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Abstract. This paper studies the use of adaptive Support Vector Machine (SVM) to predict the 

performance parameters and exhaust emissions of a diesel engine operating on nanodiesel 

blended fuels. In order to predict the engine parameters, the whole experimental data were 

randomly divided into training and testing data. For SVM modelling, different values for radial 

basis function (RBF) kernel width and penalty parameters (C) were considered and the 

optimum values were then found. The results demonstrate that SVM is capable of predicting 

the diesel engine performance and emissions. In the experimental step, Carbon nano tubes 

(CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nano-

structure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke 

diesel engine was fuelled with these new blended fuels and operated at different engine speeds. 

Experimental test results indicated the fact that adding nano particles to diesel fuel, increased 

diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel 

consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with 

increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 

emission increased. CO emission in diesel fuel with nano-particles was lower significantly 

compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased 

while with fuels that contains CNT nano particles increased. The trend of NOx emission was 

inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx 

increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles 

can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce 

the exhaust emissions significantly. 

1. Introduction 

A lot of studies have been conducted for predicting various engine parameters. Some of the works 

have concentrated on performance parameters, some of them on exhaust emissions and remaining on 

both of them. In these researches, spark ignition (SI) and compression ignition (CI) engines with 

traditional fuels and biofuels have been investigated. However, due to the development of biofuels and 
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our requirements to these fuel types for reducing pollutions and saving the fossil sources, studies about 

them can be more useful. Most studies are based on the use of traditional artificial neural network 

(ANN) for prediction. For example, Sharon et al. (2012) [1] employed ANN to predict performance 

and exhaust emissions of a diesel engine with 8 different blends of diesel and biodiesel fuels. Cay et 

al. (2013) [2] experimentally investigated the use of ANN for predicting performance and emission 

characteristics of an engine fuelled with methanol and gasoline. The inputs of ANN were fuel type, 

engine speed, torque and fuel flow. In another research, Cay (2013) [3] modeled engine performance 

by using ANN. The used fuel was gasoline, and three parameters of specific fuel consumption, engine 

power and exhaust temperature were predicted. Because ANNs follow empirical risk minimization 

(ERM) principle, they have some drawbacks like poor generalization, greater computational burden 

and proneness to over fitting [4, 5].  

The disadvantages cause a performance reduction in modelling. In the literature, there are a few 

works that have used other machine learning methods which have some advantages over ANNs. In 

addition, the investigation on the performance comparison of learning methods in prediction of engine 

parameters is limited. Hosoz et al. (2013) [6] investigated the applicability of adaptive neuro-fuzzy 

inference system (ANFIS) for predicting several parameters of a diesel engine fuelled with diesel and 

biodiesel blends. Wong et al. (2014) [4] proposed a model based on sparse Bayesian extreme learning 

machine (SBELM) for engine performance prediction. A comparison was made between SBELM, 

extreme learning machine (ELM), Bayesian ELM and back-propagated neural network (BPNN) 

methods. The predicted engine parameters were fuel consumption, Lambda value, HC, CO and CO2 

emissions. In another research, Wong et al. (2015) presented a biodiesel engine modelling by kernel-

based extreme learning machine (K-ELM). The K-ELM model was compared with least-square 

support vector machine (LS-SVM) model [7-16]. Previous researches using nanodiesel have been 

mentioned that blending the nano particles with diesel fuel improves the combustion parameters of CI 

engine [17-35]. 

In this study, support vector machine (SVM) has been employed to determine the engine power, 

torque, brake specific fuel consumption (bsfc), and emission components based on various diesel–

biodiesel and nano particles blends and speeds. The main objective of this research is to investigate the 

ability of SVM for predicting engine performance parameters and exhaust emissions, and also 

compare their performances in modelling. In this research, the performances of SVM method were 

thoroughly evaluated. 

