

DEVELOPMENT OF A 1-D SALT

INTRUSION MODELLING PROGRAMME

USING PYTHON PROGRAMMING

LANGUAGE

LOH RI JIAN

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : LOH RI JIAN

Date of Birth : 31ST JULY 1993

Title : DEVELOPMENT OF A 1-D SALT INTRUSION MODELLING

 PROGRAMME USING PYTHON PROGRAMING LANGUAGE

Academic Session : SEMESTER II 2016/2017

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*
 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*
 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

(930731-08-5927)
New IC/Passport Number
Date:

 (Supervisor’s Signature)

Dr. Jacqueline Isabella Anak Gisen
Name of Supervisor
Date:

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of Bachelor of Engineering with Honours

Civil Engineering.

 (Supervisor’s Signature)

Full Name : Dr. Jacqueline Isabella Anak Gisen

Position : Senior Lecturer

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : Loh Ri Jian

ID Number : AA13230

Date :

DEVELOPMENT OF A 1-D SALT

INTRUSION MODELLING PROGRAMME

USING PYTHON PROGRAMMING

LANGUAGE

LOH RI JIAN

Thesis submitted in fulfillment of the requirements

for the award of the

Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ii

ACKNOWLEDGEMENTS

 First of all, I am grateful to the God for the good health and well-being throughout
the entire study.

I would like to express my greatest gratitude to my supervisor Dr. Jacqueline
Isabella Anak Gisen for the greatest effort in guiding, giving advices and supports and
encouraged me thorough the entire journey of my studies in final year project. Her
patience in teaching the theories of this study has eased my development of SALT
modelling programme.

Next, I wish to thank Dr. Nurul Nadrah Aqilah binti Tukimat for providing me
with necessary knowledge in writing thesis. Throughout this final year project, I wish to
place my sincere appreciations to the lectures for giving encouragement, support and
attention directly and indirectly in Universiti Malaysia Pahang.

 I would also like to take this opportunity to thank my family, partner and friends
who encouraged me with their best wishes and support. Also, I am extremely thankful
to my friend Kevin Wong Liang Ji for the sharing some of his programming expertise.

Last but not least, I would like to thank all who is involved directly and indirectly
in ensuring the smoothness of this study. Thank you very much.

iii

ABSTRACT

Salt intrusion model mostly does not standalone and is integrated into 2-D and 3-D
hydraulics modelling tools such as Mike21 and Delft-3D. Although the integration looks
convenient, the models are very expensive due to its costly license procurement. As an
alternative, 1-D salt intrusion model generates a simpler and economical platform for the
user to conduct study on salt intrusion in estuaries. The objective of this study are 1) to
develop a 1-D analytical salt intrusion modelling programme using Python programming
language: SALT 2) to simulate the longitudinal salinity curve using developed programme
and 3) to validate the applicability and reliability of the model. In this study, the SALT
modelling programme has been developed using Python programming language to
protect the formulas that can be easily changed in traditional spreadsheet. The core
concept of this model adopts the analytical 1-D salt intrusion model developed by
Savenije (2005) and Gisen (2015).The existing salt intrusion data of Malaysia estuaries
were divided into two sets, one for model validation (Kurau, Perak, Bernam, Selangor,
Muar and Endau) from Gisen (2015) and another set for model testing on the newly
surveyed Belat Estuary. Based on the comparison between the result obtained from the
conventional spreadsheet and SALT, the SALT modelling programme is indeed reliable
to be used for salt intrusion study application as the model performance analyses show
high accuracy with average RMSE of 1.31 and average NSE of 0.98.

iv

ABSTRAK

Kebanyakan model intrusi air masin tidak berdiri sendiri dan disepadukan ke dalam alat
pemodelan hidraulik 2-D dan 3-D seperti Mike21 dan Delft-3D. Walaupun integrasi
kelihatan selesa untuk digunakan, harga model adalah sangat membebankan disebabkan
oleh perolehan lesen yang mahal. Sebagai alternatif, model intrusi air masin 1-D
menyediakan platform yang lebih mudah dan jimat untuk menjalankan kajian mengenai
intrusi air masin di muara. Objektif kajian ini adalah 1) untuk menghasilkan program
model intrusi air masin 1-D dengan menggunakan bahasa pengaturcaraan Python: SALT
2) untuk mensimulasikan graf kemasinan bujur dengan menggunakan program yang
dihasilkan dan 3) untuk mengesahkan kesesuaian dan kebolehpercayaan model. Dalam
kajian ini, program pemodelan SALT telah dihasilkan dengan menggunakan bahasa
pengaturcaraan Python bagi melindungi formula yang mudah diubah suai dalam
hamparan tradisional. Konsep utama model ini menggunakan model analisis intrusi air
masin 1-D yang diperkenalkan oleh Savenije (2005) dan Gisen (2015). Data intrusi air
masin yang sedia ada bagi muara Malaysia telah dibahagikan kepada dua set, satu untuk
pengesahan model (Kurau, Perak, Bernam, Selangor, Muar dan Endau) dari Gisen (2015)
dan satu lagi untuk kajian model di Muara Belat yang baru ditinjau. Berdasarkan
perbandingan antara keputusan yang diperolehi daripada hamparan tradisional dan SALT,
Kerpercayaan program pemodelan SALT telah dikesahkan sebagi aplikasi intrusi air
masin atas sebab purata RMSE dan NSE yang bernilai 1.31 dan 0.98 menunjukkan
ketepatan tinggi analisis prestasi model.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 BACKGROUND 1

1.2 PROBLEM STATEMENT 2

1.3 OBJECTIVES 4

1.4 SCOPE OF STUDY 4

1.5 SIGNIFICANCE OF STUDY 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 ESTUARY 6

2.1.1 Alluvial Estuary 7

2.1.2 Geometry 8

2.2 TIDES 10

vi

2.3 MIXING 13

2.4 SALT INTRUSION 14

2.4.1 Type of Salt Intrusion 14

2.4.2 Shape of Longitudinal Salinity Distribution 16

2.4.3 Factors of Salt Intrusion 17

2.5 PREVIOUS CASE STUDIES 18

2.6 THEORETICAL BACKGROUND OF THE MODEL 22

2.7 PYTHON PROGRAMMING 25

CHAPTER 3 METHODOLOGY 27

3.1 INTRODUCTION 27

3.2 FLOW CHART OF METHODOLOGY 28

3.3 DEVELOPMENT PROCESS OF SALT 30

3.4 COMPUTATION PROCESS 34

3.5 APPLICATION OF THE MODEL 37

3.6 MODEL PERFORMANCE 38

CHAPTER 4 RESULTS AND DISCUSSION 39

4.1 DEVELOPMENT OF SALT 39

4.2 SIMULATION OF SALT 41

4.3 VALIDATION OF SALT 47

4.4 APPLICATION OF SALT 50

4.5 MODEL PERFORMANCE 52

CHAPTER 5 CONCLUSION 53

5.1 INTRODUCTION 53

vii

5.2 CONCLUSION 53

5.3 RECOMMENDATION 55

REFERENCES 56

APPENDIX A 61

APPENDIX B 62

viii

LIST OF TABLES

Table 2.1 Characteristics of estuary compared to sea and river. 6

Table 2.2 Summary on estuary classification. 7

Table 2.3 Interaction between shape and flow in estuaries. 8

Table 3.1 Modules used by SALT 31

Table 4.1 Summary of SALT modelling programme. 39

Table 4.2 Functions of Menu in SALT modelling programme. 40

Table 4.3 Geometry input of Belat Estuary. 50

Table 4.4 Observation data of Belat Estuary. 50

Table 4.5 Calibration parameters and output data of Belat Estuary. 51

Table 4.6 RMSE and NSE for all the Malaysian estuaries. 52

ix

LIST OF FIGURES

Figure 1.1 Complex formulas are vulnerable to changes 3

Figure 2.1 Geometry of idealized tidal estuary: a) side view b) plan view 8

Figure 2.2 (a) shows single reach estuary that does not experience strong wave
action. (b) represent estuary resulted by strong wave action near the
mouth and separate it into two reaches with inflection point x1. 9

Figure 2.3 Tidal oscillation of diurnal tide (left), mixed tide (middle) and semi
diurnal tide (right). 11

Figure 2.4 Types of tidal waves: a) Standing Wave b) Progressive Wave 12

Figure 2.5 Mixed type wave in converging estuary with phase lag ε between
HW and HWS together with LW and LWS. 12

Figure 2.6 Region that dominated by tide and density driven mixing. 13

Figure 2.7 Longitudinal distribution of the salinity for (a) salt wedge estuary,
(b) partially mixed estuary and (c) well mixed estuary. 15

Figure 2.8 Variation of the salinity over the depth in (a) salt wedge estuary, (b)
partially mixed estuary and (c) well mixed estuary. 15

Figure 2.9 Four types of salt intrusion curves 16

Figure 2.10 Longitudinal salinity distribution in Malaysian estuaries. 20

Figure 2.11 Longitudinal salinity distribution of Kuantan estuary in 1978 21

Figure 2.12 Demonstration on the shifting process to obtain the salinity profile
for LWS and HWS for better understanding. 24

Figure 2.13 A very simple but functional Python programme entered in IDLE
editor 26

Figure 2.14 Coding from Figure 2.13 is being run by Python’s default GUI -
IDLE 26

Figure 3.1 Summary of the study for developing SALT modelling programme. 28

Figure 3.2 Architecture structure of SALT modelling programme development. 30

Figure 3.3 Running get-pip.py modules to install pip 31

Figure 3.4 Environment Variables in Computer Properties of Windows. 32

Figure 3.5 Adding Path for Python Script. 32

Figure 3.6 Example of execution of “pip_install” command. 32

Figure 3.7 Computation Process of the SALT modelling programme. 34

Figure 4.1 SALT modelling programme interface using Python’s default GUI –
IDLE 40

Figure 4.2 Longitudinal Salinity Distribution generated by SALT using Internet
Protocol 41

Figure 4.3 Starting of the New File option. 42

x

Figure 4.4 Confirmation of the Input. 42

Figure 4.5 Input Parameters of the Muar Estuary. 43

Figure 4.6 Calibration Parameters of the Muar Estuary. 43

Figure 4.7 Measurement Data is selected and values of observation data of
HWS is being inserted. 43

Figure 4.8 Tabulation of distance from estuary mouth (x) and salinity (S) at
HWS (left) and LWS (right). 44

Figure 4.9 List and Edit Input. 44

Figure 4.10 Example of changing K value for calibration. 44

Figure 4.11 Tabulation of the simulated result. 45

Figure 4.12 Longitudinal salinity distribution of the Muar Estuary. 46

Figure 4.13 RMSE and NSE analyses at HWS condition of the Muar Estuary. 46

Figure 4.14 RMSE and NSE analyses at LWS condition of the Muar Estuary. 46

Figure 4.15 Validation of the Bernam Estuary 47

Figure 4.16 Validation of the Endau Estuary 47

Figure 4.17 Validation of the Kurau Estuary 48

Figure 4.18 Validation of the Muar Estuary 48

Figure 4.19 Validation of the Perak Estuary 48

Figure 4.20 Validation of the Selangor Estuary 49

Figure 4.21 Longitudinal salinity distribution of the Belat Estuary. 51

Figure 4.22 Comparison of SALT’s output against conventional spreadsheet. 51

Figure A1 Longitudinal Salinity Distribution of a) Belat b) Endau c) Kurau d)
Muar e) Perak f) Selangor 61

xi

LIST OF SYMBOLS

kg/m3 kilogram per cubic metre
km kilometre
m-1 per metre
m metre
m2/s square metre per second
m3 cubic metre
ppt parts per thousand

xii

LIST OF ABBREVIATIONS

a Cross-sectional convergence length
a1 Cross-sectional convergence length of the seaward reach of estuary
a2 Cross-sectional convergence length of the landward reach of estuary
A Cross-sectional area
A0 Cross-sectional area at the estuary mouth
A1 Cross-sectional area at the inflection point

ARI Average Recurrence Interval
b Width convergence length
b1 Width convergence length of the seaward reach of estuary
b2 Width convergence length of the landward reach of estuary
B Estuary width
B0 Estuary width at the estuary mouth
B1 Estuary width at the inflection point
D Longitudinal dispersion
D0 Longitudinal dispersion at the estuary mouth
D1 Longitudinal dispersion at the inflection point
dx Step length
E Tidal Excursion
E0 Tidal Excursion starting from the estuary mouth
E1 Tidal Excursion starting from the inflection point

EFDC Environmental Fluid Dynamic Code
GUI Graphical User Interface

h Estuary depth
h0 Estuary depth at the estuary mouth
h1 Estuary depth at the inflection point
H Tidal range

HW High Water
HWS High Water Slack
IDLE Integrated Development Learning Environment

K Van der Burgh’s coefficient
L Salt intrusion length

LW Low Water
LWS Low Water Slack

N Number of measurement data
NSE Nash-Sutcliffe Efficiency
Obs Observed data

Omean Average observed Data
pip Pip Install Package

PNG Portable Network Graphic
Qf Fresh water discharge

RMSE Root Mean Square Error
S Steady state salinity
S0 Steady state salinity at the estuary mouth
S1 Steady state salinity at the inflection point
Si Steady state salinity at HWS, TA and LWS
Sf Fresh water salinity

SALT Salinity AnaLysis Technique
Sim Simulated data
TA Tidal Average
ver. version

x Distance

xiii

x1 Inflection point
α Mixing coefficient
α0 Mixing coefficient at the estuary mouth
α1 Mixing coefficient at the inflection point
β Dispersion reduction rate
β0 Dispersion reduction rate at the estuary mouth
β1 Dispersion reduction rate at the inflection point
ε Phase lag between HW and HWS or LW and LWS

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Estuary is a transition medium of river and ocean which exhibit the characteristics

of brackish ecosystem. Existence of this physical productive ecosystem provides

excellent potential for habitat of flora and fauna as well as providing flood barrier and

pollutant filter in the area (Ibrahim et al., 2008; Savenije, 2012). Besides, rich

characteristics of its fertile soil, flat surface terrain, fresh water availability, sources of

food and accessible transportation medium have encouraged cities to be built in the

estuarine region (Gay and O’Donnell, 2009; Savenije, 2012; Gisen, 2015). In the tropical

countries, most of the estuaries are classified as alluvial estuaries; estuaries with movable

beds which can be eroded or deposited by sediments (Savenije, 1993a).

However, the estuarine region is often prone to salt intrusion problem which can

greatly interfere water resources system in an area. Human interference in estuaries for

improvement of own various needs, such as navigation and irrigation, can change the

natural river flow and salinity distribution (da Silva Dias et al., 2011). Liu et al. (2004)

found that the reduction of river discharge after construction of the Feitsui Reservoir in

China has increased the annual mean salinity to 4.3 ppt near the Kuan-Du wetland. This

explained that decreasing river flow will result the increase of salinity increase in estuary.

Savenije (1993a) mentioned that dredging works can directly induce salt intrusion. This

influence can be seen in the Pulai River estuary in Johore, where dredging works of 18m

deep and excessive shoreline development for navigation purpose have affected the

salinity pattern and subsequently affected the estuarine ecosystem (Ibrahim et al., 2008).

