INTEGRATED ASSESTMENT OF THE KLANG RIVER WATER QUALITY FOR ENVIROMENTAL MANAGEMENT

MOHAMAD HASAN BIN RAJA AZNN

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

FOR MY PARENTS AND THOSE WHO SUPPORT ME

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Civil Engineering and Earth Resources

(Supervisor's Signature)

Full Name : DR. MIR SUJAUL ISLAM

Position : UNDERGRADUATE RESEARCH PROJECT SUPERVISOR

Date : 16 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature)

Full Name : MOHAMAD HASAN BIN RAJA AZNN

- ID Number : AA13170
- Date : 16 JUNE 2017

INTEGRATED ASSSESMENT OF THE KLANG RIVER WATER QUALITY FOR ENVIROMENTAL MANAGEMENT

MOHAMAD HASAN BIN RAJA AZNN

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

After an intensive period of five months, today is the day: writing this note of thanks is the final addition on my thesis. It has been a period of intense learning for me, not only in the scientific arena, but also on a personal level. Writing this thesis has had a big impact on me. I would like to reflect on the people who have supported and helped me so much throughout this period

I would first like to thank my dedicated supervisor, Dr. Mir Sujaul Islam for his support, guidance and constant encouragement in this research possible. You supported me greatly and were always willing to help me. I want also to thank you for your excellent cooperation and for all of the opportunities I given to conduct my research and further my thesis

In addition, I would also like to thank my parents, Raja Aznn bin Mohamed and Asiah binti Sulaiman for their wise counsel and sympathetic ear. You are always there for me. Besides, there are also my sister and my friends, Aiman, Amir Mokhtar, Fatin Hasnina and the others friends whom company during conducted this research. We were not only able to support each other but also happily by talking things other than just our papers.

Finally yet importantly, I would like to thank all FKASA laboratory staff, especially Madam Hazimah, Mr. Qari and Mr. Mr. Suhaimi for their valuable guidance. You definitely provided me with the tools that I needed to choose the right direction and successfully complete my thesis

TABLE OF CONTENT

DEC	CALARATION	
TIT	TLE OF PAGE	
ACF	KNOWLEDGMENT	ii
ABSTRACT		iii
ABS	STRAK	iv
TAB	BLE OF CONTENT	v
LIST	T OF TABLES	ix
LIST	T OF FIGURES	ix
LIST	T OF SYMBOL	xi
CHA	APTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Significant of Study	2
1.4	Objectives	3
1.5	Scope of Study	3
1.6	Expected Outcome	3
CHA	APTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2	The Water Cycle	4
2.3	River in Malaysia	5
2.4	Klang River Basin	6

2.5	Sources of Water Pollution		
	2.5.1 Point Sources	7	
i)	Domestic Wastewater Discharge		
ii)	i) Combined-Sewer Overflows		
	2.5.2 Nonpoint Sources	9	
2.6	Water Quality Index	11	
2.7	Water Quality Parameter	11	
	2.7.1 Dissolved Oxygen	12	
	2.7.2 Biochemical Oxygen Demand	12	
	2.7.3 Chemical Oxygen Demand	13	
	2.7.4 Total Suspended Solid	13	
	2.7.5 Ammoniacal Nitrogen	14	
	2.7.6 pH	14	
	2.7.7 Temperature	15	
	2.7.8 Turbidity	15	
	2.7.9 Electrical Conductivity	15	
	2.7.10 Heavy Metals	16	
CHAI	PTER 3 RESEARCH METHODOLOGY	17	
3.1	Introduction		
3.2	Selection of Research Locations	18	
3.3	Sample Collection	20	
3.4	In-situ Test		
3.5	Ex-situ Test		
3.6	Method and Apparatus	21	
	3.6.1 Biochemical Oxygen Demand	21	

	3.6.2 Chemical Oxygen Demand	22
	3.6.3 Total Suspended Solid	23
	3.6.4 Ammoniacal Nitrogen	23
	3.6.5 Heavy Metals	23
3.7	Water Quality Index	24
3.8	Statistical Analysis	
CHA	PTER 4 RESULT AND DISCUSSION	26
4.1	Dissolved Oxygen	26
4.2	pH	29
4.3	Temperature	30
4.4	Turbidity	32
4.5	Electrical Conductivity	34
4.6	Total Suspended Solid	36
4.7	Biochemical Oxygen Demand	38
4.8	Chemical Oxygen Demand	40
4.9	Ammoniacal Nitrogen	42
4.10	Presence of Heavy Metals	44
	4.10.1 Presence of Cadmium, Cd	44
	4.10.2 Presence of Zinc, Zn	46
	4.10.3 Presence of Ferum, Fe	47
4.11	Water Quality Index	48
4.12	Sources of Contamination and Recommended Actions to Taken	49

