STABILITY ANALYSIS AND IMPROVEMENT EVALUATION ON RESIDUAL SOIL SLOPE WITH REINFORCEMENT LOAD: BUILDING CRACKED & SLOPE FAILURE

GOH JEE REN

UNIVERSITI MALAYSIA PAHANG

SUPERVISORS'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering Technology in Infrastructure Management.

(Supervisor's Sign	nature)
Name of Supervisor	: DR. MOHD FAKHRURRAZI BIN ISHAK
Position	: SENIOR LECTURER (UMP)
Date	:

(Co-supervisor's Sig	nature)
Name of Co-Supervisor	: EN. MAHADI BIN ABD HAMID
Position	: DIRECTOR (GET SERVICES)
Date	:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duty acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

(Student's Signature) Name : GOH JEE REN ID Number : TE 14023 Date :

STABILITY ANALYSIS AND IMPROVEMENT EVALUATION ON RESIDUAL SOIL SLOPE WITH REINFORCEMENT LOAD: BUILDING CRACKED & SLOPE FAILURE

GOH JEE REN

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Engineering Technology (Infrastructure Management)

> Faculty of Engineering Technology UNIVERSITI MALAYSIA PAHANG

> > JANUARY 2018

ACKNOWLEDGEMENTS

It is always a pleasure to remind the fine people in the Engineering Technology programme for their sincere guidance I received to uphold my research study as well as technical and writing skills in engineering technology.

Firstly, I would like to thank all the staffs and lecturers of Faculty of Engineering Technology from UMP and the related industry persons, especially my supervisor Dr. Mohd Fakhrurrazi Bin Ishak and co-supervisor En. Mahadi Bin Abd. Hamid who keep on giving me the information and helping hands within the researched months, for meticulously planning research scheduling in such a way that making me understanding the different system of legal research and conceptual problems in my research paper. I would wish to extend his thanks and appreciation for his fully support to reform my undergraduate studies and research activities, particularly research and quality assurance of data analysis.

Besides, I would also like to thanks my laboratory staff, En. Mohd Sharulnizam Bin Wahap and also other staffs for their invaluable guidance, continuous encouragement and constant support in undergone my research in-situ site exploration and lab testing. Without their helped, I would not have gone through my researched smoothly. While under their supervision, I have learned a lot of technical skills and also knowledge in geotechnical engineering. They have always impressed me with their outstanding professional conduct, strong conviction for engineering science, and commitment to my future career. I sincerely thanks for the time spent proofreading and correcting my many mistakes.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life, my family members for supporting me mentally and physically not only during this research studied but also during my whole studies of undergraduate degree in order to born as a part in construction industry one day.

In addition, grateful acknowledge to all of my friends who never give up in giving their support to me in all aspects of life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this researched. Thank you very much my friends, I will never forget all of your kindness. Finally, I apologized to all other unnamed who helped me in various way to have a good researched.

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION

STUDENT'S DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS	ii
ABSTRAK	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv

CHAP	TER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objective of Study	4
1.4	Scope of Study	4
1.5	Significance of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	Introduction	
2.2	Geolo	gy and Slope	8
	2.2.1	Geology Landform Slope	8
	2.2.2	Types of Slope	9
2.3	Slope	Failure Mechanism	10
	2.3.1	Types of Rock Slope Failure	10
	2.3.2	Types of Soil Slope Failure	11
	2.3.3	Factors Affecting Slope Failure	11
	2.3.4	Preventing and Monitoring Slope Failure	12
2.4	Geote	Geotechnical Slope Stability Analysis	
	2.4.1	Main Aim and Scope of Geotechnical Slope Analysis	15