In the Sg. Selangor, salt intrusion problem has significantly deteriorated the ecosystem

such as “fading fireflies” issue due to the destruction of the mangrove trees (Hassan and

2

Hashim., 2011). Hence, da Silva Dias et al. (2011) stated that it is necessary to maintain

an acceptable salinity gradient to ensure that the estuarine ecosystem is protected.

Salt intrusion study is essential to determine the sufficient amount of river

discharge to flush out saline water up to acceptable saline level for water intake purpose.

Maximum allowable human consumption of chloride ion content is 0.2 ppt thus it will be

a problem if salt intrusion occurs at the water intake zone (SMHB et al., 2000). For this

reason, salt intrusion study should be done preliminary before any proposal on the

construction of the water intake station to prevent the need of station migration and

inefficiency of fresh water pumping.

Different types of 2-D and 3-D modelling software have been developed to study

salt intrusion in estuaries. However, these application software are very costly and the

modelling process required substantial amount of data. As an alternative, selection of

one-dimensional modelling allows users to apply a simpler and economical salt intrusion

modelling application in alluvial estuaries (Savenije, 1992). Nguyen and Savenije’s

(2006) one dimensional analytical model showed good performance in simulating salinity

distribution model even in stratified neap tide condition with low relative error of 4.6%

to 5.2% .This reliability of the analytical salt intrusion model is also high as it was tested

in a real estuary (Mekong Estuary) rather than laboratory set-up (Shaha and Cho, 2009).

1.2 PROBLEM STATEMENT

Salt intrusion is a common phenomenon in estuaries. High tide in conjunction of

low fresh water discharge causing salt water to intrude further into the river system. For

example in 1977 the Kobat water intake station in Kuantan has encountered salt intrusion

problem during the drought period at spring tide. The high saline concentration has

reached the maximum acceptable consumption of chloride ion content of 0.2 ppt (SMHB

et al., 2000). Besides water pumping problem, sudden change of salinity concentration

can also lead to the destruction of mangroves and aquatic lives as they are sensitive to the

change of salinity level (Hassan and Hashim, 2011).

There are several modelling method is being done to determine the salinity

concentration at the estuaries. To perform a comprehensive salinity model, long term data

3

are often needed. However, this requires substantial amount of funding. Moreover,

readily available software such as Mike21 and Delft3D modelling systems are very

expensive in terms of the license procurement. Hence, one dimensional modelling is a

good value-for-money approach to model salt intrusion in estuaries (Savenije, 1993a).

This approach can be easily done by performing the computation using spreadsheets.

Nevertheless, the formulas generated in the spreadsheet can be easily erased accidentally

by the modeller as shown in Figure 1.1. Hence a hidden coding is essential to prevent this

mistake.

Figure 1.1 Complex formulas are vulnerable to changes

Sources: Savenije (2005)

Complex formulas are vulnerable to changes.

4

1.3 OBJECTIVES

This study was meant to achieve the following objectives:

1. To develop a one-dimensional analytical salt intrusion modelling programme using

Python programming language: SALT.

2. To simulate the longitudinal salinity distribution using developed programme.

3. To validate the applicability and reliability of the model.

1.4 SCOPE OF STUDY

This study focused on the development of an open access one-dimensional salt

intrusion modelling programme: SALT. This modelling programme was created using

Python programming language. The theory behind this study is based on the steady state

one-dimensional analytical salt intrusion model at tidal average (TA) condition

introduced by Savenije (2005) and Gisen (2015). This modelling programme had been

validated by using salinity data for the Malaysian Estuaries by Gisen (2015) to ensure its

applicability and validity and also to determine possible bugs and error.

The simulated longitudinal salinity distribution curve produced by the developed

programme was fitted against the observation data by calibrating the related parameters

such as the initial salinity (S0), tidal excursion (E), Van der Burgh’s coefficient (K) and

dispersion coefficient (D). To test the reliability of the data, the results produced in the

programme had been validated by comparing it with the previous studies in Malaysia by

Gisen (2015). Besides secondary data, new salinity study had be carried out for the Belat

Estuary and these new data will also be used for application of this newly developed

modelling programme.

5

1.5 SIGNIFICANCE OF STUDY

Modelling software with fully equipped 2-D and 3-D programming are expensive

due to its license procurement which are required to be updated for every few years.

Though there are cheaper approach of conducting salt intrusion modelling by using

merely excel spreadsheet, the non-encrypted and accessible formulas in the spreadsheet

can be accidentally deleted.

Hence, this study converts the formula from the previous studies of steady state

one-dimensional analytical salt intrusion model at tidal average condition by Savenije

(2005) and Gisen (2015) into encrypted coding script by using Python programming

language to create an open access modelling programme: SALT. This modelling

programme has the possibility of integrating with Graphical User Interface (GUI) to

create a user friendly interface for the end-user

6

CHAPTER 2

LITERATURE REVIEW

2.1 ESTUARY

Estuary can be described as transition medium between sea and river that function

as storing and transporting water and sediments (Gisen et al., 2015). It contains its own

hydraulic, morphology and biological characteristics such as mixed type tidal waves,

funnel shape and a brackish environment (Savenije, 1993a). Due to this unique estuarine

habitat, estuary plays a very important role in the flora and fauna’s life cycle (Savenije,

2005). Comparison of estuary’s characteristics with river and sea is shown in Table 2.1.

Table 2.1 Characteristics of estuary compared to sea and river.

 Sea Estuary River
Shape Basin Funnel Prismatic
Main hydraulic function Storage Storage and

Transport
Transport of water
and sediments

Flow Direction No dominant
direction

Dual direction Single
downstream
direction

Bottom slope No slope No slope Downward slope
Salinity Salt Brackish Fresh
Wave Type Standing Mixed Progressive
Ecosystem Nutrient poor,

marine
High biomass
productivity, high
biodiversity

Nutrient rich,
riverine

Source: Savenije (2005).

Combination of driving forces such as tidal influence, wave action, river

discharge, littoral sediment transport and gravitational circulation due to salinity and

density between sea and river make the classification of estuary based on its shape

(Pittaluga et al., 2015; Gisen, 2015). Savenije (2005) summarized the classification of

the estuary as in Table 2.2.

7

Table Error! Use the Home tab to apply 1ofs to the text that you want to appear
here..2 Summary on estuary classification.

Shape Tidal wave
type

River
influence

Geology Salinity Estuarine
Richardson
number

Bay Standing
wave

No river
discharge

- Sea salinity Zero

Ria Mixed wave Small river
discharge

Drowned
drainage
system

High salinity,
often
hypersaline

Small

Fjord Mixed wave Modest river
discharge

Drowned
glacier valley

Partially
mixed to
stratified

High

Funnel Mixed
wave; large
tidal range

Seasonal
discharge

Alluvial in
coastal plain

Well mixed Low

Delta Mixed
wave; small
tidal range

Seasonal
discharge

Alluvial in
coastal plain

Partially
mixed

Medium

Infinite
Prismatic
Channel

Progressive
wave

Seasonal
discharge

Man-made Partially
mixed to
stratified

High

Source: Savenije (2005).

2.1.1 Alluvial Estuary

Alluvial estuary is the estuary with movable bed which made up of sediments of

riverine and marine origin (Savenije, 1993a). The term alluvium indicates that the estuary

bed can be eroded (widening and deepening of the estuary bed) and deposited with

sediments (narrower and shallower). Dynamic equilibrium is achieved when the

predominance of erosion and deposition occurred consecutively, and it is vital for

engineers to derive a universal relationship between estuary’s geometry with the

hydraulics (Savenije, 1993a; Zhou et al., 2012; Pittaluga et al., 2015)

On the other hand, estuary with fixed bed (e.g. fjords), where the shape of the

estuary cannot be changed by the tidal flow (Savenije, 2005). In this estuary, there is no

equilibrium in terms of alluvium as the erosion exceed the deposition rate. Hence, it is

not possible to derive relationship between the estuary geometry with the hydraulics

(Savenije, 1993a). Savenije (1993b) stated that as long as the estuary is alluvial that agree

on the dynamic equilibrium, his analytical one-dimensional model works perfectly on

any shape with either density driven or tide driven mixing. Also, it is stated that most

8

estuaries, especially in tropical countries, are alluvial estuaries. Table 2.3 illustrates the

interaction between shape and flow in estuaries.

Table 2.3 Interaction between shape and flow in estuaries.

 Shape determine discharge Shape does not determine
discharge

Discharge determine
shape

Alluvial estuaries Alluvial rivers

Discharge does not
determine shape

Fjords and Rias Canals and non-alluvial
rivers

Sources: Savenije (2005).

2.1.2 Geometry

The shape of tide-dominated estuary is funnel while discharge-dominated estuary

is long and narrow (Gisen, 2015). The funnel shape in the seaward part is caused by the

wave impact on the estuary mouth, creating an exponential law on the estuary mouth

(Pittaluga et al., 2015). Friedrich and Armburst (1998) illustrated the conceptual view of

the ideal estuary with decreasing width exponentially as shown in Figure 2.1. Gisen

(2015) illustrated the location of inflection point for two reaches estuary in Figure 2.2.

Figure 2.1 Geometry of an idealized tidal estuary: a) side view b) plan view

Sources: Friedrich and Armburst (1998).

9

Figure 2.2 (a) shows single reach estuary that do not experience strong wave action.
Figure 2.2 (b) represents estuary resulted from strong wave action near the mouth and
separate it into two reaches with inflection point x1.

Sources: Gisen (2015).

Geometry of the alluvial estuaries can be expressed in exponential function

(Savenije, 1989, 1993a, 1993b; Grass and Savenije 2008; Nguyen et al., 2012; Gisen et

al., 2015). The geometric analysis of the model can be applicable to multi-channel and

multi reach estuaries as in Mekong Delta and Yangtze Estuary (Nguyen and Savenije,

2006; Zhang et al., 2011, Nguyen et al., 2012). Estuaries that experience strong tidal

waves near the estuary mouth generally have two reaches with two convergence lengths,

where the short reaches with short convergence length near the sea and the longer one

approaches upstream (Gisen , 2015). Estuaries that does not experience strong tidal waves

near the estuary mouth usually are in the form of single reach with one convergence

length.

Based on 17 estuaries’ studies worldwide, Savenije (2005) claimed that the linear

formula that derived from prismatic channel (on the basis of laboratory) works very

poorly in natural estuaries, while his proposed model which take account for exponential

function in geometry works very well on the alluvial estuaries (Nguyen and Savenije,

2006; Parsa and Etemad-Shahidi, 2011; Zhang et al., 2011; Gisen et al., 2015). Savenije

(1993a) claimed the geometric analysis formulas are as follow:

𝐴 = 𝐴଴𝑒
ି

ೣ

ೌభ for 0 < 𝑥 ≤ 𝑥ଵ 2.1

𝐴 = 𝐴ଵ𝑒
ି

ೣషೣభ
 ೌమ for 𝑥 > 𝑥ଵ 2.2

𝐵 = 𝐵଴𝑒
ି

ೣ

 ್భ for 0 < 𝑥 ≤ 𝑥ଵ 2.3

10

𝐵 = 𝐵ଵ𝑒
ି

ೣషೣభ
 ್మ for 𝑥 > 𝑥ଵ 2.4

ℎ = ℎ଴𝑒

ೣ(ೌభష್భ)

 ೌభ್భ for 0 < 𝑥 ≤ 𝑥ଵ
2.5

ℎ = ℎଵ𝑒

(ೣషೣభ)(ೌమష್మ)

 ೌమ್మ for 𝑥 > 𝑥ଵ
2.6

where A, B and h represent cross-sectional area, width and average depth at distance x,

A0, B0, and h0 are the cross-sectional area, width and average depth of estuary mouth,

A1, B1, and h1 are the cross-sectional area, width and average depth at the inflection point,

a1 and b1 are the cross sectional and width convergence length at the estuary mouth.

 After the inflection point x1, the formulas used for the analysis are Equations 2.2,

2.4 and 2.6 with values of A1, B1, and h1 and convergence lengths of a2 and b2. In alluvial

estuary, convergence lengths of a1,2 and b1,2 are approximately equal with near constant

depth (Savenije, 2005).

2.2 TIDES

Shape of the estuary mouth has a strong dependency with the tidal impact.

Depending on the predominant impact (erosion and deposition dominance) along with

the magnitude of tidal flows, the existence of the sand bar, spits and barrier islands can

be formed (Savenije, 2005; Gisen, 2015). In salt intrusion studies, it became more

concerned when there is a small river discharge and tide dominated.

On the other hand, Davies (1964) classified the estuary based on tidal range (H)

as follows:

 Micro-tidal estuary: H < 2 m; formation of the delta, spits, barrier islands and bar-

built estuary, has short convergence (long convergence length a and b).

 Meso-tidal estuary: 2 m < H < 4 m; formation of flood-tide and ebb-tide deltas

upstream and downstream of estuary mouth.

 Macro-tidal estuary: H > 4 m; formation of funnel shape estuary with strong

convergence (short convergence length a and b), does not possess flood-tide and ebb-

tide deltas.

11

Tides can be classified based on tidal period (diurnal, mixed and semi-diurnal).

Semi-diurnal consist of two nearly identical tidal cycles and diurnal tides consist of a

single tidal cycle in a day (Gisen, 2015). Mixed type tides consisted of one small tidal

cycle and a large tidal cycle. The comparison of the tidal range between these two tidal

cycles in a day in mixed type is high due to insignificant comparison of the effect of the

smaller types with the larger one (Gisen, 2015). Figure 2.3 illustrated the water level

oscillation during the tidal cycle for 24 hours.

Figure 2.3 Tidal oscillation of diurnal tide (left), mixed tide (middle) and semi
diurnal tide (right).

Sources: Gisen (2015).

Other than these classifications, type of waves takes into account for the

derivation of the equation. Standing waves only occur in semi-enclosed water bodies.

This type of waves reached its maximum water level when the velocity is zero at phase

lag of π/2, as illustrated in Figure 2.4 (a) (Savenije, 2005; Gisen, 2015). Meanwhile, a

progressive wave is the wave only occur in prismatic channel with infinite channel length.

This type of wave possesses zero phase lag between the water level and velocity of flow

as displayed in Figure 2.4 (b). However, these two types of waves do not occur in funnel-

shaped alluvial estuary (Savenije 2005; Gisen and Savenije, 2014; Gisen, 2015).

12

Figure 2.4 Types of tidal waves: a) Standing Wave b) Progressive Wave

Source: Gisen (2015).

Alluvial estuary has a mixed type estuary, where the phase lag is between 0 to π/2

based on channel geometry and channel bed roughness as shown in Figure 2.5 (Savenije,

2005). In this alluvial estuary, the water level is always reaches highest or lowest point

before tidal velocity reach zero (slack moment) (Gisen, 2015). This is a crucial parameter

in the tidal dynamics analysis and deriving the analytical one-dimensional salt intrusion

model of Savenije (2005) and Gisen (2015).

Figure 2.5 Mixed type wave in converging estuary with phase lag ε between HW
and HWS together with LW and LWS.

Source: Gisen (2015).

13

2.3 MIXING

Savenije (2005) explained that the mixing types can be categorized as mixing by

turbulence, mixing by tidal shear, mixing by residual circulation, mixing by trapping and

mixing by density driven. These mixing mechanisms that constructed longitudinal

salinity dispersion concept can be later decomposed into several small constituting fluxes.

However, this approach is not practical friendly and hence, Savenije (2005) used the

effective longitudinal dispersion as the predictive model of this one-dimensional

equation.

