtrue.  
The subsequent computations are basically identical to 
the prediction, measurement and estimation 
procedures in Kalman filter. In the prediction stage, 
the following time-update equations are calculated: 
 
𝑿𝒊(𝑡|𝑡) = 𝑿𝒊(𝑡)        (3) 
 
𝑃(𝑡|𝑡) = 𝑃(𝑡) + 𝑄       (4) 
 
where Xi(t) and Xi(t|t) are the previous state and 
predicted state, respectively, and P(t) and P(t|t) are 
previous error covariant estimate and predicted error 
covariant estimate, respectively. Note that the error 
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covariant estimate is influenced by the process noise, 
Q. 
 

 
 
Figure 1. Simulated Kalman filter (SKF) algorithm. 

The next step is measurement, which is a feedback 
to estimation process. Measurement is modelled such 
that its output may take any value from the predicted 
state estimate, 𝑿1(𝑡|𝑡), to the true value, 𝑿EFGH. 
Measurement, Zi(t), of each individual agent is 
simulated based on the following equation: 

 
𝒁𝒊(𝑡) = 𝑿𝒊(𝑡|𝑡) + sin(𝑟𝑎𝑛𝑑 × 2𝜋) × |𝑿𝒊(𝑡|𝑡) −
𝑿𝒕𝒓𝒖𝒆|  (5) 

 
The sin(𝑟𝑎𝑛𝑑 × 2𝜋) term provides the stochastic 

aspect of SKF algorithm and 𝑟𝑎𝑛𝑑 is a uniformly 
distributed random number in the range of [0,1].  

The final step is the estimation. During this step, 
Kalman gain, 𝐾(𝑡), is computed as follows: 
 

𝐾(𝑡) = W(E|E)
W(E|E)XY

 (6) 

 
Then, the estimation of next state, Xi(t+1), is 
computed based on Equation 7 and the error covariant 

is updated based on Equation 8. Finally, the algorithm 
will continue the search process until the maximum 
number of iterations, tmax, is reached. 
 
𝑿1(𝑡 + 1) = 𝑿1(𝑡|𝑡) + 𝐾(𝑡) 	× 	(𝒁1(𝑡) − 𝑿1(𝑡|𝑡)) (7) 
 
𝑃(𝑡 + 1) = 	 <1 − 𝐾(𝑡)= 	× 	𝑃(𝑡|𝑡)  (8) 

Since the introduction of the SKF algorithm, 
fundamental studies [12-15] have been reported to 
understand the potentials of the SKF algorithm. 
Furthermore, fundamental modifications also been 
done to enhance the performance of the SKF [16-22], 
to enable the SKF to operate in discrete domains [23-
28], and to solve multi-objective optimization 
problems [29]. The SKF has also been applied to solve 
engineering problems. For example, the SKF have 
employed as feature selector [30-33], algorithms in 
adaptive beamforming [34-37], routing algorithm in 
manufacturing process [38-40] and airport gate 
allocation [41], tuning algorithm in control 
engineering [42-45], and matching algorithm in image 
processing [46-48]. 

Opposition-based learning 
The concept of Opposition-based learning (OBL) 

is to concurrently assess the current solutions and its 
opposite solutions in order to obtain a better 
approximation of the current candidate solutions. 
Figure 2 illustrate the opposite point which is 
determined in domain [a,b]. Let 𝑥 ∈ [𝑎, 𝑏] be a 
minimum and maximum values of variable in current 
population. The opposite number ox is determined as: 

 
𝑜𝑥 = 𝑎 + 𝑏 − 𝑥        (9) 
 
 

 
Figure 2. Opposite point defined in domain [a,b]. 

 

Current optimum opposition-based learning 
In the original OBL concept, the agents and their 

opposite agents are asymmetric on the midpoint within 
the range of variables’ current interval. This opposite 
agents might possibly flee from the global optimum, 
which leads to decrease the contribution of opposite 
points. Therefore, opposition-based learning using the 
current optimum (COOBL) was proposed in [7] to 
address this drawback. So this approach is used to 
enhance the effectiveness of the SKF. The proposed 
algorithm is known as current optimum opposition-
based simulated Kalman filter (COOBSKF). 