CHAPTER 5 CONCLUSION AND RECOMMENDATION	52
REFERENCES	53
APPENDIX A	56
APPENDIX B	58

LIST OF TABLES

TABLE NO.	TITTLE	PAGE
4.1.1	DO reading during first sampling	26
4.1.2	DO reading during second sampling	27
4.2.1	pH reading during first sampling	28
4.2.2	pH reading during second sampling	29
4.3.1	Temperature reading during first sampling	30
4.3.2	Temperature reading during second sampling	31
4.4.1	Turbidity reading during first sampling	32
4.4.2	Turbidity reading during second sampling	32
4.5.1	Electrical conductivity reading during first sampling	33
4.5.2	Electrical conductivity reading during second sampling	34
4.6.1	Total suspended solid reading during first sampling	35
4.6.2	Total suspended solid reading during second sampling	36
4.7.1	Biochemical oxygen demand reading during first sampling	37
4.7.2	Biochemical oxygen demand reading during second sampling	38
4.8.1	Chemical oxygen demand reading during first sampling	39

4.8.2	Chemical oxygen demand reading during second sampling	40
4.9.1	Ammoniacal Nitrogen reading during first sampling	41
4.9.2	Ammoniacal Nitrogen reading during second sampling	42
4.10.1.1	Presence of Cadmium, Cd during first sampling	43
4.10.1.2	Presence of Cadmium, Cd during second sampling	44
4.10.2.1	Presence of Zinc, Zn during first sampling	45
4.10.2.2	Presence of Zinc, Zn during second sampling	45
4.10.3.1	Presence of Ferum, Fe during first sampling	46
4.10.3.2	Presence of Ferum, Fe during second sampling	47
4.11.1	Water Quality Index	48
5	Calculation for sub-index parameter (DOE, 2006)	54
6	Water classes and uses (DOE, 2006)	55
7	DOE water quality index classification	55

LIST OF FIGURES

FIGURE NO.	TITTLE	PAGE
2.1	Klang River basin	7
3.1	Sampling point of the research	18
3.2	Flow chart of the research	19
4.1.1	Dissolved oxygen profile during first sampling	26
4.1.2	Dissolved oxygen profile during second sampling	27
4.2.1	pH profile during first sampling	29
4.2.2	pH profile during second sampling	29
4.3.1	Temperature profile during first sampling	30
4.3.2	Temperature profile during second sampling	31
4.4.1	Turbidity profile during first sampling	32
4.4.2	Turbidity profile during second sampling	33
4.5.1	Electrical conductivity profile during first sampling	34
4.5.2	Electrical conductivity profile during second sampling	35
4.6.1	Total suspended solid profile during first sampling	36
4.6.2	Total suspended solid profile during second sampling	37
4.7.1	Biochemical oxygen demand profile during first sampling	38

4.7.2	Biochemical oxygen demand profile during second sampling	39
4.8.1	Chemical oxygen demand profile during first sampling	40
4.8.2	Chemical oxygen demand profile during second sampling	41
4.9.1	Ammoniacal nitrogen profile during first sampling	42
4.9.2	Ammoniacal nitrogen profile during second sampling	43
4.10.1.1	Presence of Cadmium, Cd during first sampling	44
4.10.1.2	Presence of Cadmium, Cd during second sampling	44
4.10.2.1	Presence of Zinc, Zn during first sampling	45
4.10.2.2	Presence of Zinc, Zn during second sampling	46
4.10.3.1	Presence of Ferum, Fe during first sampling	46
4.10.3.2	Presence of Feruum, Fe during second sampling	47
5	Wastewater discharge to river at Station A	56
6	Station A located at commercial areas	56
7	Water discharge from pavement surface at Station B	57
8	Sunny day during first sampling	57
9	In-situ test using Horiba (multiparameter water quality index)	58
10	Prevention of sample at site	58
11	Rainy day during second sampling	59

LIST OF SYMBOLS

- WQI- Water Quality Index
- DO- Dissolved Oxygen
- BOD- Biochemical Oxygen Demand
- COD- Chemical Oxygen Demand
- NH3-N- Ammoniacal Nitrogen
- TSS- Total Suspended Solid
- Cd- Cadmium ion
- Zn- Zinc ion
- Fe- Ferum ion
- UMP Universiti Malaysia Pahang