Savenije (1993a) found that the tide driven and density driven mixing occurs in

the estuary simultaneously. This is true because the alluvial estuary has a strong

convergence geometry seaward and prismatic channel landward as illustrated in Figure

2.6. In addition, Gisen (2015) stated that tide driven mixing at the estuary mouth induce

small density gradient, but for the region with strong salinity gradient, the density driven

characteristic becomes more apparent.

Figure 2.6 Region that dominated by tide and density driven mixing.

Sources: Gisen et al. (2015).

14

2.4 SALT INTRUSION

2.4.1 Type of Salt Intrusion

Salt intrusion mechanism can be classified into three types, which are the salt

wedge type, partially mixed type and well mixed type. With the increment of tidal flow

along with the decreasing river flow, the type of estuary will make transition along the

sequence from highly stratified salt wedge estuary, through the partially mixed estuary to

well mixed type estuary (Pritchard, 1967). He stated that the flow in the estuaries shows

the Coriolis Effect operating laterally and normal to the direction of flow.

Salt wedge is also known as stratified type (Savenije, 2012). Salt wedge occurred

if the river discharge into an estuary, which connected to nearly tide-less sea, such as Sea

of Japan or the Mediterranean. The fresh water overrides the layer of salt water and allows

the salt water to intrude it underneath in the form of a wedge and only occurred close to

the mouth of estuary with high river discharge (Fischer et al., 1979; Savenije, 2012).

A well-mixed type salt intrusion occurred when the river discharge is small

compared to the tidal flows, especially during dry periods, where the availability of water

is the lowest (Savenije, 1993a). However the difference between partially mixed estuary

and well mixed estuary is arbitrary (Savenije, 1993a). He stated that the salt intrusion can

classified as well mixed when the stratification is less than 10%. In addition, he also

mentioned that this value is arbitrary since there are more stratification when salt

intrusion is near towards the sea. From this statement, this implied that there is no serious

drawback when applying well mixed theory unless the stratification reached 20% to 30%.

Limitation of this analytical approach of one-dimensional salt intrusion model of

Savenije (2005) and Gisen (2015) only applicable to partially mixed and well mixed

estuaries at steady state condition. Figure 2.7 shows the longitudinal distribution of the

salinity for salt wedge, partially mixed and well mixed estuary. Figure 2.8 shows the

variation of the salinity over the depth in salt wedge estuary, partially mixed estuary and

well mixed estuary.

15

Figure 2.7 Longitudinal distribution of the salinity for (a) salt wedge estuary, (b)
partially mixed estuary and (c) well mixed estuary.

Source: Savenije (2015).

Figure 2.8 Variation of the salinity over the depth in (a) salt wedge estuary, (b)
partially mixed estuary and (c) well mixed estuary.

Source: Savenije (2005).

16

2.4.2 Shape of Longitudinal Salinity Distribution

In well mixed estuary, the longitudinal salinity distribution shows a gradual

declining trend in salinity. Smooth curve can be fitted through the observed cross-

sectional averaged salinity if a continuous survey is conducted (Savenije, 1993a).

However, the shape of this salinity curve can be in various forms depending on the type

of estuary. Figure 2.9 is the classification which helps in identifying certain types of salt

intrusion based on the longitudinal salinity distribution.

Figure 2.9 Four types of salt intrusion curves

Source: Gisen (2015)

Type 1 salt intrusion curve is a recession curve. The steep salinity gradient at the

mouth of estuary indicate the steep and narrow estuary’s geometry or a very high volume

of river discharge is being received by the estuary (Savenije, 1993a; Gisen et al., 2015).

Meanwhile, Type 3 bell curves indicate that the estuary consisted of strongly converged

estuary mouth or trumpet estuary’s shape while the Type 2 dome curve commonly exist

in the strongly funnelled estuary with narrow upstream.

However, Type 4 salt intrusion curve is a special exceptional case in the shape of

salinity profile. The geometry of it does not affect the shape of humpback in Type 4 salt

intrusion curve, where the salinity ratio (S/S0) shows increasing value instead of

decreasing. This exceptional case resulted from the rainfall deficit or evaporation excess

occurred in the estuary. An evaporation can transform a bell shape salt intrusion curve

into a dome shape and soon after become humpback hypersaline curve (Savenije, 1993a).

However, this salt intrusion curve is not the concern of this study.

17

2.4.3 Factors of Salt Intrusion

There are several natural phenomena that can cause salt intrusion such as deficit

rainfall during the dry season, topography, sea level rising and wind inducing wave (Tran

and Tran, 2011). Nevertheless, salt intrusion can also be enhanced by human activities.

The primary cause of inducing salt intrusion is the over-pumping of the fresh water, thus

depleting the fresh water table and as a result lowering down the fresh water discharge

(EPA, 1973). This over-pumping of freshwater results in backwater effect, where the

fresh water is not sufficient enough to counteract the tidal flow inward to the estuary (Md.

Mahmuduzzaman et al., 2014). Besides, Savenije (1993a) mentioned that dredging works

for the channel can be a cause of salt intrusion event. Freshwater Bayou Channel, a 12

foot deep and bottom width of 125 foot channel in Mexico, constructed in 1968 had

caused salt intrusion which later resulted in construction of Freshwater Bayou Lock to

prevent the salt water impact that erode further inland (Good et al., 1995).

Other than the effect of changes of fresh water discharge and the channel depth

influences, tidal effect and the diffusion aspect can result in rapid change in salinity in

estuary (Ippen and Harleman, 1961). Human activities that release carbon dioxide and

greenhouse gases result in rising temperature that expand the volume of sea water by ice

melting and thermal expansion of water (Md. Mahmuduzzaman et al., 2014). The

increasing volume of sea water can lead to salt intrusion of the estuary. Savenije (1993a)

stated that the characteristics of salt intrusion can directly link to geometry of the estuary.

It is because the geometry is affected by the tidal impact at the estuary mouth.

18

2.5 PREVIOUS CASE STUDIES

Salt intrusion analysis can be performed by many available software worldwide,

either one, two or three-dimensional analysis. To select the conceptual model of choices,

evaluation of the model is needed.

Liu et al. (2004) used laterally integrated two-dimensional numerical model of

LINPACK for salt intrusion study in the Tanshui River Estuary in Taiwan. The study

proved that the construction of both Feitshui and Shihman reservoirs at the upstream

reach of Tanshui and Tahan Stream have decreased the river discharge that resulted in

salt intrusion in the area. However, Liu’s model is only applicable to narrow and partially

mixed estuary.

In Shanghai, Fu et al. (2008) used numerical method of two and three-

dimensional incompressible Reynold average Navier-Stroke equation with the

assumption of Boussinesq constant and hydrostatic pressure with MIKE 21 Flow Model

FM of the saline intrusion investigation in the Yangtze River Estuary. The outcome of

the study proved that the changes of upstream discharge, tide effect, rising of sea level

and bathymetry are the factors causing the salt intrusion while typhoon does not

significantly affect the salinity in the area. Gong et al. (2012) used three-dimensional

baroclinic model Environmental Fluid Dynamic Code (EFDC) to simulate water level,

current and salinity as well as solving free-surface and three-dimensional continuity

motion equation for the Modaomen Estuary, one of the eight outlets of Pearl River Delta.

This study discovered that the closure of the Hongwan and Hezhou Waterway can reduce

salt intrusion by 17% and 19% during spring tides and neap tides respectively. Gong et

al. (2011) stated that this model required complex geometry and bathymetric information

of the estuary, similar to Yangtze Estuary (Fu et al., 2008) and Mekong Delta (Nguyen

et al., 2008).

In Malaysia, Van Breemen (2008) applied 3-dimensional numerical model of

Delft3D to analyze the water extraction effect on salt intrusion in the Selangor Estuary.

To obtain the precise and accurate data for simulation in Delft3D, several programmes

such as TIDE, RGFGRID, QUICKIN, FLOW, QUICKPLOT, TRIANA, NESTHD1 and

NESTHD2 have to be incorporated and the output needed to be processed by using

MATLAB. Van Breemen (2008) stated that this method can provide very accurate and

19

promising result, but is time consuming, which is not suitable for small scale estuary. In

addition, user is required to have sufficient knowledge and experience in the field in order

to simulate the tidal model and waves for the boundary condition of the tidal flow model.

Applying either Mike 21 or Delft3D will be very expensive for short-term salinity

studies. Current version of Delft3D requires annual subscription of 3375 Euro (about

16000 Ringgit Malaysia) and annual renewal fee of 33750 Euro (about 160000 Ringgit

Malaysia). Furthermore, to execute one-dimensional salt intrusion simulation, adopting

on one of these software will be a burden on budget.

Waite (1980) used one-dimensional coupled model of salt intrusion and reservoir

operation system to conduct salt intrusion analysis on the River Abary, Guyana. This

model successfully assisted the reservoir operator to release water in the river for salt

intrusion control. This study indicates that the maximum salinity of 1 ppt can be achieved

at 40 km from the sea with minimum reservoir storage of 305 x 106 m3 due to unlimited

discharge. On the other hand, one-dimensional finite difference explicit scheme

numerical method by Lepage and Ingram (1986) showed that there is good agreement

between the simulated values with the actual observation and explained that the salinity

at Eastmain River estuary changes rapidly due to wind and tidal force at low river

discharge. Correspondingly, both case studies that required less field data and act as

economic analysis for long term period made one-dimensional salt intrusion model a

major advantage.

Zhang et al. (2011) tested the applicability of the analytical salt intrusion model

by Savenije (2005) in the Yangtze Estuary after the successful application on the Mekong

Estuary in Vietnam (Nguyen and Savenije, 2006; Nguyen et al., 2008). Yangtze Estuary

is one of the biggest multichannel estuary with complex topography. The predictive

equation of Savenije (2005) proved the theory derived from single reach channel estuary

can be used in multichannel estuary as all the simulated salinity profiles have shown very

good fit to the measured data. Furthermore, the geometry results that fulfil the exponential

function proved the estuaries have alluvial characteristics. Additionally, this model can

use to estimate the distribution of river discharge over a separate channel in the Yangtze

Estuary.

20

In Malaysia, Gisen et al. (2015) applied the improvised predictive model of

Savenije (2005) in various Malaysia estuaries. The surveyed estuaries in Malaysia are

Kurau, Perak, Bernam, Selangor, Muar and Endau. It is claimed that from the site

observation, both Selangor and Perak estuaries are partially mixed estuaries while others

are the well mixed estuaries. Some of the estuaries exhibit some special characteristics,

such as the existence of three drainage sluices in Selangor Estuary, Perak Estuary with

sand bars and Endau Estuary with one estuary tributary. These special characteristics of

the estuaries can affect the salt intrusion simulation. Gisen (2015) claimed that the one-

dimensional analytical model has a very good fit on all the estuaries but due to

underestimation of discharge from some parts of drainage basin, dispersion (D0), mixing

number (α0) and intrusion length (LHWS) did not tally to the observed data. Nevertheless,

these six Malaysian estuaries are used as troubleshooting and validation purpose for the

development of SALT modelling programme. The salinity profiles of all the Malaysian

estuaries are shown as in Figure 2.10.

Figure 2.10 Longitudinal salinity distributions in Malaysian estuaries.

Source: Gisen (2015)

21

Farleigh (1978) performed simulation in the Kuantan Estuary for the proposal of

Kobat barrage at the water intake station. The simulation was made by using predicted

salinity distribution for 5, 20, and 50 ARI in conjunction with agriculture use and

municipal water supply. He used one-dimensional analytical method of Waite (1976) and

successfully plotted longitudinal salinity profile as shown in Figure 2.11. However, it is

believed that rapid changes by municipal development lead to salt intrusion in April 2016.

Salt intrusion occurred during high tide in April 2016 forced the water supply operator to

release sufficient water from Chereh Dam (Star, 2016).

Figure 2.11 Longitudinal salinity distribution of Kuantan estuary in 1978

Source: Farleigh (1978).

22

2.6 THEORETICAL BACKGROUND OF THE MODEL

Savenije (2005) and Gisen (2015) steady state analytical one-dimensional salt

intrusion models at tidal average condition are the basis of this entire study. This model

is capable to compute salinity (S) at Tidal Average (TA), High Water Slack (HWS) and

Low Water Slack (LWS) conditions (Savenije, 2012). This theory involves in three

components: geometric analysis, simulating the salinity distribution and calibration

process.

As this model is capable to transform from tidal average (TA) condition to low

water slack (LWS) or high water slack (HWS) condition, the salinity distribution is

simulated by TA condition (Gisen, 2015). By integrating Savenije’s (2005) model with

Van der Burgh’s (1972) model, the salinity distribution and the dispersion equation for

tidal average (TA) condition at steady state condition becomes:

ௌ೅ಲିௌ೑
೅ಲ

ௌబ
೅ಲିௌ೑

೅ಲ = ቀ
஽೅ಲ

஽బ
೅ಲቁ

భ

಼
 for 0 < 𝑥 ≤ 𝑥ଵ

2.7

ௌ೅ಲିௌ೑
೅ಲ

ௌభ
೅ಲିௌ೑

೅ಲ = ቀ
஽೅ಲ

஽భ
೅ಲቁ

భ

಼
 for 𝑥 > 𝑥ଵ

2.8

஽೅ಲ

஽బ
೅ಲ = 1 − 𝛽଴

்஺(exp
ቀ

ೣ

ೌభ
ቁ

−1) for 0 < 𝑥 ≤ 𝑥ଵ 2.9

஽೅ಲ

஽భ
೅ಲ = 1 − 𝛽ଵ

்஺(exp
ቀ

ೣ

ೌమ
ቁ

−1) for 𝑥 > 𝑥ଵ 2.10

where STA and DTA represent the salinity and dispersion coefficient at tidal average (TA)

condition at a specific location, S0
TA and D0

TA represent the salinity and dispersion

coefficient at tidal average condition at estuary mouth, S1
TA and D1

TA represent the salinity

and dispersion coefficient at tidal average condition (TA) at inflection point (x1), Sf
TA

represent fresh water salinity, which is normally close to zero value.

The dispersion reduction rate, β0 and β1 are the dispersion rate at the estuary

mouth and inflection point (x1) respectively. This reduction rate is used to calculate

dispersion ratio for Equation 2.9 and 2.10. It can be calculated by using the following

equation based on the boundary condition:

23

𝛽଴
்஺ =

௄௔భ

∝బ
೅ಲ஺బ

 for 0 < 𝑥 ≤ 𝑥ଵ 2.11

𝛽ଵ
்஺ =

௄௔మ

∝భ
೅ಲ஺భ

 for 𝑥 > 𝑥ଵ 2.12

Calibration is needed for the simulation in order to achieve correct prediction on

the salt intrusion analysis. In this steady state analytical one-dimensional salt intrusion

model, the calibration factor is Van der Burgh’s coefficient (K) and the dispersion

coefficient (D). The coefficient K is known as “shape factor” for the tail of the

longitudinal salinity distribution with a strong dependency on the geometry (Savenije,

1993a). K value ranges from 0 to 1 and is essential for Equation 2.7, 2.8, Error!