The significant difference is the formation of 
opposite population in COOBSKF is depends on the 
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best agent so far which is identified by fitness 
calculation on particular objective function. The 
opposite population is generated using Equation 10. 

 
𝑜𝑥1 = 2𝑥^_ − 𝑥1     (10) 

 
where 𝑥^_ is the best agent so far or current optimum 
agent. 

Enhancing SKF using current optimum opposition-
based learning 

The original SKF is selected as a parent algorithm 
and the COOBL strategies are embedded in SKF to 
boost its performance. COOBL is employed at one 
stage of SKF which is after estimation process of SKF. 
This implementation generated opposite population 
which is potentially fitter compared to the current 
ones. Figure 3 shows the flowchart of the proposed 
algorithm.  

Initially, COOBSKF generates randomly initial 
population or candidate solutions. The initial value of 
error covariance estimate, 𝑃(0), the process noise 
value, 𝑄, the measurement noise value, 𝑅, and 
jumping rate value, Jr, are also determined during 
initialization stage. Then, the fitness of agents in the 
population is calculated based on the objective 
function. Next, Xbest(t) and Xtrue are updated based on 
SKF algorithm steps. The algorithm continues with 
prediction, measurement and estimation similar to 
SKF algorithm using Equation 3 to Equation 8. 

After that, COOBL is applied to the current 
solution in order to check a potential solution on 
opposite side. This action is performed 
probabilistically influenced by a parameter known as 
the jumping rate, Jr ∈ [0,1]. Jr is a control parameter 
to form or ignore the formation of opposite population 
at specific iteration. The following jumping condition 
is considered: 

 

 
Figure 3. Flowchart of COOBSKF algorithm. 
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if  rand < Jr 
 then  
  apply COOBL 
 else  
  check stopping condition 
else  
 

where rand is a random number in the range of [0,1]. 
Within this stage, if opposition condition is met, the 
respective opposite population is formed according to 
Equation 10. Then, the best agents for next generation 
will be selected as follows: 

 

𝑥1(𝑡 + 1) = `𝑜𝑥1
(𝑡), 𝑓𝑖𝑡	<𝑜𝑥1(𝑡)= < 𝑓𝑖𝑡	<𝑥1(𝑡)=

𝑥1(𝑡), 𝑓𝑖𝑡	(𝑜𝑥1(𝑡)) > 𝑓𝑖𝑡	(𝑥1(𝑡))
       (11) 

 
Finally, the process of searching for optimum 

solution continued until the maximum number of 
function evaluation is reached. 

Experimental and results 
In order to make a fair comparison of the SKF and 

the proposed COOBSKF, we used a test suite of 30 
standard benchmark functions and the same settings. 

Benchmark functions 
A comprehensive list of 30 benchmark global 

optimization functions (CEC 2014) [49] has been 
employed for performance verification of the 
proposed algorithms. The description of the 
benchmark functions and their global optimum (ideal 
fitness) are listed in Table 1. All the functions used in 
this experiment are minimization problem. It comes 
with 3 unimodal functions, 13 simple multimodal 
functions, 6 hybrid functions and 8 composition 
functions. The search space for all the test functions is 
between -100 to 100 for all dimensions. 
Table 2. SKF parameters. 

SKF Parameters Values 
Initial error covariance estimate, P (0) 1000 
Process noise, Q 0.5 
Measurement noise, R 0.5 

 
Table 3. Experimental parameters. 

