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ABSTRAK 

Dalam kajian ini, DR untuk kompleks surfaktan-polimer yang mempunyai caj dan 

kepekatan yang sama dan berbeza dikaji di dalam sistem akueus di bawah aliran gelora. 

‘Co-polimer’ akrilamida dan natrium acrylate (PAM) yang merupakan polimer anionik 

dan polietilena oksida (PEO) yang merupakan polimer bukan ionik telah digunakan 

dalam kajian ini. Surfaktan yang digunakan dalam kajian ini adalah hexadecyl trimethyl 

ammonium klorida (HTAC) yang merupakan surfaktan kationik dan sodium dodecyl 

benzena sulfonate (SDBS) yang merupakan surfaktan anionik. Kesan gabungan 

kompleks mereka (PAM-SDBS, PAM-HTAC, PEO-SDBS dan PEO-HTAC) ke atas DR 

juga dikaji. Pendekatan baru bagi menentukan tahap DR melalui kawalan ciri-ciri fizikal 

polimer dan surfaktan dan kompleks mereka telah dijalankan dalam kajian ini. Kajian ini 

dibahagikan kepada empat fasa eksperimen iaitu: (i) uji kaji ke atas kekonduksian elektrik 

untuk menentukan julat interaksi dan kelikatan kinematik untuk menilai kemampuan 

interaksi polimer dan surfaktan yang ditambah; (ii) eksperimen menggunakan alat cakera 

yang berputar (RDA) untuk menilai kecekapan bahan tambahan dan kestabilan masing-

masing di bawah kadar ricih dalam aplikasi DR; (iii) uji kaji untuk menguji prestasi 

peningkatan aliran kompleks polimer surfactant dari segi kadar aliran, kepekatan bahan 

tambahan, kepekatan pembentukan kompleks, kadar ricih, dan taburan halaju dalam 

aliran paip; (iv) eksperimen menggunakan MicroPro laser Doppler velocimeter MLDV 

MicroPro teknik untuk mengira halaju aliran dalam paip dan kemudahan aliran mana-

mana saiz pada dinding dan (v) data eksperimen telah dilampirkan dalam bentuk 

ungkapan statistik menggunakan perisian SPSS. Kajian mengenai kekonduksian elektrik 

dan kelikatan menunjukkan bahawa walaupun interaksi antara polimer dan surfaktan 

adalah lebih ketara apabila dinilai menggunakan ujian kelikatan, perbezaan yang 

minimum pada data yang diperolehi dicatat pada kepekatan PEO yang tinggi. Hubungan 

yang kuat dapat diperhatikan antara kelikatan sistem dan prestasi DR yang dicatat. Secara 

amnya keputusan RDA dan aliran dalam paip menunjukkan polar yang berbeza 

berdasarkan kepada parameter polimer surfaktan. Terdapat kesan yang ketara pada 

kelikatan dan DR pada sistem aliran yang disebabkan oleh interaksi yang kuat antara caj 

yang bertentangan dengan polimer dan surfaktan. Rintangan degradasi bagi PEO didapati 

bertambah baik dengan penambahan surfaktan. Hasil kajian menunjukkan polar yang 

berbeza (kenaikan atau penurunan) dalam DR bergantung kepada pelbagai faktor seperti 

kepekatan polimer, kepekatan surfaktan, kombinasi kompleks, interaksi antara caj-caj, 

dan nisbah kepekatan polimer-surfaktan. Jumlah DR yang maksimum iaitu 54% 

diperoleh pada gabungan 40 ppm PEO dengan 100 ppm HTAC. Dalam interaksi antara 

kompleks menggunakan PEO dengan surfaktan, pengurangan DR diperhatikan 

meningkat selepas titik interaksi (CAC). Walau bagaimanapun, peningkatan dalam DR 

telah menunjukkan penurunan kembali, walaupun kepekatan itu masih di bawah titik SPS 