Reference source not found. and 2.12. Also, different estuary has its own Van der

Burgh’s coefficient (K). Dispersion (D) estimation and discharge rate of fresh water (Qf)

are very difficult to be obtained on site. Gisen (2015) mentioned that predictive measures

of determining fresh water discharge makes one-dimensional approach to be more

advantage. Due to this, mixing number (α0) was introduced as the calibration parameter

instead of dispersion (D) to relate the relationship between dispersion (D) and fresh water

discharge (Qf) (Savenije, 2005):

𝛼଴
்஺ =

஽బ
೅ಲ

|ொ೑|
 for 0 < 𝑥 ≤ 𝑥ଵ 2.13

𝛼ଵ
்஺ =

஽భ
೅ಲ

|ொ೑|
 for 𝑥 > 𝑥ଵ 2.14

With the following relation, salt intrusion length L can be computed under

condition of D = 0, yielding the following equations:

𝐿்஺ = 𝑎ଵ ln ቀ
ଵ

ఉబ
೅ಲ + 1ቁ for 0 < 𝑥 ≤ 𝑥ଵ 2.15

𝐿்஺ = 𝑥ଵ + 𝑎ଶ ln ቀ
ଵ

ఉభ
೅ಲ + 1ቁ for 𝑥 > 𝑥ଵ 2.16

Since the final objective in this model is obtaining the maximum salt intrusion

length in the estuary, the salinity HWS condition has to be obtained. In order to calculate

the salinity at LWS or HWS condition, the longitudinal salinity distribution has to be

shifted horizontally over x-axis by half of tidal excursion E/2 or –E/2 respectively which

24

can be best demonstrated by Figure 2.12 (Savenije, 2005; Deynoot, 2011; Gisen et al.,

2015) by the following equations:

𝑆ுௐௌ(𝑥) = 𝑆்஺ ൬𝑥 +
𝐸

2
൰

2.17

𝑆௅ௐௌ(𝑥) = 𝑆்஺ ൬𝑥 −
𝐸

2
൰

2.18

Figure 2.12 Demonstration on the shifting process to obtain the salinity profile for
LWS and HWS for better understanding.

Source: Gisen (2015).

From the salinity profile at HWS condition, maximum salt intrusion can be

calculated using the following equation:

𝐿ுௐௌ = 𝑎ଵ ln ቀ
ଵ

ఉబ
ಹೈೄ + 1ቁ 2.19

25

2.7 PYTHON PROGRAMMING

Python Programming is a multi-paradigm high-level programming language

equipped with a wide range of open-source modules and online database provided by the

online communities. Since the creation of the programming language in 1989 by Guido

van Rossum, it is widely utilized by the communities to accomplish tasks such as web

development, scientific computation, scripting and also Graphical User Interface (GUI)

development since the language can be interpreted and expressed it out easily (Fritz,

2011). Besides, it is free and can be downloadable without any license issue. Nowadays,

there are many famous software utilized Python Programming scripting for development

such as ArcGIS, FreeCAD, ABAQUS, Dropbox and MODFLOW. In this study, we use

Python ver. 2.7.13 instead of the latest version of Python ver. 3.0 due to its version

stability and sufficient relevant references.

In comparison with other programming language such as FORTRAN and C++, it

is indeed FOTRAN wins in terms of processing speed among all despite as the oldest

programming language. Nevertheless, the major advantages of Python as an interpreter

language with availability of simple development environment and a large open source

library supported by the online communities resulting the coding to be corrected and

tested easily (Georgatos, 2002). This simple development environment of Python also

served as its default Graphical User Interface (GUI), named as Integrated Development

and Learning Environment (IDLE). It also widely used due to its compatibility on many

internet protocols and is able to integrate with other languages such as CPython (C++

with Python) and Jython (Java with Python). Figure 2.13 shows a very simple but

functional Python programme typed in IDLE editor and Figure 2.14 shows the process of

which simple programme is being run by Python’s default GUI - IDLE.

26

Figure 2.13 A very simple but functional Python programme entered in IDLE editor

Figure 2.14 Coding from Figure 2.13 is being run by Python’s default GUI - IDLE

27

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter describes the methodologies in developing an open access one-

dimensional salt intrusion modelling programme named SALT (Salinity AnaLysis

Technique).

First, the overall summary of the entire study is discussed follows by the

description on the development of the SALT modelling programme conceptual model.

Supporting modules that implemented into SALT modelling programme is presented in

detail. Python’s modules are the series of runnable code which define its functions,

classes and variables, provided by the Python’s online communities.

Next, the concept of 1-D salt intrusion model which is the core of the SALT

modelling programme is discussed. In order to ensure the programme is able to work

appropriately, repetitive trial and error of testing were being done for troubleshooting

purpose to identify potential bugs and errors.

After the programme is able to run without error, the simulated result was

validated against the existing salt intrusion study in the Malaysian estuaries by Gisen

(2015). Also, the effectiveness of SALT was evaluated by comparing the simulated output

of SALT for the Belat Estuary with the conventional spreadsheet method.

Lastly, the reliability and the performance of the model were evaluated by

performing the Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency (NSE)

analyses.

28

3.2 FLOW CHART OF METHODOLOGY

Figure 3.1 Summary of the study for developing SALT modelling programme.

Figure 3.1 shows the flow chart for the development of SALT modelling

programme. With sufficient literature study, suitable conceptual model was decided to be

implemented into the development of SALT. The theory selected in this study is the steady

state one dimensional analytical salt intrusion model at tidal average condition by

Savenije (2005) and Gisen (2015). Coding of Python Programming is encrypted to protect

the formulas from being altered.

To test the function and reliability of the developed modelling programme, SALT

was run by using secondary data from previous salt intrusion study done by Gisen (2015)

in the Muar Estuary (surveyed on 3rd August 2012). At this stage, correction was done by

29

locating incorrect algorithm in the coding and formulas. Obtaining similar longitudinal

salinity distribution indicate no flaws in SALT modelling programme.

In order to ensure the developed programme can be used smoothly, SALT

simulation was executed by running the data from different salt intrusion studies in

Malaysian estuaries and the results are compared to the output generated using the

conventional spreadsheet. This included the application on the new case study at Belat

Estuary.

30

3.3 DEVELOPMENT PROCESS OF SALT

Figure 3.2 Architecture structure of SALT modelling programme development.

The development of SALT model began with the architecture structure design of

the model as shown in Figure 3.2. Software developer or engineer observed the potential

theories and methods from literature, existing studies and human expertise. From the

knowledge obtained, the SALT model was built by selecting suitable mathematical model

and programming language. The theory selected to develop the SALT model is the steady

state one-dimensional analytical salt intrusion model introduced by Savenije (2005) and

in reference to the tidal average (TA) condition improvised by Gisen (2015). Meanwhile,

for the coding, Python Programming was chosen. SALT modelling programme was

developed by using Python ver. 2.7.13 to prevent user from accessing the script without

prior permission and protect the formulas to be altered.

Additionally, SALT modelling programme also utilized different supporting

modules to serve for various purposes for better usability. Modules are the series of

runnable code which define its functions, classes and variables. It allows easier binding

and referencing for software developer with the grouping of related codes. Assuming

foo.py module that contained variables is needed to be declared, it can be called upon

with the coding “import foo” (Fritz, 2011).

31

The four modules that integrated into SALT modelling programme are Math,

Numpy, Plotly and PrettyTable. The Math and Numpy modules are the Python’s built-in

modules but Plotly and PrettyTable modules are the modules provided by Python’s online

contributor. Function of each module used by SALT modelling programme is shown in

Table 3.1.

Table 3.1 Modules used by SALT

Modules Purpose
Math - Python’s built-in modules that enable formulas inside SALT to function

correctly.
- Example: natural logarithms (loge) and exponential function (ex)

Numpy Python’s built-in modules that allow saving array in proper manner that
allows SALT to read data more easily.

Plotly Online graphing modules but can be possibly plot in offline mode.
PrettyTable Enable table to be constructed in well-organised manner.

*Plotly and PrettyTable modules are not Python’s built-in modules and have to be
installed by using “pip_install” in Command Prompt.

Since Plotly and PrettyTable modules are not the built-in modules of Python, they

had to be installed by “pip_install” command in Command Prompt. Pip (recursive

acronym of Pip Install Packages) is a package management system that install and

manage Python’s written modules. First, the module get-pip.py that obtained from online

sources is needed to be downloaded and executed as shown in Figure 3.3. Then Path for

the Python Script is being added by adding variable value “C:\Python27\Scripts” in

Environmental Variables section in Computer Properties of Windows shown in Figure

3.4 and Figure Figure 3.5. This allows pip to conduct any installation for the other

modules without having reference to its full installation path name in Command Prompt.

Finally, the “pip_install” command can only be done after installation of pip module

along with altering environmental variable for Python Script’s Path as demonstrated in

Figure 3.6.

Figure 3.3 Running get-pip.py modules to install pip

32

Figure 3.4 Environment Variables in Computer Properties of Windows.

Figure 3.5 Adding Path for Python Script.

Figure 3.6 Example of execution of “pip_install” command.

33

During the computation process, sometimes there are bugs and errors occurred

because of the incorrect algorithm. In order to locate and solve the problems,

troubleshooting process were done by repeated checking on bugs in the coding until the

computation process works perfectly. To ensure the calculation is performed correctly, a

previous salt intrusion study done by Gisen (2015) in the Muar Estuary (surveyed on 3rd

August 2012) was taken as reference. The result produced by the SALT modelling

programme must be the same as the result of Gisen (2015) to confirm that the coding and

the formula encrypted works properly.

SALT modelling programme is currently run by using Python’s default Graphical

User Interface (GUI) named Integrated Development Learning Environment (IDLE).

Hence, it is possible to be integrated with other GUI such as Tkinter and wxPython for a

more user friendly interface for the end-user.

34

3.4 COMPUTATION PROCESS

Figure 3.7 Computation Process of the SALT modelling programme.

35

The first step in developing the core structure of the SALT modelling programme

is to ensure the formulas or algorithm applied in this programme are hidden.

Figure 3.7 shows the analytical computation process of SALT modelling

programme. To start this modelling programme, some input data are required for the

boundary condition. The first input data required are the geometry parameters. These

were predetermined by a separated analysis called the shape analysis. The geometry data

required are namely the inflection point (x1), cross-sectional area at the estuary mouth

and inflection point (A0 and A1), and area convergence length before and after inflection

point (a1 and a2), width at the estuary mouth and inflection point (B0 and B1), width

convergence length before and after inflection point (b1 and b2) and average depth h1.

Next, the physical parameters known as the sea salinity (S0), fresh water salinity

(Sf) and tidal excursion (E0) were determined. Usually, the sea salinity has the value near

to 30 ppt., while fresh water salinity is about 0.1 ppt. In case where the tidal velocity

amplitude is not measured, the E0 has to be calibrated based on tidal envelop.

A suitable step length (dx) of the longitudinal salinity profile was defined at the

beginning. This information is used to tabulate the data utilized to simulate the

longitudinal salinity distribution. The final input data needed is the observed longitudinal

salinity along the estuary which were collected during the field survey. This observed

data was used to aid the calibration process.

In the salt intrusion model, there are two parameters that cannot be directly

measured on site. Thus, they have to be calibrated to fit the simulated salinity curves to

the observed data. These parameters are the Van Der Burgh’s coefficient (K) and

dispersion coefficient (D). The coefficient K also known as “shape factor” controlling the

tail of the salinity curve, indicating a strong dependent on the geometry of the estuary

(Savenije, 1993a). Savenije (1993a) also explained that K ranges from 0 to 1, and is time-

dependent. For a start, the first trial for K value is generally taken as 0.5. Dispersion on

the other hand is a product of mixing salinity of river and sea due to residual circulation

induced by gravitational circulation and tidal movement (Gisen, 2015). Since the

dispersion is a mathematical artefact and it is always difficult to measure the fresh water

discharge, a mixing number (α0) was introduced as the calibration parameter (Savenije,

36

2005). The mixing number is the ratio of dispersion (D) over the fresh water discharge

(Qf).

Generally, the salinity analysis can be done for two types of estuary based on the

geometry: single convergence and multiple convergence length with inflection point. For

that reason, this application is developed to cater both types. The calculation result for

the entire process are listed in a table consisting the longitudinal distance from the mouth

(x), cross-sectional area at the certain point (A), dispersion (D) and tidal average salinity

(STA). From STA, the high water slack salinity (SHWS) and low water slack salinity (SLWS)

can be obtained by shifting the salinity curve at tidal average for half of the tidal excursion

(± E0/2) landward and seaward, respectively.

After the computation process are completed, the simulated longitudinal salinity

distribution is produced. The result is then compared with the observed data to determine

its degree of fitness. If the simulated result deviates from the observed, the calibration

parameters have to be adjusted. This process continues until the result fits the observed

up to an acceptable level.

37

3.5 APPLICATION OF THE MODEL

Salt intrusion has become an issue in the Kuantan Estuary when the water intake

station located at Kg. Kobat area was affected by saline water. Due to this problem, a salt

intrusion study was conducted in 1977 and a barrage is built. However, during the

extreme dry season in the early 2016 due to El-Nino phenomenon, saline water was

pumped out into the water supply system despite the existence of the barrage.

Based on the problem, review on the performance and reliability of the barrage in

accordance to the current salinity condition can be done. However, alternative approach

by identifying new location of future water intake stations can be proposed. Since Belat

Estuary is the biggest sub-catchment in the Kuantan River Basin, it can become the

alternative water sources. Hence, salt water intrusion study is essential to be carried out

in the Belat Estuary to identify the intrusion limit. New salinity measurement conducted

in April 2017 in the Belat Estuary was taken as observed data for the SALT modelling

programme.

This also serves as an application to simulate the longitudinal salinity distribution

of Belat Estuary. Then, the output longitudinal salinity distribution was compared to

conventional spreadsheet for validation process to test the applicability of the developed

programme. Error analyses were performed to evaluate the reliability of the developed

programme.

38

3.6 MODEL PERFORMANCE

The performance of SALT application model was evaluated by determining the

Root Mean Square Error (RMSE) and Nash-Sutcliffe Efficiency (NSE).

RMSE, also known as root mean square deviation, is the comparison between

closeness of the observed value with the simulated one. Lower RMSE value indicate

desirable closeness of the predicted model to the observed data. RMSE is calculated using

Equation 3.1:

𝑅𝑀𝑆𝐸 = ට
ଵ

ே
∑ (𝑂𝑏𝑠 − 𝑆𝑖𝑚)ଶே

௜ୀଵ
3.1

where, 𝑂𝑏𝑠 is the observed discharge and 𝑆𝑖𝑚 is the simulated discharge.

The NSE are used to evaluate the predictive power of this salt intrusion model.

Nash and Sutcliffe (1970) suggested that it is necessary to find R2 value to determine

efficiency of the model where this value can determine the linear agreement or

disagreement between observed and measured data. The value of NSE ranges from

negative infinity to 1, where 1 is perfect match of the measured and observed data.

Efficiency of 0 indicate the prediction of model equal to mean of the data observation.

Negative value of NSE indicate mean observed data is a better predictor than the

simulated data. Moraisi et al. (2007) stated that the accepted values of the NSE are in

between 0 to 1. NSE is calculated by Equation 3.2:

𝑁𝑆𝐸 = 1 − ቂ
∑(ை௕௦ିௌ௜௠)మ

∑(ை௕௦ିை௠௘௔௡)మ
ቃ 3.2

where 𝑂𝑏𝑠 is the observed discharge, 𝑆𝑖𝑚 is the simulated discharge and 𝑂𝑚𝑒𝑎𝑛 is the

mean observed discharge.