Experimental Parameters Values 
Number of agent 100 
Number of dimension 50 
Number of run 50 
Number of function evaluations 10000 

 

Table 1. CEC 2014 benchmark functions. 
Types No Functions Ideal Fitness 
Unimodal Functions 1 Rotated High Conditioned Elliptic Function 100 

2 Rotated Bent Cigar Function 200 
3 Rotated Discus Function 300 

Simple Multimodal Functions 4 Shifted and Rotated Rosenbrocks Function 400 
5 Shifted and Rotated Ackleys Function 500 
6 Shifted and Rotated Weierstrass Function 600 
7 Shifted and Rotated Griewanks Function 700 
8 Shifted Rastrigins Function 800 
9 Shifted and Rotated Rastrigins Function 900 
10 Shifted Schwefels Function 1000 
11 Shifted and Rotated Schwefels Function 1100 
12 Shifted and Rotated Katsura Function 1200 
13 Shifted and Rotated HappyCat Function 1300 
14 Shifted and Rotated HGBat Function 1400 
15 Shifted and Rotated Expanded Griewanks plus Rosenbrocks Function 1500 
16 Shifted and Rotated Expanded Scaffers F6 Function 1600 

Hybrid Functions 17 Hybrid Function 1 (N=3) 1700 
18 Hybrid Function 2 (N=3) 1800 
19 Hybrid Function 3 (N=4) 1900 
20 Hybrid Function 4 (N=4) 2000 
21 Hybrid Function 5 (N=5) 2100 
22 Hybrid Function 6 (N=5) 2200 

Composition Functions 23 Composition Function 1 (N=5) 2300 
24 Composition Function 2 (N=3) 2400 
25 Composition Function 3 (N=3) 2500 
26 Composition Function 4 (N=5) 2600 
27 Composition Function 5 (N=5) 2700 
28 Composition Function 6 (N=5) 2800 
29 Composition Function 7 (N=3) 2900 
30 Composition Function 8 (N=3) 3000 
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Settings for the experiments 
In order to compare the performance of COOBSKF 

with the original SKF, all the experiments were 
executed in the same platform and subjected to the 
similar parameter settings in order to get a fair 
competition. Table 2 and Table 3 show the SKF 
parameters and experimental parameters respectively. 

The stopping condition is defined to be the 
maximum number of function evaluations for all 
algorithms. Besides that, these experiments also 
have been conducted to explore the effect of 
jumping rate (Jr) upon the overall performance of 
COOBSKF algorithm. The performance can vary 
for different Jr values. To identify appropriate Jr 
value, the different numbers from 0 to 1 (0.1, 0.3 
0.5, 0.7 and 0.9) was applied. Zero Jr means that 
opposition-based technique is totally removed 
from the algorithm. The Jr value is an important 
control parameter in which, if optimally set, will 
attain better results. 

The performance of COOBSKF over SKF 
This experiment investigates the performance of 

COOBSKF over the SKF. Based on Table 4, the 

results obtained show that the proposed COOBSKF 
has a significant improvement. 

According to Friedman Test, the average rankings 
of these algorithms are shown in Table 5. These 
algorithms can be sorted by average ranking into the 
following order: COOBSKF (Jr=0.9), COOBSKF 
(Jr=0.5), COOBSKF (Jr=0.7), COOBSKF (Jr=0.3), 
COOBSKF (Jr=0.1) and SKF. The best average 
ranking is obtained by the COOBSKF (Jr=0.9). The 
Friedman statistic for this experiment is 47.295. Since 
this value is greater than 11.070 (based on 5 degree of 
freedom at a 0.05 level of significance according to 
Chi-square table), hence, significant difference exists 
in term of performance among these algorithms. 

Therefore, to compare the performance differences 
between these algorithms, the Friedman Post Hoc Test 
was performed. Post Hoc Test using Holm’s procedure 
is chosen to evaluate the significant difference 
between the algorithms’ performance [50]. Table 6 
shows the resultant p-values when comparing between 
SKF and COOBSKF. Holm’s procedure rejects those 
hypotheses that have p-value lower than 0.005. The 
rejection of these hypotheses indicates a significant 
difference exists between the performances of the 
compared algorithms. The p-values below 0.005 are 

Table 4. Mean value comparison of COOBSKF with SKF. 
Function SKF COOBSKF 

(Jr=0.1) 
COOBSKF 
(Jr=0.3) 

COOBSKF 
(Jr=0.5) 

COOBSKF 
(Jr=0.7) 

COOBSKF 
(Jr=0.9) 