 

2. Experimental setup 

2.1. Methodology 

In this study, the experiments were performed on a CI engine, 6 Cylinder. A 190 kW SCHENCK-

WT190 eddy–current dynamometer was used in the experiments, specifications of diesel engine have 

been described in Table 1. Engine speeds varied in the range of 700-1000 rpm. Fuel consumption rate 

was measured in the range of 0.4–45 kg/h by using laminar type flow meter, Pierburg model. The 

emission parameters (CO, CO2, HC and NOx) from an online and accurately calibrated exhaust gas 

analyser AVL DIGAS 4000 were recorded (figure 1). Considering the accomplished researches about 

nano fuels and diesel fuel nano additives, two silver nano-particles (Ag) and carbon nano tubes (CNT) 

were applied as nano additives to these fuels. Furthermore based on researches conducted about the 

effect of concentrations of used nano-particles in reduction of exhaust emissions, in this study three 

concentrations (40, 80 and 120 ppm) were applied. In order to ensure the validity of nano-particles 

utilized in this research, SEM and TEM pictures were taken (figure 2). Stability of nano fuel was 

tested at standard conditions. Also the use of carbon nano tubes (CNT) and silver nano particles in 

neat diesel blend has the tendency to settle down at the fuel tank. An ultrasonic processor (UP400S, 

Hielscher, USA) was used to perform the reaction and even mixing nano-particles with diesel fuel 

before the engine tests. The processor operated at 400 W and 24 kHz frequency (figure 2). 

 

3rd International Conference of Mechanical Engineering Research (ICMER 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 100 (2015) 012069 doi:10.1088/1757-899X/100/1/012069

2



 

 

 

 

 

 

 
Figure 1. Engine test set-up and test instruments (a) real and (b) schematic. 

 

 
Figure 2. The Set up for ultrasonic-assisted nano-diesel production process (a)reaction, (b) ultrasonic 

set-up and (c) nano-diesel blend. 

 

Table 1. Main characteristics of the test engine 

Engine Type CI engine, 6 Cylinder 

Combustion Order 1-5-3-6-2-4 

Bore ×Stroke(mm) 98.6 * 127 

Displacement Volume (Lit) 5.8 

Max. Torque (N.m/rpm) 376 / 1300 

Max. Power(kW/rpm) 82 / 2300 

 

In this paper, the quantity BX represents a blend consisting of X% biodiesel by volume, e.g., B20 

indicates a blend consisting of 20% biodiesel in 80% diesel. Laboratory tests were then carried out 

using ASTM test standards to determine the fuel properties. 

SEM 

and 

TEM 

pictures 
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SVM. This is an engine simulation tool. SVM is a supervised learning method developed by 

Vapnik based on statistical learning theory. Nowadays, SVM is successfully used for many 

applications like prediction, pattern detection and classification, due to its high ability and capability in 

solving learning problems. SVM has good generalization ability because it follows the structural risk 

minimization (SRM) principle which minimizes an upper bound on the generalization error. SVM can 

be considered as a regressive model. Suppose a set of training data 
{ , }i ix t

, 1,2,...,i n , 
d

ix R
, 

it R
, where xi is input data and ti is the corresponding target value. SVM tries to estimate target 

values by the linear equation as follows: 
T

i iy w x b 
                                                      (1) 

 
where yi is the output of SVM, w is d-dimensional vector and b is a scalar. By using a  –insensitive 

loss function, the optimal linear regression function can be obtained by solving the following 

optimization problem. 
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where C is penalty parameter,   is a pre-specified value and i


, i


 are slack variables representing 

upper and lower constraints on the output of the system. For nonlinear regression, SVM maps the 

input data into a high-dimensional feature space in which linear regression is performed. This is done 

by kernel function which is stated as 
( , ) ( ). ( )i j i jK x x x x 

, where 


 is a nonlinear function. 

Hence, the estimation of SVM is obtained by the following equation. 