39

CHAPTER 4

RESULTS AND DISCUSSION

4.1 DEVELOPMENT OF SALT

SALT modelling programme had been successfully developed using Python

programming language with integration of several external modules. Repetitive trial and

error checking was performed to ensure the programme is able to function properly. The

summary of SALT modelling programme is shown in Table 4.1.

Table 4.1 Summary of SALT modelling programme.

Name Salinity AnaLysis Technique (SALT)
Model Steady State Analytical 1-D Salt Intrusion Model at Tidal Average

(TA) Condition by Savenije (2005) and Gisen (2015)
GUI Python’s Integrated Development Learning Environment (IDLE)
Modules Math, Numpy, Plotly, PrettyTable
Menu New File, Open File, Save File, List and Edit Input, Generate

Result, Help, Exit
Capabilities Determine salinity intrusion length at HWS

Tabulation of data at TA condition
Simulate longitudinal salinity distribution
Generate Model Performance Analyses

The developed programme is executed by using Python’s default Graphical User

Interface (GUI) – Integrated Development Learning Environment (IDLE) as shown in

Figure 4.1. With this base coding of SALT modelling programme, it is compatible with

any Python’s GUI to produce a user-friendly interface to the end user. Menus of SALT

modelling programme include New File, Open File, Measurement Data, Save File, List

and Edit Input, Generate Result, Help and Exit functions. The list of menus in SALT are

summarized in Table 4.2.

40

Figure 4.1 SALT modelling programme interface using Python’s default GUI –
IDLE

Table 4.2 Functions of Menu in SALT modelling programme.

MENU FUNCTION
New File To start a new file. Required to insert geometry data, physical

parameters and calibration parameters.
Open File To open a file saved by SALT modelling programme with geometry

data, physical parameters and calibration parameters.
Measurement Data To insert observation data of salinity measurement on site for

calibration purpose and model performance analyses.
Save File To save data of estuary studies for Open File in text format.
List and Edit Input To list all the input including measurement data for edit purpose or

calibration purpose.
Generate Result To generate tabulation and simulate longitudinal salinity distribution.

Longitudinal salinity profile open in another window of internet
protocol.

Help To provide help for using SALT modelling programme.
Exit To exit from SALT modelling programme.

By performing repetitive of trial and error in checking for the bugs and error in

formulas and coding, SALT modelling programme now yields the similar longitudinal

salinity distribution as in conventional spreadsheet as shown in Figure 4.2. The formulas

utilized are based on the analytical 1-D salt intrusion theory by Savenije (2005) and Gisen

(2015) and the checking was done by repeated insertion of secondary data of Muar

Estuary (surveyed on 3rd August 2012) by Gisen (2015).

41

Figure 4.2 Longitudinal Salinity Distribution generated by SALT using Internet
Protocol

4.2 SIMULATION OF SALT

To demonstrate the simulation process of SALT modelling programme, the

procedures are clearly explained step by step. This allows the end-user to become familiar

with the interface of SALT modelling programme.

Firstly, SALT programme file was executed and New File option was selected to

start a new project as shown in Figure 4.3 Starting of the New File option. In this

study, secondary data of the Muar Estuary (surveyed on 3rd August 2012) by Gisen (2015)

was selected. For a new project, the estuary name and date of measurement has to be

addressed in the beginning. Then, the geometry data obtained from the shape analysis

was inserted as boundary data. As shown in Figure 4.4, each time after the input was

inserted, SALT will enquire for the confirmation of input. To re-enter the input, selection

[1] is to be chosen, else, by pressing any button, the procedure will proceed to the input

parameters and calibration parameters.

42

Figure 4.3 Starting of the New File option.

Figure 4.4 Confirmation of the Input.

Then, the magnitude of each input parameter and calibration parameter were

declared as explained in Section 3.4. After the calibration, the Tidal Excursion (E0), Van

der Burgh coefficient (K) and mixing coefficient (α0) obtained are 11000m, 0.25 and

8.6m-1 respectively. Sea salinity (S0) and fresh water salinity (Sf) is set at 24 ppt. and 0.1

ppt. The step length is by default taken as 1000 m and the dispersion (D) to fresh water

discharge (Qf) ratio is determined by calibrating the mixing coefficient (α0). This end the

process of inserting input for New File.

43

Figure 4.5 Input Parameters of the Muar Estuary.

Figure 4.6 Calibration Parameters of the Muar Estuary.

Next, user is required to insert the observed longitudinal salinity measurement for

both HWS and LWS to allow the calibration process as well as computing the model

performance analyses. Measurement Data [3] was selected in the SALT modelling

programme for the observed data input as shown in Figure 4.7. All the inserted data is

tabulated in a well-organised manner as shown in Figure 4.8.

Figure 4.7 Measurement Data is selected and values of observation data of HWS is
being inserted.

44

Figure 4.8 Tabulation of distance from estuary mouth (x) and salinity (S) at HWS
(left) and LWS (right).

If the user has inserted any parameters wrongly including the observation data,

they can edited by reselecting the Measurement Data [3] in the menu. This function is

important to ensure all the input data are correct before the simulation is performed. To

change the input, user can choose either the abbreviation of the parameters or the coded

parameter number. Figure 4.9 displays the interface for the data input editor.

Figure 4.9 List and Edit Input.

Figure 4.10 Example of changing K value for calibration.

K or 19 can be selected

45

In Figure 4.10, the function to adjust the calibration parameter of K value, is

presented. User can either select the symbol K or 19 in this section for alteration of the

calibration parameters to fit the simulated curved to the observed salinity. For “Generate

Result” selection, the default iteration is 200, tabulation and simulation were done based

on the inserted parameters shown in Figure 4.11. Salinity curve was plotted by opening

internet protocol in offline mode shown in Figure 4.12. This generated longitudinal

salinity distribution can be save in Portable Network Graphic (PNG) format .Also, SALT

generate RMSE and NSE analyses automatically based on the simulated data and

observation data in Figure 4.13 and Figure 4.14.

Figure 4.11 Tabulation of the simulated result.

46

Figure 4.12 Longitudinal salinity distribution of the Muar Estuary.

Figure 4.13 RMSE and NSE analyses at HWS condition of the Muar Estuary.

Figure 4.14 RMSE and NSE analyses at LWS condition of the Muar Estuary.

47

4.3 VALIDATION OF SALT

Validation process was done by comparing the simulated result of SALT

modelling programme with the result obtained from the conventional spreadsheet for the

six Malaysian estuaries (Bernam, Endau, Kurau, Muar, Perak and Selangor) by Gisen

(2015). The comparison of salinity of TA condition generated by SALT against the

spreadsheet result was plotted in reference to a perfect agreement line.

Perfect agreement line, also named as line of equality, is the y = x line through

the origin at 45 degrees to both axes (Bland and Altman, 2003; Watson and Petrie, 2010).

If the results plotted fall on the perfect agreement line, it means that the output of SALT

model is similar to the conventional spreadsheet and thus certified the correctness of the

formulas as well as the result of the entire modelling programme. The validation for all

the six Malaysian estuaries are shown below in Figure 4.15 to Figure 4.20.

Figure 4.15 Validation of the Bernam Estuary

Figure 4.16 Validation of the Endau Estuary

48

Figure 4.17 Validation of the Kurau Estuary

Figure 4.18 Validation of the Muar Estuary

Figure 4.19 Validation of the Perak Estuary

49

Figure 4.20 Validation of the Selangor Estuary

From all the validation results, there are slight deviations at the end of the perfect

agreement line. These deviation values represents the salinity before estuary mouth at

tidal average (TA) condition. The deviations occured due to the difference in the number

of decimal points selected. Nevertheless, the validation of SALT against spreadsheet on

the perfect agreement line showed a very good fit for the six Malaysian estuary that

certify the formulas and the output of SALT modelling programme.

50

4.4 APPLICATION OF SALT

The SALT modelling programme was applied in the salt intrusion study for the Belat
Estuary. Data from the salinity field measurement conducted on 28th April 2017 were
used as the observed data in the SALT modelling programme. The geometry input and
the observations data of Belat Estuary were as shown in Table 4.3 and

Table 4.4.

Table 4.3 Geometry input of Belat Estuary.

Geometry Data Abbreviation Magnitude Units

Area at mouth A0 1200 m2
Area at x1 A1 1200 m2
Area convergence length a1 20000 m
Area convergence length 2 a2 20000 m
Width of mouth B0 280 m
Width at x1 B1 280 m
Width convergence length b1 20000 m
Width convergence length 2 b2 20000 m
Inflection point x1 0 m
Depth average ℎ଴

തതത 4.1 m
Depth average at x1 ℎଵ

തതത 4.1 m
Depth at mouth h0 4.1 m
Depth at x1 h1 4.1 m

Table 4.4 Observation data of Belat Estuary.

Measurement

xHWS (m) SHWS (ppt) xLWS (m) SLWS (ppt)
140 29.99 159 18.920

1349 29.94 1010 15.300
2867 29.73 2741 15.189
463 28.51 4493 9.657

6649 22.36 6689 7.580
8707 20.81 8619 5.580

10685 13.98 9914 4.014

 After the calibration process, the calibration parameters, result output as well as

the model performance of the Belat Estuary were as shown in Table 4.5. From the

simulation, SALT modelling programme showed that the salinity intrusion length at HWS

condition at Belat Estuary is 18 km. Also, the longitudinal salinity distribution of the

Belat Estuary generated from SALT modelling programme is shown in Figure 4.21. The

comparison of the results between SALT and from spreadsheet is shown in Figure 4.22

with minor difference where the ratio is close to unity.

51

Table 4.5 Calibration parameters and output data of Belat Estuary.

Parameters Abbreviation Magnitude Units

Sea salinity S0 28 ppt
Tidal Excursion E0 6500 m
Van Der Burgh’s coefficient K 0.65
Mixing Coefficient α0 12 m-1

Salinity intrusion length at HWS LHWS 18161.87 m
RMSE at HWS RMSEHWS 2.17
RMSE at LWS RMSELWS 1.88
NSE at HWS NSEHWS 0.96
NSE at LWS NSELWS 0.92

Figure 4.21 Longitudinal salinity distribution of the Belat Estuary.

Figure 4.22 Comparison of SALT’s output against conventional spreadsheet.

52

4.5 MODEL PERFORMANCE

Performance of the one-dimensional analytical salt intrusion model in SALT

modelling programme was evaluated by using Root Mean Square Error (RMSE) and

Nash-Sutcliffe Efficiency (NSE) for assessment of model accuracy and efficiency. The

major advantage of the SALT modelling programme is its capability to generate the model

performance analyses automatically for the RMSE and NSE values. The summary of all

the model performances for the Malaysian estuaries including the Belat Estuary were

shown in Table 4.6.

Table 4.6 RMSE and NSE for all the Malaysian estuaries.

In overall, the model performance of Malaysian estuaries shows acceptable RMSE

values in both HWS and LWS condition and a very ideal NSE value of approximate to

1.00 for both condition. The relatively high RMSE values of 2.17 and 1.88 for the Belat

Estuary indicated that the simulated result is not as close to the observed data as the other

Malaysian estuaries. For the LWS in Perak and Selangor, the low NSE of 0.34 and 0.55

are still considered as acceptable because the values showed that the simulated value is

the better predictor than observed values.

Estuary RMSE NSE
HWS LWS HWS LWS

Bernam 0.49 1.34 1.00 0.97
Endau 1.47 1.27 0.96 0.97
Kurau 1.32 0.64 0.99 0.98
Muar 0.50 0.29 1.00 1.00
Perak 1.58 1.14 0.95 0.34

Selangor 1.66 1.69 0.98 0.55
Belat 2.17 1.88 0.96 0.92

53

CHAPTER 5

CONCLUSION

5.1 INTRODUCTION

SALT modelling programme has been successfully developed by using Python

programming language adopting a steady state theory of an analytical salt intrusion model

at tidal average condition introduced by Savenije (2005) and improvised by Gisen (2015).

Repetitive testing has been done to troubleshoot and eliminate possible bugs and error.

The developed programme has been validated by using salinity data of the six Malaysian

Estuaries by Gisen (2015) to ensure its applicability and reliability. Then, the model has

been applied in the Belat Estuary to test its applicability to simulate salt intrusion cuve in

the region.

5.2 CONCLUSION

The objectives of this study have been achieved and are described in the

followings:

i) SALT modelling programme has been successfully developed using Python

programming language. The formulas and coding are encrypted to prevent any

changes or accidental amendments by end users on the formula. SALT modelling

programme adopts the Python’s default GUI - IDLE for simulation of salt

intrusion profile. The programme comes with the menu of New File, Open File,

Save File, Measurement Data, List and Edit Input, Generate Result, Help and Exit.

ii) SALT modelling programme has been proved applicable in simulating the

longitudinal salinity distribution in all the studied estuaries. The developed

54

programme is able to generate graphical output by displaying the results with

internet protocol in offline mode with the aid of Plotly module. This graphical

output includes the salinity at TA, HWS and LWS condition over a distance x from

the mouth of estuary.

iii) Validation of SALT modelling programme has been done by comparing the output

of SALT with the conventional spreadsheet method utilizing the salinity data from

six Malaysian Estuaries (Gisen, 2015). The output of SALT against the

spreadsheet were plotted in reference to a perfect agreement line for all the

estuaries including the new applied Belat Estuary. Insignificant deviation at the

end of the perfect agreement line was examined and this is due to the difference

in decimal points. This concludes that SALT modelling programme can be used

without error.

iv) The model outcomes show that the salinity intrusion length at HWS condition for

the Belat Estuary is 18 km. Also, the sea salinity, tidal excursion, Van der Burgh’s

coefficient, mixing coefficient are 28 ppt, 6500 m, 0.65 and 12 m-1 respectively.

For the model performance, the RMSE were 2.17 and 1.88 and NSE were 0.96

and 0.92 respectively for HWS and LWS condition.

v) Based on the model performance analyses, SALT is able to simulate the salinity

profile accurately with average RMSE of 1.31 and average NSE of 0.98. The low

RMSE and high NSE value indicated that this model is suitable for Malaysian

Estuaries.

55

5.3 RECOMMENDATION

There are some aspect that have to consider to improve this modelling

programme. The followings are the recommendation listed for the future enhancement to

this SALT modelling programme:

i) This model used Python’s default GUI. Hence, it does not create a user-friendly

interface for the end user to use for salt intrusion simulation. Further integration

of this SALT model with Python GUI such as Tkinter and wxPython is needed for

generation of user-friendly Graphical User Interface.

ii) Since the development of SALT modelling programme is currently at the early

stage of development. Some of the functions are not completely working and have

to be decoded. Detailed features that can enhance the function of this modelling

programme is encouraged.

iii) This model can be improved by taking into consideration of the integration of 2-

D or 3-D salt intrusion model for complex and detailed simulation. If the

integration can be done, this model is able to compete with any other simulation

programme.

56

REFERENCES

Bland, J. M., & Altman, D. G. (2003). Applying the right statistics: analyses of

 measurement studies. Ultrasound in obstetrics & gynecology, 22(1), 85-93.

da Silva Dias, F. J., Lacerda, L. D., Marins, R. V., and de Paula, F. C. F. (2011).

