STUDY ON SOIL EROSION PROPERTIES AND RATE AT SUNGAI JEMBERAU, TASIK CHINI.

MUHAMMAD FIRDAUS BIN MUHAMMAD ASRI

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

STUDY ON SOIL EROSION PROPERTIES AND RATE AT SUNGAI JEMBERAU, TASIK CHINI.

MUHAMMAD FIRDAUS BIN MUHAMMAD ASRI

AA 13036

A Final Year Project submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Civil Engineering (Hons)

Faculty of Civil Engineering & Earth Resources

UNIVERSITI MALAYSIA PAHANG

ii

JUNE 2017

SUPERVISOR'S DECLARATION

"I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering (Hons)."

Signature	:
Name of Supervisor	: PN NADIATUL ADILAH BINTI AHMAD ABDUL GHANI
Position	: LECTURER
Date	: 19 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that this Final Year Project entitled "*Study on Soil Erosion Properties and Rate at Sungai Jemberau, Tasik Chini*" is the result of my own research expect as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: MUHAMMAD FIRDAUS BIN MUHAMMAD ASRI
ID Number	: AA13036
Date	: 19 JANUARY 2017

"Don't read success stories, you will get only message. Read failure stories, you will get some ideas to get success."

-A.P.J. Abdul Kalam

Dedicated to my beloved parent and my siblings

ACKNOWLEDGEMENTS

Praise and glory to ALLAH S.W.T, God of all creation and greetings and salutation we bring forth to our Prophet Muhammad S.A.W for overseeing this final year project one and constantly guiding this project towards completion. I would like to use this opportunity to deliver my special thanks to the Faculty of Civil Engineering and Earth Resources for providing me the platform to conduct this study at first place. Moreover, I would like to second this very moment to thank and express my warmest and sincere gratitude to my supervisor, Madam Nadiatul Adilah Binti Ahmad Abdul Ghani for her germinal and constructive ideas, my supervisor is continuous encouragement with deep guidance and support in making this study successful and fruitful. My supervisor is always concerned about the progress level of this study and never at all hesitates to spend times with me for reviewing this project every week. I am truly grateful for madam is consistent supervision on this study, her tolerance of my naïve mistakes and persistent ideas in improving this study which has also helped me to deeply understand the need of this study.

I would like to express special thanks to my technician Geotechnical Laboratory, UMP and friends who worked along day and night helping each other with necessary information and knowledge which are essential in the completion of this project. I am really appreciating their willingness to spend time with me to do this study.

Besides that, I would like to express my gratitude to my parents for their willingness to sacrifice the time, having to believe in my strength and capabilities, and provide the funds throughout my days as a student. Last but not least, I also thank those who have directly or indirectly played a role in providing necessary contribution to this study.

TABLE OF CONTENTS

TITLE	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Study	3
1.5	Location of Study	3
1.6	Significant of Study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Soil Erosion		5
	2.1.1	Splash Erosion	5
	2.1.2	Sheet Erosion	6
	2.1.3	Rill Erosion	6
	2.1.4	Gully Erosion	6
	2.1.5	Stream and Channel Erosion	7
2.2	Soil		7
2.3	Classif	ication of Soil	9

	2.3.1	American Association of State Highway and	9
		Transportation Officials Classification System	
		(AASTHO)	
	2.3.2	Unified Soil Classification System (USCS)	10
2.4	Vegeta	ation	11
	2.4.1	Grass	12
2.5	Rainfa	11	13
2.6	Applic	cation Method	14
	2.6.1	Universal Soil Loss Equation (USLE)	15
	2.6.2	Revised Universal Soil Loss Equation (RUSLE)	16

CHAPTER 3 METHODOLOGY

3.1	Genera	General 19	
3.2	Labora	atory Testing	19
	3.2.1	Soil Classification	19
	3.2.2	Particle Size Distribution	20
	3.2.3	Sieve Analysis Test	20
	3.2.4	Particle Size Analyzer	21
	3.2.5	Moisture Content	21
3.3	Prepar	ation of Soil Sample	23
3.4	Soil T	Soil Trap Method 24	
3.5	Rainfa	Rainfall Data2:	
3.6	RUSLE Method		
	3.6.1	Rainfall Erosivity (R factor)	27
	3.6.2	Soil Erodibility (K factor)	28
	3.6.3	Slope Length and Steepness (LS factor)	28
	3.6.4	Cover Management (C factor)	28
	3.6.5	Support Practice (P factor)	29
3.7	Flow C	Chart Methodology	30