(titik akhir interaksi). Kajian MLDV menunjukkan bahawa perubahan dalam struktur 

bergelora adalah disebabkan oleh pengubahsuaian profil halaju di bahagian yang 

berhampiran dengan dinding apabila menambah surfaktan ‘micelle’ kepada rantaian 

polimer seperti yang dinyatakan dalam teori. Menurut imej morfologi menggunakan 

Cryo-TEM, interaksi antara polimer dan surfaktan pada pembentukan kompleks dapat 

diperhatikan dengan jelas dan ini menerangkan bagaimana kelakuan aliran 

dipertingkatkan seperti yang dilaporkan melalui keputusan RDA dan kajian aliran dalam 

paip. Kesimpulannya, untuk mendapatkan DR yang baik bagi sesuatu sistem aliran 

bendalir, kepekatan polimer dan surfaktan yang tepat harus dikekalkan apabila gabungan 

polimer-surfaktan digunakan. 
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ABSTRACT 

In this study, the DR of surfactant-polymer complex at similar and different charges and 

concentrations in aqueous systems under turbulent flow was investigated. Copolymer of 

acrylamide and sodium acrylate (PAM) which are an anionic polymer and non-ionic 

polyethylene oxide (PEO) were used in this study. The surfactants used in the study are 

hexadecyl trimethyl ammonium chloride (HTAC) which is a cationic surfactant and 

sodium dodecyl benzene sulfonate (SDBS) which is an anionic surfactant. The effect of 

their complexes (PAM-SDBS, PAM-HTAC, PEO-SDBS, and PEO-HTAC) was also 

investigated for DR effect. A new approach for the determination of the limitations of 

DR through the control of the physical properties of the polymers and surfactant and their 

complexes were suggested in this study. This study is partitioned into five experimental 

phases which are: (i) experiments on the electrical conductivity to determine the 

interaction range, and the kinematic viscosity to evaluate the interaction behaviour of the 

additives; (ii) experiments using the rotating disk apparatus (RDA) to evaluate the 

efficiency of the additives and their respective stabilities under an extended shear rate in 

DR applications; (iii) experiments on testing the flow enhancement performance of the 

polymer-surfactant complexes in terms of the flow rate, additives concentrations, 

complexes formation concentrations, shear rate, and velocity distribution in pipe flow; 

(iv) experiments using the MicroPro laser Doppler velocimeter (MLDV) technique to 

calculate the flow velocity in the pipes and flow amenities of any size near to a wall and 

(v) experimental data were presented in term of statistically expression using statistical 

package for the social sciences (SPSS) software. The studies on the electrical 

conductivity and viscosity assessment showed that even though the interaction between 

the polymer and surfactant was more pronounced when evaluated using viscosity tests, a 

minimal deviation in the obtained data was observed at higher PEO concentrations. A 

strong relationship was observed between the viscosity of the system and the recorded 

DR performance. The results of the RDA and pipeline studies generally showed different 

patterns based on the polymer-surfactant parameters. There were pronounced effects on 

the viscosity and DR of the flow system which are mainly due to the strong interaction 

between the opposite charges of polymers and surfactants. The degradation resistance of 

PEO was found to improve with the addition of surfactants. The results showed a different 

trend (increase or decrease) in DR% depending on many parameters such as the polymer 

concentration, surfactant concentration, complex combination, charge interaction, and 

polymer-surfactant concentration ratio. A maximum DR of 54% was observed at a 

combination of 40 ppm of PEO with 100 ppm of HTAC. In the interaction of complexes 

using PEO with surfactant, the drag reduction was observed to increase after the 

interaction point critical aggregation concentration (CAC). However, the improvement 

in DR was noticed to decrease back again even when the concentration was still below 

the polymer saturation point (PSP). The MLDV studies showed that the change in the 

turbulent structure was due to the modification of the velocity profile in the region near 

the wall when adding micelle surfactants to the polymer chain which describes the theory. 

According to the morphology images using Cryo-Transmission electron microscopy 

(Cryo-TEM), the results have confirmed the interaction between polymer and surfactant 

on the formation of the complexes that clearly explains the enhanced flow behaviour 

reported by the RDA and the pipe studies. This study, concludes that there is a need to 

maintain the right concentration of the polymer and surfactant in the system for a better 

DR when using the combined polymer-surfactant approach. 
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