 Comparative analysis of rating curve and ADP estimates of instantaneous water

 discharge through estuaries in two contrasting Brazilian rivers. Hydrological

 Processes, 25(14), 2188-2201.

Davies, L. J. (1964). A morphogenic approach to the worlds’ shorelines. Zeitschrift

 Geomorphologie 8:127-142

Deynoot, F. G. (2011). Analytical modeling of Salt Intrusion in the Kapuas Estuary. Delft

 University of Technology, Delft.

Environment Protection Act (1973). Environmental Protection Section No. 34 of

 1973

Farleigh, D. R. P. (1978). Kuantan River, Malaysia: Prediction of salinity intrusion. HR

 Wallingford.

Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., and Brooks, N. H. (2013). Mixing in

 inland and coastal waters. Elsevier.

Friedrichs, C. T., Armbrust, B. D., and De Swart, H. E. (1998). Hydrodynamics and

 equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries. Physics

 of estuaries and coastal seas, 315-327.

Fritz, L. (2011) Balancing cost and Precision of Approximate Type Inference in Python.

 Master, Universiteit Utrecht.

Fu, G., Chen, J. and Jiang, W. (2008). Scenario Studies on the Salinity Intrusion in the

 Yangtze Estuary.

Gay, P. S., and O'Donnell, J. (2009). Buffering of the salinity intrusion in estuaries by

 channel convergence. Hydrology and Earth System Sciences Discussions, 6(5),

 6007-6033.

57

Georgatos, F. (2002). How applicable is Python as first computer language for teaching

 in a pre-university education environment, from a teacher’s point of view. Master,

 Universiteit van Amsterdam.

Gisen, J. I. A., and Savenije, H. H. (2015). Estimating bankfull discharge and depth in

 ungauged estuaries. Water Resources Research, 51(4), 2298-2316.

Gisen, J. I. A. (2015). Prediction in ungauged estuaries. Delft University of Technology,

 Delft.

Gisen, J. I. A., Savenije, H. H. G., Nijzink, R. C., and Abd. Wahab, A. K. (2015). Testing

 a 1-D analytical salt intrusion model and its predictive equations in Malaysian

 estuaries. Hydrological Sciences Journal, 60(1), 156-172.

Gong, W., Wang, Y. and Jia, J. (2012). The effect of interacting downstream branches on

 saltwater intrusion in the Modaomen Estuary, China. Journal of Asian Earth

 Sciences, 45, 223-238.

Good, B., Buchtel, J., Meffert, D., Radford, J., Rhinehart, K., and Wilson, R. (1995).

 Louisiana’s major coastal navigation channels. Unpublished report. Baton

 Rouge: Louisiana Department of Natural Resources, Coastal Restoration

 Division.

Graas, S., and Savenije, H. H. G. (2008). Salt intrusion in the Pungue estuary,

 Mozambique: effect of sand banks as a natural temporary salt intrusion

 barrier. Hydrology and Earth System Sciences Discussions, 5(4), 2523-2542.

Hassan, A. J. and Hashim, N. (2011). Salinity intrusion modeling for Sungai Selangor.

Ibrahim, Z., Abdul Latiff A. A., Ab Halim A. H., Abu Bakar N., and Subramaniam S.

 (2008). Experimental Studies on Mixing in a Salt Wedge Estuary. Malaysian

 Journal of Civil Engineering 20 (2): 188 - 199

Ippen, A.T. and Harleman, D. R. F. (1961). One dimensional analysis of salinity intrusion

 in estuaries, US Army Corps Eng., Waterways Experiment Station, Visksburg,

 Miss. Tech. Bull. No. 5.

58

Lepage, S., and Ingram, R. G. (1986). Salinity intrusion in the Eastmain River estuary

 following a major reduction of freshwater input. Journal of Geophysical

 Research, 91(C1), 909-915.

Liu, W. C., Hsu, M. H., Wu, C. R., Wang, C. F., and Kuo, A. Y. (2004). Modeling salt

 water intrusion in Tanshui River estuarine system—case-study contrasting now

 and then. Journal of hydraulic engineering, 130(9), 849-859.

Mahmuduzzaman, M., Ahmed, Z. U., Nuruzzaman, A. K. M. and Ahmed, F. R. S. (2014).

 Causes of salinity intrusion in coastal belt of Bangladesh. International Journal

 of Plant Research, 4(4A), 8-13.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith,

 T. L. (2007). Model evaluation guidelines for systematic quantification of

 accuracy in watershed simulations. Trans. Asabe, 50(3), 885-900.

Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models

 part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.

Nguyen, A. D., and Savenije, H. H. G. (2006). Salt intrusion in multi-channel estuaries:

 a case study in the Mekong Delta, Vietnam. Hydrology and Earth System

 Sciences Discussions, 10(5), 743-754.

Nguyen, A. D., Savenije, H. H. G., Pham, D. N., and Tang, D. T. (2008). Using salt

 intrusion measurements to determine the freshwater discharge distribution over

 the branches of a multi-channel estuary: The Mekong Delta case. Estuarine,

 Coastal and Shelf Science, 77(3), 433-445.

Nguyen, D. H., Umeyama, M., and Shintani, T. (2012). Importance of geometric

 characteristics for salinity distribution in convergent estuaries. Journal of

 hydrology, 448, 1-13.

Parsa, J., and Etemad-Shahidi, A. (2011). An empirical model for salinity intrusion in

 alluvial estuaries. Ocean Dynamics, 61(10), 1619-1628.

59

Pittaluga, M. B., Tambroni, N., Canestrelli, A., Slingerland, R., Lanzoni, S., and

 Seminara, G. (2015). Where river and tide meet: The morphodynamic equilibrium

 of alluvial estuaries. Journal of Geophysical Research: Earth Surface, 120(1), 75-

 94.

Pritchard, D. W. (1967). Observations of circulation in coastal plain estuaries.

Savenije, H. H. G. (1989). Salt intrusion model for high-water slack, low-water slack,

 and mean tide on spread sheet. Journal of Hydrology, 107(1-4), 9-18.

Savenije, H. H. G. (1992). Rapid assessment technique for salt intrusion in alluvial

 estuaries.

Savenije, H. H. G. (1993a). Predictive model for salt intrusion in estuaries. Journal of

 Hydrology, 148(1), 203-218.

Savenije, H. H. G. (1993b). Composition and driving mechanisms of longitudinal tidal

 average salinity dispersion in estuaries. Journal of Hydrology, 144(1), 127-141.

Savenije, H. H. G. (2005). Salinity and Tides in Alluvial Estuaries. Elsevier, New York.

Savenije, H. H. G. (2012). Salinity and Tides in Alluvial Estuaries,

 http://salinityandtides.com/

Shaha, D. C., and Cho, Y. K. (2009). Comparison of empirical models with intensively

 observed data for prediction of salt intrusion in the Sumjin River estuary,

 Korea. Hydrology and Earth System Sciences, 13(6), 923-933.

SMHB, Ranhill and Zaaba (2000). Salinity studies for Sg. Rompin and Sg. Sedili Besar,

 vol 5 of Malaysia National Water Resources Study, DID Malaysia, Malaysia.

Star Malaysia (2016). A little salty, but treated water still potable. Retrieved from:

 http://www.thestar.com.my/news/nation/2016/04/30/a-little-salty-but-treated-

 water-still-potable/#WAOjuq8GcVcW2hvW.99

Tran, H. T., and Tran, T. V. (2011). Assessment of climate change impacts on salinity

 intrusion in Hong-Thai Binh and Dong Nai river basins.

Waite P. J. (1980). Control of salt water intrusion in estuaries by means of a dual purpose

 reservoir. IAHS-AISH Publication no. 129

60

Watson, P. F. and Petrie, A. (2010). Method agreement analysis: a review of correct

 methodology. Theriogenology, 73(9), 1167-1179.

van Breemen, M. T. J. (2008). Salt intrusion in the Selangor Estuary in Malaysia

 model—study with Delft3D. Master, University of Twente.

Zhang, E., Savenije, H. H. G., Wu, H., Kong, Y., & Zhu, J. (2011). Analytical solution

 for salt intrusion in the Yangtze Estuary, China. Estuarine, Coastal and Shelf

 Science, 91(4), 492-501.

Zhang, E. F., Savenije, H. H. G., Chen, S. L., and Mao, X. H. (2012). An analytical

 solution for tidal propagation in the Yangtze Estuary, China. Hydrology and

 Earth System Sciences, 16(9), 3327.

61

APPENDIX A
LONGITUDINAL SALINITY DISTRIBUTION OF MALAYSIAN ESTUARIES

Figure A1 Longitudinal Salinity Distribution of a) Belat b) Endau c) Kurau d) Muar
e) Perak f) Selangor

62

APPENDIX B
SALT’S PYTHON CODING

#SALT:Steady State One-Dimensional Salt Intrusion Model at Tidal Average Condition

print("SALT: \nSteady State One-Dimensional Salt Intrusion Model at Tidal Average

Condition")

#--

#Menu

SALT=1 #Looping Purpose

while SALT==1:

menuselect=input("\n"+"Menu"+"\n"+"[1] New File"+"\n"+"[2] Open

File"+"\n"+"[3] Measurement Data"+"\n"+"[4] Save File"+"\n"+"[5] List and

Edit Input"+"\n"+"[6] Generate Result"+"\n"+"[7] Help"+"\n"+"[0]

Exit"+"\n"+"Select Menu Number:")

if menuselect==1: #New File

#--

print #Spacing

 print("New File")

#Survey Details

name=raw_input("Name of the Estuary: ")

date=raw_input("Date(DDMMYY): ")

print #Spacing

#--

#Geometric Input of Estuary

63

print("Geometric Input of Estuary"+"\n"+"Please insert magnitude of the

respective parameters.")

#Input

vargeo=1 #Looping purpose.

while vargeo==1:

 A0=input("1. A0: Area at mouth(m^2): ")

 A1=input("2. A1: Area at x1(m^2): ")

 a1=input("3. a1: Area convergence length(m): ")

 a2=input("4. a2: Area convergence length 2(m): ")

 B0=input("5. B0: Width at mouth(m): ")

 B1=input("6. B1: Width at x1(m): ")

 b1=input("7. b1: Width convergence length(m): ")

 b2=input("8. b2: Width convergence length 2(m): ")

 x1=input("9. x1:Inflection point(m): ")

 h0avg=input("10. h0avg: Depth average(m): ")

 h1avg=input("11. h1avg: Depth average at x1(m): ")

 h0=input("12. h0: Depth(m): ")

 h1=input("13. h1: Depth at x1(m): ")

#For checking & confirmation purpose.

 print #Spacing

 print("Inserted Geometric Input of Estuary")

 print("1. A0:"+str(A0)+"(m^2)"+"\n"+

64

 "2. A1:"+str(A1)+"(m^2)"+"\n"+

 "3. a1:"+str(a1)+"(m)"+"\n"+

 "4. a2:"+str(a2)+"(m)"+"\n"+

 "5. B0:"+str(B0)+"(m)"+"\n"+

 "6. B1:"+str(B1)+"(m)"+"\n"+

 "7. b1:"+str(b1)+"(m)"+"\n"+

 "8. b2:"+str(b2)+"(m)"+"\n"+

 "9. x1:"+str(x1)+"(m)"+"\n"+

 "10. h0avg:"+str(h0avg)+"(m)"+"\n"+

 "11. h1avg:"+str(h1avg)+"(m)"+"\n"+

 "12. h0:"+str(h0)+"(m)"+"\n"+

 "13. h1:"+str(h1)+"(m)"+"\n")

redo=raw_input("Press [1] to: Re-Enter Input, any button to

Proceed."+"\n"+"Select :")

if redo=="1":

vargeo==1 #vargeo = 1 indicate Looping.

print #Spacing

 else:

 vargeo=0 #vargeo=0 indicate end Looping.

 print #Spacing

#--

#Input Parameters

65

print("Input Parameters"+"\n"+"Please insert magnitude of the respective

parameters.")

#Input

 varin=1 #Looping purpose.

 while varin==1:

 dx=input("14. dx: Step Length(m): ")

 S0=input("15. S0: Sea Salinity(kg/m^3): ")

 E0=input("16. E0: Tidal Excursion(m): ")

 H=input("17. H: Tidal Range(m): ")

 Sf=input("18. Sf: Fresh Water Salinity(kg/m^3): ")

 #For checking & confirmation purpose.

 print #Spacing

 print("Inserted Input Parameters")

 print("14. dx:"+str(dx)+"(m)"+"\n"+

 "15. S0:"+str(S0)+"(kg/m^3)"+"\n"+

 "16. E0:"+str(E0)+"(m)"+"\n"+

 "17. H:"+str(H)+"(m)"+"\n"+

 "18. Sf:"+str(Sf)+"(kg/m^3)"+"\n")

redo=raw_input("Press [1] to: Re-Enter Input, any button to

Proceed."+"\n"+"Select :")

 if redo=="1":

 varin=1 #varin=1 indicate Looping.

66

 else:

 varin=0 #varin=0 indicate end Looping.

print #Spacing

#--

 #Calibration Parameters

print("Calibration Parameters"+"\n"+"Please insert magnitude of the

respective parameters.")

Input

 varc=1 #Looping purpose.

 while varc==1:

 K=input("19. K: Van Der Burgh's coefficient: ")

 alpha0=input("20. alpha0: Alpha 0(1/m): ")

 Q=input("21: Q: Fresh Water Discharge(m^3/s): ")

 #Calculation

 D0=Q*alpha0 #Dispersion at mouth

print("22. D0: Dispersion at mouth(m^2/s):"+str(D0))

 #For checking & confirmation purpose.

 print #Spacing

 print("19. K:"+str(K)+"\n"+

 "20. alpha0:"+str(alpha0)+"(1/m)"+"\n"+

 "21. Q:"+str(Q)+"(m^3/s)"+"\n"+

 "22. D0:"+str(D0)+"(m^2/s)"+"\n")

67

redo=raw_input("Press [1] to: Re-Enter Input, any button to

Proceed."+"\n"+"Select :")

 if redo=="1":

 varc=1 #varc=1 indicate Looping.

 else:

 varc=0 #varc=0 indicate end Looping.

 print #Spacing

#---

 #Calculations

 import math

 def exp(n):

 n=math.exp(n)

 return n

 def loge(n):

 n=math.log(n)

 return n

 beta=(K*a1)/(alpha0*float(A0)) #Beta

 D1=D0*(1-beta*(exp(x1/float(a1))-1)) #Dispersion at x1

 alpha1=D1/float(Q) #Alpha 1

 beta1=(K*a2)/(alpha1*float(A1)) #Beta 1

 S1=(S0-Sf)*((D1/D0)**(1/float(K)))+Sf #Salinity at x1

68

LHWS=x1+a2*loge((A1*alpha1)/(K*float(a2))+1)+(E0/2) #Salinity

Length at HWS

 print("Calculations:")

 print("23. beta: Beta: "+str(beta)+"\n"+

 "24. D1: Dispersion at x1: "+str(D1)+"(m^2/s)"+"\n"+

 "25. alpha1: Alpha 1: "+str(alpha1)+"\n"+

 "26. beta1: Beta 1: "+str(beta1)+"\n"+

 "27. S1: Salinity at x1: "+str(S1)+"(kg/m^3)"+"\n"+

 "28. LHWS: Salinity Length at HWS: "+str(LHWS)+"(m)"+"\n")

 print #Spacing

 #Prevent Error in Listing

 countHWS=0

 countLWS=0

 xoHWS=[] #Distance from mouth at LWS

 SoHWS=[] #Salinity of Measurement Data at HWS

 xoLWS=[] #Distance from mouth at LWS

 SoLWS=[] #Salinity of Measurement Data at LWS

#--

 if menuselect==3: #Measurement Data

print("Measurement Data")

 #Array for Multiple Data in Single Variable.

 xoHWS=[] #Distance from mouth at LWS

69

 SoHWS=[] #Salinity of Measurement Data at HWS

 xoLWS=[] #Distance from mouth at LWS

 SoLWS=[] #Salinity of Measurement Data at LWS

 #InputHWS

 varHWS=1 #Looping purpose.

 while varHWS==1:

 countHWS=input("Number of measurements of HWS ?: ")

 for n in range(countHWS):

xmHWS=input("xoHWS: Distance from estuary mouth

(m): ") #Cannot have same naming before putting into

array.

 xoHWS.append(xmHWS) #Save into array.