	2.4.2	Deterministic Slope Stability Analysis	16
	2.4.3	Types of Slope Stability Analysis	16
		2.4.3.1 Ordinary Method of Slices (Fellenius Method)	16
		2.4.3.2 Bishop Simplified Method	17
		2.4.3.3 Janbu Generalized Method	18
		2.4.3.4 Spencer Method	18
		2.4.3.5 Sarma Method	18
		2.4.3.6 Morgenstern Price Method	18
	2.4.4	Comparison Between Different Slope Stability Method	19
2.5	Slope	Reinforcement Stabilization	19
	2.5.1	Design Consideration of Reinforced Slope	20
	2.5.2	Advantages of Reinforced Soil Structure	20
	2.5.3	Types of Reinforced Soil Slope	22
		2.5.3.1 Soil Nailing	22
		2.5.3.2 Ground Anchor	23
		2.5.3.3 Driven Piles	24
		2.5.3.4 Geosynthetic – Fabric	25

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introd	Introduction		
3.2	Resea	rch Design	27	
3.3	Resea	Research Methodology		
	3.3.1	Literature Review	29	
	3.3.2	Site Reconnaissance	29	
	3.3.3	Site Investigation & Field Works	33	
	3.3.4	Geotechnical Soil Laboratory Testing Works	34	
		3.3.4.1 Standard Proctor Test	34	
		3.3.4.2 Particle Size Analysis	35	
		3.3.4.3 Atterberg Limits	36	
		3.3.4.4 Triaxial Compression Test	37	
		3.3.4.5 Laser Distometer Measurement	38	
		3.3.4.6 Geo-STUDIO Software (SLOPE/W)	39	
3.4	Projec	ct Study Process	40	

CHAPTER 4	RESULT AND	ANALYSIS

4.1	Introd	uction	41
4.2	Geote	chnical Exploration	42
4.3	Geote	chnical Laboratory Testing	45
	4.3.1	Standard Proctor Test	45
	4.3.2	Particle Size Analysis	47
	4.3.3	Atterberg Limit Test	50
	4.3.4	Unified Soil Classification System (USCS)	52
	4.3.5	Consolidated Undrained Triaxial Test (CIU)	53
	4.3.6	Consolidated Drained Triaxial Test (CD)	54
4.4	Slope	Stability Analysis	55
	4.4.1	Geotechnical Slope Design Parameters	55
	4.4.2	Sub-Surface Soil Profiles	56
	4.4.3	Slope Geometry + Piezometric Line + Building Surcharged	57
		Load	
	4.4.4	Slope Stability Analysis with FOS (Slope Failure)	58
4.5	Slope	Reinforced Stability Improvement	59
	4.5.1	Reinforced Slope with Single Reinforcement Load	59
		4.5.1.1 Reinforcement Load of Ground Anchor	60
		4.5.1.2 Reinforcement Load of Soil Nailing	62
		4.5.1.3 Reinforcement Load of Geo-Fabric	64
		4.5.1.4 Reinforcement Load of Driven Pile	66
		4.5.1.5 Summary of Single Reinforcement Slope Stabilization	68
	4.5.2	Reinforced Slope with Combination Reinforcement Load	69
		4.5.2.1 Ground Anchor + Geo-Fabric	70
		4.5.2.2 Ground Anchor + Driven Pile	71
		4.5.2.3 Geo-Fabric + Driven Pile	72
		4.5.2.4 Ground Anchor + Geo-Fabric + Driven Pile	73
		4.5.2.5 Summary of Combination Reinforcement Slope	74
		Stabilization	
	4.5.3	Stability Comparison of Single & Combination Reinforcement	76
		Slope	