1 4702013.17 1076066.9455 1229553.6314 1295419.0349 1539599.2793 1709933.4488 
2 24498691.66 3734.4152 4364.2133 5191.9996 5896.5624 5252.6651 
3 18147.70 3576.0458 2508.6555 3106.0056 3433.6582 3283.6733 
4 532.77 490.7681 509.5353 497.4695 521.1160 503.8873 
5 520.01 520.0000 520.0000 520.0000 520.0000 520.0000 
6 633.44 629.1087 627.1215 625.8455 625.6539 626.4995 
7 700.25 700.0191 700.0172 700.0140 700.0141 700.0130 
8 807.98 802.6068 801.9899 801.3332 801.6516 801.2735 
9 1059.14 1054.8748 1053.5615 1051.9098 1054.7753 1058.2776 

10 1335.18 1269.6576 1211.2699 1211.5394 1202.4715 1174.6086 
11 6249.37 6058.5216 6089.7465 6154.4400 5909.7128 5964.2966 
12 1200.24 1200.1665 1200.1602 1200.1510 1200.1523 1200.1509 
13 1300.56 1300.5692 1300.5758 1300.5593 1300.5460 1300.5406 
14 1400.30 1400.3079 1400.3219 1400.3350 1400.3479 1400.3294 
15 1551.66 1523.9582 1520.5517 1520.1406 1518.5534 1519.0694 
16 1619.13 1619.1377 1619.0205 1618.8370 1618.6569 1618.9107 
17 908272.09 142202.2586 162138.3897 193156.7732 184132.1261 223642.6456 
18 6941389.77 2889.1810 2900.4436 2943.6296 2805.0259 2928.3890 
19 1950.22 1917.8190 1918.1752 1920.2604 1923.5501 1924.6712 
20 34799.06 3952.7988 2760.8150 2919.4987 2723.6052 2574.2365 
21 1186640.91 151359.6270 120710.0306 138331.9163 160142.6513 163087.1809 
22 3429.11 3346.0273 3291.2296 3268.7018 3298.4063 3329.7652 
23 2645.69 2644.0045 2644.0045 2644.0045 2644.0045 2644.0045 
24 2667.25 2663.7930 2664.1926 2664.5113 2664.2735 2665.1893 
25 2730.40 2725.1857 2719.1827 2716.7524 2718.2685 2717.4820 
26 2766.39 2772.2931 2760.3367 2760.3725 2749.5381 2750.4254 
27 3883.34 3764.6612 3763.2763 3760.4055 3742.2586 3703.4934 
28 7223.37 6131.1664 5720.3915 5386.0278 5293.3785 5244.8513 
29 5997.83 104245.4826 882355.6217 824794.4430 826387.6088 5448.3110 
30 19753.29 16472.8260 17281.6365 16704.7432 17416.0645 17128.4940 
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shown in bold. According to the results, COOBSKF is 
significantly better than SKF. 
Table 5. Average rankings of COOBSKF and SKF. 

Algorithms Ranking 
COOBSKF (Jr=0.9) 1 
COOBSKF (Jr=0.5) 2 
COOBSKF (Jr=0.7) 3 
COOBSKF (Jr=0.3) 4 
COOBSKF (Jr=0.1) 5 
SKF 6 

 
Figure 4 to Figure 7 show the diversity analysis of 

COOBSKF and its impact on algorithm’s performance 
for some CEC 2014 benchmark functions. Based on 
these figures, it shows that the higher Jr value is set, 
the higher diversity of population generated by 
COOBSKF. The high value of population diversity 
corresponds to good exploration and vice versa. 
 
Table 6. Algorithms p-values table for α = 0.05. 

Algorithms z p Holm 
SKF vs. COOBSKF (Jr=0.9) 5.7275 0.0000 0.0033 
SKF vs. COOBSKF (Jr=0.5) 5.5205 0.0000 0.0036 
SKF vs. COOBSKF (Jr=0.7) 5.4515 0.0000 0.0038 
SKF vs. COOBSKF (Jr=0.3) 4.8305 0.0000 0.0042 
SKF vs. COOBSKF (Jr=0.1) 4.1404 0.0000 0.0045 

 
Based on those figures and statistical analysis 

performed previously, the higher diversity appears to 
be helpful to improve the search efficiency. This is due 
to the strength of current optimum opposition-based 
learning (COOBL) technique when generating the 
opposite agents. The formation of opposite agents is 
depended on the best-agent-so-far. The best-agent-so-
far is used as symmetry point between agents and their 
opposite agents, which increase the chance to locate 
the global optimum solution.  