 

1

( ) ( , )
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where i


, i


 are Lagrange multipliers. The criterions used in this research are correlation 

coefficient (R), root mean square error (RMSE), mean relative error (MRE) and accuracy. The 

correlation coefficient (R) which evaluates the strength of the relationship between the experimental 

and predicted results is defined as: 

 

cov( , )
( , )

cov( , )cov( , )

a p
R a p

a a p p
  

                                                                                    

 

 

where cov(a,p) is covariance between a and p sets. a and p denotes the actual output and predicted 

output sets. RMSE is determined by: 
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where n is the number of the points in the data set. MRE which indicates the mean ratio between the 

error and the experimental values, is obtained by: 
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Accuracy which is a simple representation of prediction performance is calculated as: 

 

1 100
i i

i

a p
Accuracy

a

  
   
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3. Results and discussion 

Figure 3 illustrates the performance of SVM in the brake power prediction under various numbers of 

the two parameters. The performance of SVM improved by increasing the training epoch. After 

determining the optimum numbers, the ability of SVM in prediction of the engine parameters was 

evaluated by calculating the criterions of correlation coefficient (R), RMSE, MRE and accuracy. 
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Figure 3. The values of the performance criterions of SVM for the brake power under changes of 

sigma and C: (a) R, (b) RMSE, (c) MRE and (d) Accuracy 

 

Figure 4(b) shows the predicted versus experimental values for the brake power. SVM predictions 

for the brake power yielded a correlation coefficient (R) of 0.999, RMSE of 0.198 kW, MRE of 0.43% 

and accuracy of 99.57%. SVM predictions for the engine torque yielded a correlation coefficient (R) 

of 0.985, RMSE of 2.373 Nm, MRE of 0.511% and accuracy of 99.489% (figure 4(a)). In predicting 

(6) 

(7) 

(8) 
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the bsfc, SVM resulted in a correlation coefficient of 0.824, RMSE of 3.079 g/kWh, MRE of 1.103% 

and accuracy of 98.897% (figure 4(c)). Figure 5 shows the predicted versus experimental values for 

the exhaust emission parameters. SVM predictions for the CO, CO2, HC and NOX yielded a 

correlation coefficient (R) of 0.965, 0.951, 0.803 and 0.631, respectively. It was found that the RMSE 

values were 0.063 %V, 0.309 %V, 2.107 ppm and 185.522 ppm for the CO, CO2, HC and NOX, 

respectively. SVM predictions for the CO yielded a MRE of 3.421% (figure 5(a)). MRE value for the 

CO2 was 2.448% (figure 5(b)). Figure 5(c) shows the predicted versus experimental values for the HC 

with MRE of 2.107%. According to figure 5(d), MRE of the NOX was 9.346%. SVM accuracy for 

prediction of the CO, CO2, HC and NOX was 96.579%, 97.552%, 90.211% and 90.654%, respectively. 

The above results demonstrate that SVM can predict the exhaust emission parameters well. 

 

Figure 4. SVM predictions for the (a) brake torque, (b) brake power and (c) BSFC versus 

experimental values 
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Figure 5. SVM predictions for the (a) CO, (b) CO2, (c) HC and (d) NOX versus experimental values. 

 

4. Conclusions 

The results of this research study demonstrated that nanodiesel could be efficiently utilized as blended 

fuel in diesel engine. The produced nanodiesel was blended with biodiesel and diesel fuels in different 

concentrations and the CI engine performance and emission parameters were evaluated with these new 

blended fuels. Adding nano particles in diesel fuel can improve engine performance and reduce CO 

and HC emissions. But it can cause an increase in CO2 and NOX emissions. SVM can be employed to 

predict the engine performance and exhaust emissions.  

SVM can be employed to predict the engine performance and exhaust emissions. But there is a 

need for finding the optimum values of its parameters. The SVM results were very good, R values in 

this model are very close to one, while root mean square error (RMSE) was found to be very low. The 

results showed that SVM predicted the engine performance and exhaust emissions with correlation 

coefficient (R) and accuracy in the range of 0.66–1 and 65–99.5%. The results demonstrate that SVM 

is capable of predicting the CI engine performance and emissions. Analysis of the experimental data 

by the SVM method revealed that there is a good correlation between the SVM predicted results and 

the experimental data. Therefore SVM proved to be a useful tool for correlation and simulation of 

engine parameters. 
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