СНА	APTER 5 CONCLUSION AND RECOMMENDATION	
5.1	Introduction	78
5.2	Analysis on Slope Stability Against Failure	79
5.3	Improvement Evaluation with Reinforcement Load	79
5.4	Recommendation / Future Research	80
REF	ERENCES	81
APP	ENDICES	
Α	PARTICLE SIZE ANALYSIS FOR BOREHOLE 1	84
В	PARTICLE SIZE ANALYSIS FOR BOREHOLE 2	85
С	PARTICLE SIZE ANALYSIS FOR BOREHOLE 3D	86
D	PARTICLE SIZE ANALYSIS FOR BOREHOLE 2 & 3	87
Ε	CONSOLIDATED UNDRAINED TRIAXIAL TEST (CIU)	88
F	UNCONSOLIDATED UNDRAINED TRIAXIAL TEST (UU)	89
G	UNCONSOLIDATED UNDRAINED TRIAXIAL TEST (UU)	90
Н	CONSOLIDATED DRAINED TRIAXIAL TEST (CD) FOR	91
	TRIAL PIT-1	
Ι	CONSOLIDATED DRAINED TRIAXIAL TEST (CD) FOR	92
	TRIAL PIT-2	
J	CD TEST GRAPH ANALYSIS FOR TRIAL PIT-1	93
K	CD TEST GRAPH ANALYSIS FOR TRIAL PIT-2	94
L	CD TEST STRESS GRAPH ANALYSIS FOR TRIAL PIT-1 &	2 95
Μ	CRITICAL FOS OF REINFORCED SLOPE (GROUND	96
	ANCHORS)	
Ν	CRITICAL FOS OF REINFORCED SLOPE (SOIL NAILING)	99
0	CRITICAL FOS OF REINFORCED SLOPE (GEO-FABRIC)	102

Р	CRITICAL FOS OF REINFORCED SLOPE (DRIVEN PILE)	105
Q	CRITICAL FOS OF REINFORCED SLOPE (ANCHOR +	108
	FABRIC)	
R	CRITICAL FOS OF REINFORCED SLOPE (ANCHOR + PILE)	110
S	CRITICAL FOS OF REINFORCED SLOPE (FABRIC + PILE)	112
Т	CRITICAL FOS OF REINFORCED SLOPE (ANCHOR +	114

FABRIC + PILE)

LIST OF TABLES

Table 2.1	The important factors properties that affecting the landslide	12
Table 2.2	The comparison between different slope stability analysis methods	19
Table 2.3	The advantages descriptions of reinforced slope	21
Table 4.1	Soil conditions of trial pit 1	44
Table 4.2	Soil conditions of trial pit 2	44
Table 4.3	Compaction test of soil (TP-1)	45
Table 4.4	Compaction test of soil (TP-2)	46
Table 4.5	Cumulative percent passing by Sieve Analysis for Borehole 1, 2 & 3	48
Table 4.6	Results of soil plasticity index for Borehole 1, 2 & 3	50
Table 4.7	Unified Soil Classification System (USCS) for Borehole 1	52
Table 4.8	Mode of failure sketch for sample specimen	53
Table 4.9	Summarized results of CD test for trial pit 1 & 2	54
Table 4.10	Soil properties of slope design materials	55
Table 4.11	Slope design descriptions for stability analysis	57
Table 4.12	Design parameters description for reinforcement load	59
Table 4.13	Critical FOS of reinforced slope (Typical Slope + Ground Anchors)	60
Table 4.14	Critical FOS of reinforced slope (Typical Slope + Soil Nailing)	62
Table 4.15	Critical FOS of reinforced slope (Typical Slope + Geo-Fabric)	64
Table 4.16	Critical FOS of reinforced slope (Typical Slope + Driven Pile)	66
Table 4.17	Critical FOS of reinforced slope (Typical Slope + Anchor + Fabric)	70
Table 4.18	Critical FOS of reinforced slope (Typical Slope + Anchor + Pile)	71
Table 4.19	Critical FOS of reinforced slope (Typical Slope + Fabric + Pile)	72
Table 4.20	Critical FOS of reinforced slope (Typical Slope + Anchor + Fabric + Pile)	73