To conclude, the jumping rate is an important 
control parameter in which, if optimally set, can 
achieve even better results. Based on statistical 
analysis (considering all CEC2014 benchmark 
functions), the optimal Jr value for COOBSKF is 0.9. 
 

The performance of COOBSKF over other 
optimization algorithms 

This experiment investigates the performance of 
COOBSKF in comparison with other optimization 
algorithms such as particle swarm optimization (PSO), 
grey wolf optimizer (GWO), genetic algorithm (GA), 
gravitational search algorithm (GSA) and black hole 
(BH). The experimental parameters used in this 
experiment are shown in Table 7. For COOBSKF, the 
Jr value used is 0.9. For GSA, α is set to 20 and initial 
gravitational constant, G0 is set to 100. For PSO, 
cognitive coefficient, c1, and social coefficient, c2, are 
set to 2. The inertia factor is linearly decreased from 
0.9 to 0.4. For GWO, components of a are linearly 

decreased from 2 to 0. Lastly, for GA, the probabilities 
of selection and mutation are set to 0.5 and 0.2, 
respectively. 
Table 7. Experimental parameters. 

Experimental Parameters Values 
Population size 100 
Number of dimensions 50 
Number of runs 50 
Number of function evaluations 10000 
Jumping Rate, Jr 0.9 

 
The results of each algorithm are presented in 

Table 8. In general, the COOBSKF and GSA show 
excellent performance on many test functions. 
According to the Friedman Test, the average rankings 
of these algorithms are shown in Table 9. These 
algorithms can be sorted by average ranking into the 
following order: COOBSKF, GSA, SKF, BH, PSO, 
GWO and GA. The best average ranking is obtained 
by the COOBSKF. The Friedman statistic for this 
experiment is 66.482. Since this value is greater than 
12.592 (based on 6 degree of freedom at a 0.05 level 
of significance according to Chi-square table), 
significant difference exists in term of performance 
among these algorithms. Therefore, to compare the 
performance differences significantly between these 
algorithms, the Friedman Post Hoc Test was 
performed. Table 10 shows the resultant p-values 
when comparing between COOBSKF and the other 
optimization algorithms. Holm’s procedure rejects 
those hypotheses that have p-value lower than 0.0045. 
The rejection of these hypotheses indicates a 
significant difference exists between the performances 
of the compared algorithms. The p-values below 
0.0045 are shown in bold. From the results, it can be 
seen that COOBSKF is significantly better than GA, 
GWO, PSO, BH, and SKF. The COOBSKF obtains 
the best result and the GSA has the second-best 
performance. Figure 8 to Figure 11 show the 
convergence curve for Function 3, Function 6, 
Function 20 and Function 27, respectively. Based on 
these figures, the COOBSKF has good convergence 
performance than the other compared algorithms. 

Conclusion 
This paper reports the first attempt to enhance the 

exploration capability of SKF by applying COOBL 
technique. In addition, jumping rate is also integrated 
in the proposed method. Once the jumping rate 
condition is met, the opposite solution is selected if the 
solution is better than the current one. The analysis 
confirmed that the proposed COOBSKF is superior to 
SKF and better than GA, GWO, PSO and BH. For 
future research, different OBL techniques shall be 
considered to enhance further the SKF. 
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(a) Diversity     (b) Fitness 

Figure 4. Analysis on Function 10. 

 
(a) Diversity     (b) Fitness 

Figure 5. Analysis on Function 11. 

 
(a) Diversity     (b) Fitness 

Figure 6. Analysis on Function 27. 