CHAPTER 4 RESULT AND ANALYSIS

4.1	Introduction 3		31
4.2	Soil Pr	operties	31
	4.2.1	Mechanical Sieve Analysis	32
	4.2.2	Moisture Content	34
4.3	Soil Tr	ap	35
4.4 Revised Universal Soil Loss Equation (RUSLE)		d Universal Soil Loss Equation (RUSLE)	38
	4.3.1	Rainfall Erosivity (R factor)	38
	4.3.2	Soil Erodibility (K factor)	39
	4.3.3	Slope Length and Steepness (LS factor)	40
	4.3.4	Cover Management (C factor)	41
	4.3.5	Support Practice (P factor)	42
4.4	Averag	e Annual Soil Loss (A)	43

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	44
5.2	Recommendations	44

46

REFERENCES

APPENDICESAMechanical Sieve Analysis48BResult Soil Erodibility Factor53CResult Slope Length Factor57Result Cover Management Factor57Result Practice Management Factor57

LIST OF TABLES

Table No.	Title	Page
2.1	Soil classification based on grain size (Das, 2006)	9
2.2	American Association of State Highway and	10
	Transportation Officials (AASTHO) classification criteria	
	(Das, 2006)	
2.3	First and second letters of group symbols (Aysen, 2005)	11
2.4	The summary of different between USLE and RUSLE	17
3.1	Laboratory testing and method (BS 1377:1990)	20
4.1	Result uniformity coefficient and coefficient of gradation	33
4.2	Result moisture content result for soil trap sample	34
4.3	Result moisture content result for riverside sample	34
4.4	Result moisture content result for in the river sample	35
4.5	Average moisture content result	35
4.6	Result of soil erodibility factor	40
4.7	Result of slope length factor	41
4.8	Result of cover management	42
4.9	Result of practice management	43
4.10	Result of annual soil loss	43

LIST OF FIGURES

Figure No.	Title	Page
1.1	Sample plot for empty surface	4
2.1	Fours type of soil erosion on an exposed slope.	7
2.2	Soft clay area in peninsular Malaysia (Chin, 2005)	8
2.3	Change in erosion rate due to increasing vegetative cover.	12
	(Coppin and Richards, 1990)	
2.4	Data from Malaysia Meteorological Year 2008 until 2015	14
2.5	Soil trap using one bucket plactic and use the tank connector	15
3.1	Shaker sieve machine for sieve analysis	21
3.2	After dry soil sample for moisture content	23
3.3	Collect undisturbed soil sample	24
3.4	Design for soil trap	25
3.5	Rainfall erosivity map for Peninsular Malaysia	26
3.6	Flow chart for calculate RUSLE	27
4.1	Particle size distribution curve for soil sample soil trap	32
4.2	Particle size distribution curve for soil sample riverside	32
4.3	Particle size distribution curve for soil sample in the river	33
4.4	Provide the retaining wood 150cm x 150cm	36
4.5	Punched holes in the bucket with a diameter of 50mm	36
4.6	Install tank cone PVC	37
4.7	Four cube concrete is placed as a foundation	37
4.8	Rainfall erosivity map for Peninsular Malaysia	38
4.9	The classified of soil	39
4.10	LS factor for slope steepness and slope lengths	40
4.11	Cover management, C factor	41
4.12	Practice management, P factor	42

LIST OF ABBREVIATIONS

UMP	Universiti Malaysia Pahang
AASTHO	American Association of State Highway and Transportation
	Officials
USCS	Unified Soil Classification System
ASTM	American Society for Testing and Material
USLE	Universal Soil Loss Equation
RUSLE	Revised Universal Soil Loss Equation
JPS	Department of Irrigation and Drainage
US	United State
Cu	Uniformity Coefficient
Cc	Coefficient of Gradation