LIST OF FIGURES

Figure 1.1	Location of research study area	2
Figure 1.2	Crack formed on the building structural	3
Figure 1.3	Crack formed on the roadway along the slope	4
Figure 2.1	The nature relief of different slopes	9
Figure 2.2	Different types of rock slope failure	10
Figure 2.3	Different types of load slide or mass wasting process	11
Figure 2.4	The method of slices	17
Figure 2.5	Typical soil nail wall arrangement	22
Figure 2.6	Components of ground anchor system	23
Figure 2.7	Slope reinforced with piles method	24
Figure 2.8	Geosynthetic slope stabilization	25
Figure 3.1	Flow chart of Research Design	28
Figure 3.2	The site location of building and slope (rear left elevation)	30
Figure 3.3	The site location of building and slope (rear right elevation)	30
Figure 3.4	Topographic & 3D surface landform of slope failure area	31
Figure 3.5	Geological information of slope failure location	32
Figure 3.6	SPT boreholes drilling location plan	33
Figure 3.7	Standard compaction proctor test apparatus	34
Figure 3.8	Electromagnetic vibrator sieve shaker machine	35
Figure 3.9	Cone penetrometer machine	36
Figure 3.10	Automated triaxial test computerized system	37
Figure 3.11	Leica DISTO – D810 Touch	38
Figure 3.12	GEO-SLOPE GeoStudio 2007 v7.10.4143	39
Figure 4.1	Trial pits excavation location plan	43
Figure 4.2	Curve graph of soil compaction	46
Figure 4.3	Summarized for sieve analysis % passing of BH 1, 2 & 3	48
Figure 4.4	Subsurface soil condition properties for each borehole	56
Figure 4.5	Slope model of initial condition	57
Figure 4.6	Typical slope stability situation (without building structural)	58
Figure 4.7	Back analysis results of critical FOS with building surcharged load	58
Figure 4.8	Design analysis results of critical FOS for Ground Anchors	61

Figure 4.9	Design analysis results of critical FOS for Soil Nailing	63
Figure 4.10	Design analysis results of critical FOS for Geo-Fabric	65
Figure 4.11	Design analysis results of critical FOS for Driven Piles	67
Figure 4.12	Design analysis results of critical FOS for Single Reinforcement Slope	68
Figure 4.13	Design analysis results of critical FOS for Combination Reinforcement Slope	74
Figure 4.14	Comparison design analysis results of critical FOS for Single & Combination Reinforcement Slope	76

LIST OF SYMBOLS

C'	Cohesion of Soil
φ'	Effective Stress Friction Angle (phi)
E'	Young Modulus
b	Slice Width
Х	Base Length
۵°	Base Angle
l	Base Shear Stress
Ν	Base Normal Force
W	Weight (include vertical seismic)
\mathbf{E}_1	Right Side Normal Force
E_2	Left Side Normal Force
X_1	Right Side Shear Force
\mathbf{X}_2	Left Side Shear Force
Р	Surface Pressure Load
L	Length of Reinforcement Load
Mg	Milligram
%	Percentage
D	Sample Code
SC	Clayey Sand
CM	
SM	Silty Sand
SM SP	Silty Sand Poorly Graded Sand
	•
SP	Poorly Graded Sand
SP ML	Poorly Graded Sand Silt
SP ML MH	Poorly Graded Sand Silt Silt of High Plasticity, Elastic Silt

LIST OF ABBREVIATIONS

IIUM	International Islamic University Malaysia
FOS	Factor of Safety
WWW	World Web Wide
Et al.	and others (Latin words)
US	United States
BWE	Ballast Water Exchange
2D	Two - Dimensional
3D	Three - Dimensional
OMS	Ordinary Method of Slices
ASTM	American Society for Testing and Materials
N. D	No Date
FYP	Final Year Project
UMP	Universiti Malaysia Pahang
FTEK	Faculty of Engineering Technology
V.	Version
SPT	Standard Penetration Test
m	Metre
BS	British Standard
UU	Unconsolidated Undrained Triaxial Test
CIU	Consolidated Undrained Triaxial Test
CD	Consolidated Drained Triaxial Test
TP	Trial Pit
PL	Plastic Limit
LL	Liquid Limit
PI	Plasticity Index
ETIM	Engineering Technology Infrastructure Management
IUKL	Infrastructure University Kuala Lumpur
USCS	Unified Soil Classification System
BH	Borehole
JKR	Department of Malaysia Public Works