SmHWS=input("SoHWS: Salinity of the measurement

data at the point. (kg/m^3): ") #Cannot have same naming

before putting into array.

 SoHWS.append(SmHWS) #Save into array.

 #For checking & confirmation purpose.

 print #Spacing

 ####PrettyTable plot#####

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("xoHWS(m)",xoHWS)

 pt.add_column("SoHWS(kg/m^3)",SoHWS)

70

 print pt

 ####PrettyTable plot#####

redo=raw_input("Press [1] to: Re-Enter Input, any button to

Proceed."+"\n"+"Select :")

 if redo=="1":

 #Reset Data

 xoHWS=[]

 SoHWS=[]

 varHWS=1 #varHWS=1 indicate Looping.

 else:

 varHWS=0 #varHWS=0 indicate end Looping.

 #InputLWS

 varLWS=1 #Looping purpose.

 while varLWS==1:

 countLWS=input("Number of measurements of LWS ?: ")

 for n in range(countLWS):

xmLWS=input("xoLWS: Distance from estuary mouth (m): ")

#Cannot have same naming before putting into array.

 xoLWS.append(xmLWS) #Save into array.

SmLWS=input("SoLWS: Salinity of the measurement data at the

point. (kg/m^3): ") #Cannot have same naming before putting into

array.

 SoLWS.append(SmLWS) #Save into array.

71

 #For checking & confirmation purpose.

 print #Spacing

 ####PrettyTable plot#####

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("xoLWS(m)",xoLWS)

 pt.add_column("SoLWS(kg/m^3)",SoLWS)

 print pt

 ####PrettyTable plot#####

redo=raw_input("Press [1] to: Re-Enter Input, any button to

Proceed."+"\n"+"Select :")

 if redo=="1":

 #Reset Data

 xoLWS=[]

 SoLWS=[]

 varLWS=1 #varLWS=1 indicate Looping.

 else:

 varLWS=0 #varLWS=0 indicate end Looping.

#--

if menuselect==4:

#Save File

72

print("Saving...")

filename=name+date+"_data.txt"

save=open(filename,"w")

#All Input Data #line

save.write("SALT alpha ver. 1.0: Steady State One-Dimensional Salt

Intrusion Model at Tidal Average Condition"+"\n"+ #1

"(Please return this data text file to Desktop to let SALT application

programme to Open the file)"+"\n"+ #2

"(To Open the file,press Open File in SALT menu and enter ONLY the

Name of Estuary and Date of Estuary)"+"\n"+"\n"+ #3-4

"NameOfTheEstuary: "+name+"\n"+ #5

"Date: "+date+"\n"+"\n"+ #6-7

"Geometric Parameters"+"\n"+ #8

"1.A0:Area_at_mouth(m^2): "+str(A0)+"\n"+ #9

"2.A1:Area_x1(m^2):"+str(A1)+"\n"+ #10

"3.a1:Area_convergence_length(m):"+str(a1)+"\n"+ #11

"4.a2:Area_convergence_length_2:"+str(a2)+"\n"+ #12

"5.B0:Width_at_mouth(m):"+str(B0)+"\n"+ #13

"6.B1:Width_at_x1(m):"+str(B1)+"\n"+ #14

"7.b1:Width_convergence_length(m):"+str(b1)+"\n"+ #15

"8.b2:Width_convergence_length_2(m):"+str(b2)+"\n"+ #16

"9.x1:Inflection_point(m):"+str(x1)+"\n"+ #17

"10.h0avg:Depth_average(m):"+str(h0avg)+"\n"+ #18

73

"11.h1avg:Depth_average_at_x1(m):"+str(h1avg)+"\n"+ #19

"12.h0:Depth(m): "+str(h0)+"\n"+ #20

"13.h1:Depth_at_x1(m):"+str(h1)+"\n"+"\n"+ #21-22

"Input Parameters"+"\n"+ #23

"14.dx:Step_Length(m):"+str(dx)+"\n"+ #24

"15.S0:Sea_Salinity(kg/m^3):"+str(S0)+"\n"+ #25

"16.E0:Tidal_Excursion(m):"+str(E0)+"\n"+ #26

"17.H:Tidal_Range(m):"+str(H)+"\n"+ #27

"18.Sf:Fresh_Water_Salinity(kg/m^3):"+str(Sf)+"\n"+"\n"+ #28-29

"Calibration Parameters"+"\n"+ #30

"19.K:Van_Der_Burgh's_coefficient:"+str(K)+"\n"+ #31

"20.alpha0:Alpha_0(1/m):"+str(alpha0)+"\n"+ #32

"21.Q:Fresh_Water_Discharge(m^3/s):"+str(Q)+"\n"+ #33

"22.D0:Dispersion_at_mouth(m^2/s):"+str(D0)+"\n"+"\n"+ #34

#This part will be calculate back while reading#

"Calculation"+"\n"+ #35

"23.beta:Beta: "+str(beta)+"\n"+ #36

"24.D1:Dispersion_at_x1(m^2/s):"+str(D1)+"\n" #37

"25.alpha1:Alpha_1:"+str(alpha1)+"\n"+ #38

"26.beta1:Beta_1:"+str(beta1)+"\n"+ #39

"27.S1:Salinity_at_x1(kg/m^3):"+str(S1)+"\n"+ #40

74

"28.LHWS:Salinity_Length_at_HWS(m):"+str(LHWS)+"\n"+"\n")

 #41-42

#Measurement Data

save.write("29.MHWS:Measurement_Data,HWS("+str(countHWS)+")\n

"+ #43

"xoHWS(m)"+""+"SoHWS(kg/m^3)"+"\n") #44

import numpy as np

np.savetxt(save,(xoHWS,SoHWS),fmt="%d") #45-46

save.write("30. MLWS: Measurement Data, LWS

("+str(countLWS)+")\n"+ #47

"xoLWS(m)"+""+"SoLWS(kg/m^3)"+"\n") #48

np.savetxt(save,(xoLWS,SoLWS),fmt="%d") #49-50

save.close()

print ("Saved.")

#--

 if menuselect==5:

 #List and Edit Input

 print("List and Edit Input")

 print("Name of Estuary: "+ name)

 print("Date: "+date)

#--

 var=1 #Looping purpose.

75

 #Listing Purpose

 while var==1:

#Recalculation in case of edited

 #Calculations

 import math

 def exp(n):

 n=math.exp(n)

 return n

 def loge(n):

 n=math.log(n)

 return n

 D0=Q*alpha0 #Dispersion at mouth

 beta=(K*a1)/(alpha0*float(A0)) #Beta

 D1=D0*(1-beta*(exp(x1/float(a1))-1)) #Dispersion at x1

 alpha1=D1/float(Q) #Alpha 1

 beta1=(K*a2)/(alpha1*float(A1)) #Beta 1

 S1=(S0-Sf)*((D1/D0)**(1/float(K)))+Sf #Salinity at x1

LHWS=x1+a2*loge((A1*alpha1)/(K*float(a2))+1)+(E0/2) #Salinity

Length at HWS

 print("List of Input")

76

 print("Geometric Parameters"+"\n"+"\n"+

 "1. A0: Area at mouth: "+str(A0)+"(m^2)"+"\n"+

 "2. A1: Area at x1: "+str(A1)+"(m^2)"+"\n"+

 "3. a1: Area convergence length: "+str(a1)+"(m)"+"\n"+

 "4. a2: Area convergence length 2: "+str(a2)+"(m)"+"\n"+

 "5. B0: Width at mouth: "+str(B0)+"(m)"+"\n"+

 "6. B1: Width at x1: "+str(B1)+"(m)"+"\n"+

 "7. b1: Width convergence length: "+str(b1)+"(m)"+"\n"+

 "8. b2: Width convergence length 2: "+str(b2)+"(m)"+"\n"+

 "9. x1: Inflection point:"+str(x1)+"(m)"+"\n"+

 "10. h0avg: Depth average: "+str(h0avg)+"(m)"+"\n"+

 "11. h1avg: Depth average at x1: "+str(h1avg)+"(m)"+"\n"+

 "12. h0: Depth: "+str(h0)+"(m)"+"\n"+

 "13. h1: Depth at x1: "+str(h1)+"(m)"+"\n"+"\n"+

 "Input Parameters"+"\n"+"\n"+

 "14. dx: Step Length: "+str(dx)+"(m)"+"\n"+

 "15. S0: Sea Salinity: "+str(S0)+"(kg/m^3)"+"\n"+

 "16. E0: Tidal Excursion: "+str(E0)+"(m)"+"\n"+

 "17. H: Tidal Range: "+str(H)+"(m)"+"\n"+

 "18. Sf: Fresh Water Salinity: "+str(Sf)+"(kg/m^3)"+"\n"+"\n"+

77

 "Calibration Parameters"+"\n"+"\n"+

 "19. K: Van Der Burgh's coefficient: "+str(K)+"\n"+

 "20. alpha0: Alpha 0: "+str(alpha0)+"(1/m)"+"\n"+

 "21. Q: Fresh Water Discharge: "+str(Q)+"(m^3/s)"+"\n"+

 "22. D0: Dispersion at mouth: "+str(D0)+"(m^2/s)"+"\n"+"\n"+

 "Calculation"+"\n"+"\n"+

 "23. beta: Beta: "+str(beta)+"\n"+

 "24. D1: Dispersion at x1: "+str(D1)+"(m^2/s)"+"\n"+

 "25. alpha1: Alpha 1: "+str(alpha1)+"\n"+

 "26. beta1: Beta 1: "+str(beta1)+"\n"+

 "27. S1: Salinity at x1: "+str(S1)+"(kg/m^3)"+"\n"+

 "28. LHWS: Salinity Length at HWS: "+str(LHWS)+"(m)"+"\n")

 print#Spacing

 print("29.MHWS:Measurement_Data_HWS")

 print #Spacing

 ####PrettyTable plot#####

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("xoHWS(m)",xoHWS)

 pt.add_column("SoHWS(kg/m^3)",SoHWS)

 print pt

78

 ####PrettyTable plot#####

 print#Spacing

 print("30.MLWS:Measurement_Data_LWS")

 print #Spacing

 ####PrettyTable plot#####

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("xoLWS(m)",xoLWS)

 pt.add_column("SoLWS(kg/m^3)",SoLWS)

 print pt

 ####PrettyTable plot#####

 print#Spacing

 print

#--

 #Editing Purpose

edit=raw_input("Enter [Number] or [Abbreviation of the parameters] to

edit the magnitude,\n"+

"Magnitude of 22-28 cannot be edited due to calculation.\n"+"Any other

button for CANCEL edit: ")

 if edit=="1" or edit=="A0":

 A0=input("1. A0: Area at mouth(m^2): ")

 var=1

79

 elif edit=="2" or edit=="A1":

 A1=input("2. A1: Area at x1(m^2): ")

 var=1

 elif edit=="3" or edit=="a1":

 a1=input("3. a1: Area convergence length(m): ")

 var=1

 elif edit=="4" or edit=="a2":

 a2=input("4. a2: Area convergence length 2(m): ")

 var=1

 elif edit=="5" or edit=="B0":

 B0=input("5. B0: Width at mouth(m): ")

 var=1

 elif edit=="6" or edit=="B1":

 B1=input("6. B1: Width at x1(m): ")

 var=1

 elif edit=="7" or edit=="b1":

 b1=input("7. b1: Width convergence length(m): ")

 var=1

 elif edit=="8" or edit=="b2":

 b2=input("8. b2: Width convergence length 2(m): ")

 var=1

80

 elif edit=="9" or edit=="x1":

 x1=input("9. x1:Inflection point(m): ")

 var=1

 elif edit=="10" or edit=="h0avg":

 h0avg=input("10. h0avg: Depth average(m): ")

 var=1

 elif edit=="11" or edit=="h1avg":

 h1avg=input("11. h1avg: Depth average at x1(m): ")

 var=1

 elif edit=="12" or edit=="h0":

 h0=input("12. h0: Depth(m): ")

 var=1

 elif edit=="13" or edit=="h1":

 h1=input("13. h1: Depth at x1(m): ")

 var=1

 elif edit=="14" or edit=="dx":

 dx=input("14. dx: Step Length(m): ")

 var=1

 elif edit=="15" or edit=="S0":

 S0=input("15. S0: Sea Salinity(kg/m^3): ")

 var=1

81

 elif edit=="16" or edit=="E0":

 E0=input("16. E0: Tidal Excursion(m): ")

 var=1

 elif edit=="17" or edit=="H":

 H=input("17. H: Tidal Range(m): ")

 var=1

 elif edit=="18" or edit=="Sf":

 Sf=input("18. Sf: Fresh Water Salinity(kg/m^3): ")

 var=1

 elif edit=="19" or edit=="K":

 K=input("19. K: Van Der Burgh's coefficient: ")

 var=1

 elif edit=="20" or edit=="alpha0":

 alpha0=input("20. alpha0: Alpha 0(1/m): ")

 var=1

 elif edit=="21" or edit=="Q":

 Q=input("21: Q: Fresh Water Discharge(m^3/s): ")

 var=1

 elif edit=="29" or edit=="MHWS":

 #Reset Input

 xoHWS=[]

82

 SoHWS=[]

 varHWS=1 #Looping purpose.

 while varHWS==1:

countHWS=input("29. MHWS: Number of measurements

of HWS ?: ")

 for n in range(countHWS):

xmHWS=input("xoHWS: Distance from estuary

mouth (m): ") #Cannot have same naming before

putting into array.

 xoHWS.append(xmHWS) #Save into array.

SmHWS=input("SoHWS: Salinity of the

measurement data at the point. (kg/m^3): ")

#Cannot have same naming before putting into

array.

 SoHWS.append(SmHWS) #Save into array.

 #For checking & confirmation purpose.

 print #Spacing

 ####PrettyTable plot#####

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("xoHWS(m)",xoHWS)

 pt.add_column("SoHWS(kg/m^3)",SoHWS)

 print pt

 ####PrettyTable plot#####

83

redo=raw_input("Press [1] to: Re-Enter Input, any button

to Proceed."+"\n"+"Select :")

 if redo=="1":

 #Reset Data

 xoHWS=[]

 SoHWS=[]

 varHWS=1 #varHWS=1 indicate Looping.

 else:

 varHWS=0 #varHWS=0 indicate end Looping.

 elif edit=="30" or edit=="MLWS":

 #Reset Input

 xoLWS=[]

 SoLWS=[]

 varLWS=1 #Looping purpose.

 while varLWS==1:

countLWS=input("30. MLWS: Number of measurements

of LWS ?:")

 for n in range(countLWS):

xmLWS=input("xoLWS: Distance from estuary

mouth (m): ") #Cannot have same naming before

putting into array.

 xoLWS.append(xmLWS) #Save into array.