 
(a) Diversity     (b) Fitness 

Figure 7. Analysis on Function 28. 
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Table 8. Mean value comparison of COOBSKF with other optimization algorithms. 
Function COOBSKF SKF PSO GSA BH GA GWO 

1 1709933.4488 4702013.17 43464224.92 1400195.11 4111807.31 339979486.97 56283362.12 
2 5252.6651 24498691.66 11404043.34 7166.79 193491.14 23639977763.22 5273423032.81 
3 3283.6733 18147.70 9934.12 64249.05 11557.54 62699.82 49773.52 
4 503.8873 532.77 1062.06 653.46 564.79 3008.49 958.42 
5 520.0000 520.01 521.06 520.00 520.01 521.01 521.11 
6 626.4995 633.44 631.49 636.34 658.13 655.83 625.95 
7 700.0130 700.25 700.02 700.00 700.13 924.79 745.23 
8 801.2735 807.98 858.72 1074.39 922.25 1067.94 975.30 
9 1058.2776 1059.14 1051.65 1222.23 1212.14 1400.33 1078.85 

10 1174.6086 1335.18 1644.00 7456.32 3121.04 6254.17 6381.00 
11 5964.2966 6249.37 11965.59 8637.64 8051.04 12793.02 6582.83 
12 1200.1509 1200.24 1202.61 1200.00 1200.73 1202.23 1201.98 
13 1300.5406 1300.56 1300.60 1300.37 1300.55 1302.82 1300.58 
14 1400.3294 1400.30 1400.33 1400.30 1400.26 1461.55 1407.27 
15 1519.0694 1551.66 1528.76 1504.41 1787.84 35513.58 1965.26 
16 1618.9107 1619.13 1621.68 1622.57 1621.54 1621.85 1619.53 
17 223642.6456 908272.09 3591382.02 161088.84 552079.20 16798809.69 3226248.21 
18 2928.3890 6941389.77 30740.67 3731.21 2433.40 5476926.38 48192233.30 
19 1924.6712 1950.22 1962.25 1923.75 1952.80 2004.46 1979.52 
20 2574.2365 34799.06 6513.63 26574.24 8499.56 35020.04 14603.11 
21 163087.1809 1186640.91 710017.59 187636.63 395411.76 5296958.82 1923398.21 
22 3329.7652 3429.11 3421.42 3857.96 3708.16 3429.02 2873.34 
23 2644.0045 2645.69 2661.52 2500.00 2649.46 2714.77 2708.26 
24 2665.1893 2667.25 2672.80 2600.03 2666.42 2777.24 2600.00 
25 2717.4820 2730.40 2729.83 2700.00 2750.48 2761.21 2725.34 
26 2750.4254 2766.39 2700.50 2800.03 2792.16 2702.69 2769.23 
27 3703.4934 3883.34 3843.02 4577.53 4654.81 4473.23 3672.93 
28 5244.8513 7223.37 9891.73 6261.32 11047.63 6288.68 4647.03 
29 5448.3110 5997.83 23201.80 3100.15 10361.49 6716062.26 3276290.32 
30 17128.4940 19753.29 194616.38 8695.44 58613.31 161845.14 112029.89 

 
Table 9. Average rankings of COOBSKF and others. 

Algorithms Ranking 
COOBSKF 1 
GSA 2 
SKF 3 
BH 4 
PSO 5 
GWO 6 
GA 7 

 
Table 10. Algorithms p-values table for α = 0.05. 

Algorithms z p Holm 
          COOBSKF vs. GA 7.7989 0.0000 0.0024 
          COOBSKF vs. GWO 4.8706 0.0000 0.0026 
          COOBSKF vs. PSO 4.4522 0.0000 0.0028 
          COOBSKF vs. BH 4.0638 0.0000 0.0031 
          COOBSKF vs. SKF 3.4960 0.0005 0.0036 
          COOBSKF vs. GSA 2.7191 0.0065 0.0045 
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Figure 8. Analysis on Function 3. 

 
 
 

 
Figure 9. Analysis on Function 6. 
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Figure 10. Analysis on Function 20. 

 
 
 

 
Figure 11. Analysis on Function 27. 
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