84

SmLWS=input("SoLWS: Salinity of the

measurement data at the point. (kg/m^3): ")

#Cannot have same naming before putting into

array.

 SoLWS.append(SmLWS) #Save into array

 #For checking & confirmation purpose.

 print #Spacing

 ####PrettyTable plot#####

from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("xoLWS(m)",xoLWS)

 pt.add_column("SoLWS(kg/m^3)",SoLWS)

 print pt

 ####PrettyTable plot#####

redo=raw_input("Press [1] to: Re-Enter Input, any button

to Proceed."+"\n"+"Select :")

 if redo=="1":

 #Reset Data

 xoLWS=[]

 SoLWS=[]

 varLWS=1 #varLWS=1 indicate Looping.

 else:

 varLWS=0 #varLWS=0 indicate end Looping.

85

 else:

 #var=0 indicate end EDIT Looping.

 var=0

#--

 if menuselect==6:

 #Generate Result, Table and Graph

 print("Generate Result, Table and Graph")

#--

 iteration=200 #Number of Simulated Data

 variteration=0 #Looping purpose

 while variteration==0:

changeiteration=raw_input("Iteration = "+str(iteration)+"\n

Change value ? Press [1] for Change.Any button to cancel. Default

value = 200 \n Select =")

 if changeiteration==1:

 iteration=input("New Iteration Value (Default =200) =")

 variteration=0

 else:

 variteration=1

#--

 import math

 def exp(n):

86

 n=math.exp(n)

 return n

 def loge(n):

 n=math.log(n)

 return n

count=0 #Start

 #Array of table

 xTA=[]

 ATA=[]

 DTA=[]

 STA=[]

 xLWS=[]

 xHWS=[]

 #Starting Value

 xstart=-10000

 for n in range(iteration):

 if count==0: #1st Value

 count=count+1

 xsim=xstart

 if xsim<=x1:

Asim=A0*exp(-(xsim/float(a1))) #Enable division

done correctly

87

 if D0*(1-beta*(exp(xsim/float(a1))-1))>0:

Dsim=D0*(1-beta*(exp(xsim/float(a1))-

1))

 else:

 Dsim=0

Ssim=(S0-

Sf)*((Dsim/float(D0))**(1/float(K)))+Sf

 else:

 Asim=A1*exp(-((xsim-x1)/float(a2)))

if D1*(1-beta1*(exp((xsim-x1)/float(a2))-1))>0:

Dsim=D1*(1-beta1*(exp((xsim-

x1)/float(a2))-1))

 else:

 Dsim=0

Ssim=((S1-

Sf)*((Dsim/float(D0))**(1/float(K))))+Sf

 else:

 count=count+1

 xsim=xsim+dx #Subsequent value

 if xsim<=x1:

Asim=A0*exp(-(xsim/float(a1))) #Enable division

done correctly

88

 if D0*(1-beta*(exp(xsim/float(a1))-1))>0:

Dsim=D0*(1-beta*(exp(xsim/float(a1))-

1))

 else:

 Dsim=0

Ssim=(S0-

Sf)*((Dsim/float(D0))**(1/float(K)))+Sf

 else:

 Asim=A1*exp(-((xsim-x1)/float(a2)))

 if D1*(1-beta1*(exp((xsim-x1)/float(a2))-1))>0:

Dsim=D1*(1-beta1*(exp((xsim-

x1)/float(a2))-1))

 else:

 Dsim=0

Ssim=((S1-

Sf)*((Dsim/float(D1))**(1/float(K))))+Sf

 #LWS and HWS calculation

 LWS=xsim-E0/2

 HWS=xsim+E0/2

 #Save data into array

 xTA.append(xsim)

 ATA.append(Asim)

89

 DTA.append(Dsim)

 STA.append(Ssim)

 xLWS.append(LWS)

 xHWS.append(HWS)

#--

 #Tabulation of Data

 print #Spacing

 ####PrettyTable plot#####

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("x(m)",xTA)

 pt.add_column("A(m^2)",ATA)

 pt.add_column("D(m^2/s)",DTA)

 pt.add_column("S(kg/m^3)",STA)

 print pt

 ####PrettyTable plot#####

 #Plotting Graph

 import plotly as py

 import plotly.graph_objs as go

 #TA Simulated #Magenta

 trace1=go.Scatter(

90

 name='TA',

 x=xTA,

 y=STA,

 mode='line',

 line=dict(color='rgb(255,0,255)'))

 #LWS Simulated #Blue

 trace2=go.Scatter(

 name='LWS',

 x=xLWS,

 y=STA,

 mode= 'line',

 line=dict(color='rgb(0,0,204)'))

 #HWS Simulated #Yellow

 trace3=go.Scatter(

 name='HWS',

 x=xHWS,

 y=STA,

 mode= 'line',

 line=dict(color='rgb(255,255,0)'))

 #HWS Measured #Red

 trace4=go.Scatter(

91

 name='HWS Measured',

 x=xoHWS,

 y=SoHWS,

 mode= 'markers',

 marker=dict(color='rgb(255,0,0)'))

 #LWS Measured #Green

 trace5=go.Scatter(

 name='LWS Measured',

 x=xoLWS,

 y=SoLWS,

 mode= 'markers',

 marker=dict(color='rgb(0,255,0)'))

 data=[trace1, trace2, trace3, trace4,trace5]

 layout=go.Layout(

 title='Salinity Curve',

 xaxis=dict(

 title='Distance from mouth(m)',

 range=[0,25000],

 showgrid=True,

 zeroline=True,

 showline=True,

92

 autotick=True,

 ticks='',

 showticklabels=True),

 yaxis=dict(

 title="Salinity (ppt.)",

 range=[0,50.00],

 showgrid=True,

 zeroline=True,

 showline=True,

 autotick=True,

 ticks='',

 showticklabels=True))

 fig = go.Figure(data=data, layout=layout)

 py.offline.plot(fig,filename="Salinity Curve.html")

#--

 #Model Performance

 print #Spacing

 print("Model Performance")

 def exp(n):

 n=math.exp(n)

 return n

93

 def loge(n):

 n=math.log(n)

 return n

 nHWS=[]

 xmHWS=[]

 SmHWS=[]

 diff2HWS=[]

 obsdiff2HWS=[]

 NHWS=0

 totalSoHWS=0

 totaldiffsqrHWS=0

 totalobsdiffsqrHWS=0

 nLWS=[]

 xmLWS=[]

 SmLWS=[]

 diff2LWS=[]

 obsdiff2LWS=[]

 NLWS=0

 totalSoLWS=0

 totaldiffsqrLWS=0

 totalobsdiffsqrLWS=0

94

 #Get HWS Salinity by using TA condition

 for n in range (countHWS):

 xmea=xoHWS[n]-E0/2

 if xmea<=x1:

Amea=A0*exp(-(xmea/float(a1))) #Enable division done

correctly

 if D0*(1-beta*(exp(xmea/float(a1))-1))>0:

 Dmea=D0*(1-beta*(exp(xmea/float(a1))-1))

 else:

 Dmea=0

Smea=(S0-Sf)*((Dmea/float(D0))**(1/float(K)))+Sf

else:

 Amea=A1*exp(-((xmea-x1)/float(a2)))

 if D1*(1-beta1*(exp((xmea-x1)/float(a2))-1))>0:

 Dmea=D1*(1-beta1*(exp((xmea-x1)/float(a2))-1))

 else:

 Dmea=0

 Smea=((S1-Sf)*((Dmea/float(D1))**(1/float(K))))+Sf

xmHWS.append(xoHWS[n]) #Distance of mouth of HWS at TA

condition (xoHWS-E0/2)

SmHWS.append(Smea) #Salinity of simulated HWS at the

specific point

95

totalSoHWS=totalSoHWS+SoHWS[n] #Total Observed Salinity

for obtain Average of Observed Values

SoHWSmean=totalSoHWS/countHWS #Average of Observed

Values (NSE)

 for n in range (countHWS):

 NHWS=NHWS+1

 diffsqrHWS=(SmHWS[n]-SoHWS[n])**2 #(Smea-Sobs)^2

totaldiffsqrHWS=totaldiffsqrHWS+diffsqrHWS #Summation of

(Smea-Sobs)^2 (NSE/RMSE)

obsdiffsqrHWS=(SoHWS[n]-SoHWSmean)**2 #(Sobs-

Sobs(avg))^2 (NSE)

totalobsdiffsqrHWS=totalobsdiffsqrHWS+obsdiffsqrHWS #

Summation of (Sobs-Sobs(avg))^2 (NSE)

 nHWS.append(NHWS)

 diff2HWS.append(diffsqrHWS)

 obsdiff2HWS.append(obsdiffsqrHWS)

 #Get LWS Salinity by using TA condition

 for n in range (countLWS):

 xmea=xoLWS[n]+E0/2

 if xmea<=x1:

Amea=A0*exp(-(xmea/float(a1))) #Enable division done

correctly

96

 if D0*(1-beta*(exp(xmea/float(a1))-1))>0:

 Dmea=D0*(1-beta*(exp(xmea/float(a1))-1))

 else:

 Dmea=0

Smea=(S0-Sf)*((Dmea/float(D0))**(1/float(K)))+Sf

 else:

 Amea=A1*exp(-((xmea-x1)/float(a2)))

 if D1*(1-beta1*(exp((xmea-x1)/float(a2))-1))>0:

 Dmea=D1*(1-beta1*(exp((xmea-x1)/float(a2))-1))

 else:

 Dmea=0

 Smea=((S1-Sf)*((Dmea/float(D1))**(1/float(K))))+Sf

xmLWS.append(xoLWS[n]) #Distance of mouth of LWS

at TA condition (xoHWS+E0/2)

SmLWS.append(Smea) #Salinity of simulated LWS at the

specific point

totalSoLWS=totalSoLWS+SoLWS[n] #Total Observed

Salinity for obtain Average of Observed Values

SoLWSmean=totalSoLWS/countLWS #Average of

Observed Values (NSE)

 for n in range (countLWS):

 NLWS=NLWS+1

 diffsqrLWS=(SmLWS[n]-SoLWS[n])**2 #(Smea-Sobs)^2

97

totaldiffsqrLWS=totaldiffsqrLWS+diffsqrLWS #Summation of

(Smea-Sobs)^2 (NSE/RMSE)

obsdiffsqrLWS=(SoLWS[n]-SoLWSmean)**2 #(Sobs-

Sobs(avg))^2 (NSE)

totalobsdiffsqrLWS=totalobsdiffsqrLWS+obsdiffsqrLWS #

Summation of (Sobs-Sobs(avg))^2 (NSE)

 nLWS.append(NLWS)

 diff2LWS.append(diffsqrLWS)

 obsdiff2LWS.append(obsdiffsqrLWS)

#--

 #RMSE (HWS)

 RMSEHWS=((totaldiffsqrHWS)/float(countHWS))**0.5

 print("RMSE (HWS) ="+str(RMSEHWS))

 #NSE (HWS)

 NSEHWS=1-((totaldiffsqrHWS)/float(totalobsdiffsqrHWS))

 print("NSE (HWS) ="+str(NSEHWS))

 #RMSE (LWS)

 RMSELWS=((totaldiffsqrLWS)/float(countLWS))**0.5

 print("RMSE (LWS) ="+str(RMSELWS))

 #NSE (LWS)

 NSELWS=1-((totaldiffsqrLWS)/float(totalobsdiffsqrLWS))

 print("NSE (LWS) ="+str(NSELWS))

98

#--

 #Tabulation HWS

 #Tabulation RMSE (HWS)

 print #Spacing

 ####PrettyTable plot#####

 print ("####Root Mean Square Error, RMSE (HWS)####")

 total=[countHWS," "," ","Total Error^2",totaldiffsqrHWS]

 rmse=[" "," "," ","RMSE",RMSEHWS]

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("n",nHWS)

 pt.add_column("xoHWS(m)",xmHWS)

 pt.add_column("SmHWS(ppt)",SmHWS)

 pt.add_column("SoHWS(ppt)",SoHWS)

 pt.add_column("(SmHWS-SoHWS)^2",diff2HWS)

 pt.add_row(total)

 pt.add_row(rmse)

 print pt

 ####PrettyTable plot#####

 print #Spacing

99

 #Tabulation NSE(HWS)

 ####PrettyTable plot#####

 print ("####Nash-Sucliffe Efficiency, NSE (HWS)####")

 total=[countHWS," "," ","Total",totaldiffsqrHWS,totalobsdiffsqrHWS]

 nse=[" "," "," ","NSE",NSEHWS," "]

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("n",nHWS)

 pt.add_column("xoHWS(m)",xmHWS)

 pt.add_column("SmHWS(ppt)",SmHWS)

 pt.add_column("SoHWS(ppt)",SoHWS)

 pt.add_column("(SmHWS-SoHWS)^2",diff2HWS)

 pt.add_column("(SoHWS-SoHWSmean)^2",obsdiff2HWS)

 pt.add_row(total)

 pt.add_row(nse)

 print pt

 ####PrettyTable plot#####

 print #Spacing

#--

 #Tabulation LWS

 #Tabulation RMSE (LWS)

100

 ####PrettyTable plot#####

 print ("####Root Mean Square Error, RMSE (LWS)####")

 total=[countLWS," "," ","Total Error^2",totaldiffsqrLWS]

 rmse=[" "," "," ","RMSE",RMSELWS]

 from prettytable import PrettyTable as ptable

 pt=ptable()

 pt.add_column("n",nLWS)

 pt.add_column("xoLWS(m)",xmLWS)

 pt.add_column("SmLWS(ppt)",SmLWS)

 pt.add_column("SoLWS(ppt)",SoLWS)

 pt.add_column("(SmLWS-SoLWS)^2",diff2LWS)

 pt.add_row(total)

 pt.add_row(rmse)

 print pt

 ####PrettyTable plot#####

 #Tabulation NSE(LWS)

 ####PrettyTable plot#####

 print ("####Nash-Sucliffe Efficiency, NSE (LWS)####")

 total=[countLWS," "," ","Total",totaldiffsqrLWS,totalobsdiffsqrLWS]

 nse=[" "," "," ","NSE",NSELWS," "]

 from prettytable import PrettyTable as ptable

101

 pt=ptable()

 pt.add_column("n",nLWS)

 pt.add_column("xoLWS(m)",xmLWS)

 pt.add_column("SmLWS(ppt)",SmLWS)

 pt.add_column("SoLWS(ppt)",SoLWS)

 pt.add_column("(SmLWS-SoLWS)^2",diff2LWS)

 pt.add_column("(SoLWS-SoLWSmean)^2",obsdiff2LWS)

 pt.add_row(total)

 pt.add_row(nse)

 print pt

 ####PrettyTable plot#####

#--

 if menuselect==7:#Help

print("This SALT application programme uses the theory of

Savenije(2005) and Gisen et al.(2015) model. Please refer to Salinity and

Tides website (https://salinityandtides.com/).")

#--

 if menuselect==0:#Exit

 SALT=0 #No Looping

 break

