

AN EXPERIMENTAL STUDY OF
NEIGHBOURHOOD BASED META-

HEURISTICALGORITHMS FOR TEST CASE
GENERATION SATISFYING THE MODIFIED

CONDITION / DECISION COVERAGE
CRITERION

ARIFUL HAQUE

MASTERS OF SCIENCE
(SOFTWARE ENGINEERING)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declarationletter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : ___

Date of Birth : ___

Title : ___

Academic Session : ___

I declare that this thesis is classified as:

¨ CONFIDENTIAL (Contains confidential information under the Official
Secret Act 1997)*

¨ RESTRICTED (Contains restricted information as specified by the
organization where research was done)*

þ OPEN ACCESS I agree that my thesis to be published as online open access
(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number
Date:

 (Supervisor’s Signature)

Name of Supervisor
Date:

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Masters of

Science (Software Engineering).

 (Supervisor’s Signature)

Full Name : Prof. Dr. Kamal Zuhairi Bin Zamli

Position : Professor

Date : May 2018

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name :Ariful Haque

ID Number : MCS13002

Date : May 2018

AN EXPERIMENTAL STUDY OF NEIGHBOURHOOD BASED META-
HEURISTIC ALGORITHMS FOR TEST CASE GENERATOR SATISFYING THE

MODIFIED CONDITION / DECISION COVERAGE CRITERION

ARIFUL HAQUE

Thesis submitted in fulfillment of the requirements
for the award of the degree of

Master of Science (Software Engineering)

Faculty of Computer Systems and Software Engineering

UNIVERSITI MALAYSIA PAHANG

May 2018

ii

ACKNOWLEDGEMENTS

First of all, I would like to show my sincere gratitude and thank to my supervisor Prof.
Dr. Kamal Z. Zamli. His endless enthusiasm, constantly advice, support and patient have
encouraged me in completing this research work of master degree.

I would also like to thank my wife Salma Sultana Tajia to keep inspiring and encouraging
me to continue the research and complete the thesis. Thanks to my parents who not only
supported me, also funded my study in initial level. Without this support, it would not be
easy for me to start the Masters course.

Next, my appreciations are expressed towards the administrative staffs in the Faculty of
Computer Systems and Software Engineering (FSKKP), Institute of Postgraduate Studies
(IPS) and International Office (IO) for their passionate to handle all forms of official
tasks during my master study. The appreciations also go to all members of Bangladeshi
community, local and foreign friends in UMP.

Finally, this research work of Master study is funded and supported by UMP Postgraduate
Research Grant Scheme (PRGS) - “Development of AI Based Test Data Generation
Strategy Satisfying MC/DC Criterion”, Graduate Research Scheme (GRS) -
“Development of AI Based Test Data Generation Strategy Satisfying MC/DC Criterion”
from IPS, UMP. I would to thank UMP for funding the research and helping me to
concentrate on the study.

iii

ABSTRAK

Pengujian perisian adalah satu bahagian penting dan tidak boleh di kompromi dalam
pembangunan perisian bagi menentusahkan fungsi yang betul dan mengurangkan risiko
kegagalan. Apabila perisian digunapakai dalam aplikasi misi tahap kritikal, kegagalan
boleh menyebabkan kehilangan nyawa dan harta benda. Oleh yang demikian, adalah
menjadi kewajipan untuk menguji semua kemungkinan laluan fungsi perisian secara
menyeluruh. Pengujian menyeluruh adalah mustahil kerana sumber yang terhad dan
masalah kekangan masa. Ramai penyelidik mencadangkan kriteria Ubahan Keadaan /
Liputan Keputusan (MC / DC) sebagai penyelesaian kepada masalah ini masalah
terutamanya apabila input melibatkan pembolehubah Boolean. Selalunya, MC / DC boleh
mengurangkan bilangan kes-kes ujian secara mendadak dan memastikan semua laluan
kritikal diuji. Bagi menjana kes-kes ujian yang memuaskan kriteria MC / DC, ramai
penyelidik menggunakan algoritma meta-heuristik kejiranan (termasuk
Penyepuhlindapan Simulasi (SA) dan Pendakian Bukit (HC)). Walaupun berguna,
penggunaan algoritma kejiranan lain (termasuk Algorithma Bah Besar (GD) dan
Penerimaan Tertunda Pendakian Bukit(LAHC)) belum cukup diterokai. Bagi mengenal
pasti kekuatan dan kelemahan algoritma ini untuk MC / DC, kajian ini mencadangkan
satu kajian eksperimen yang melibatkan empat algoritma meta-heuristik kejiranan. Selain
daripada Penerimaan Tertunda Pendakian Bukit (LAHC) dan Great Algoritma (GDA)
yang dilaksanakan sendiri, penyelidikan ini juga mengimplementasi semula algoritma
Simulasi Penyepuhlindapan (SA) dan Pendakian Bukit (HC) untuk analisa perbandingan.
Algoritma telah digunakan untuk menjana kes-kes ujian selama sembilan ungkapan
Boolean yang berbeza kerumitan. Prestasi setiap algoritma dibandingkan dari segi
bilangan kes ujian yang dihasilkan serta masa yang diperlukan. Pengalaman kami
menunjukkan bahawa semua algoritma menjana kes ujian yang hampir sama, tetapi dari
segi prestasi, mereka berbeza antara satu sama lain. Hasil terperinci kajian ini akan
membantu jurutera ujian untuk memilih algoritma yang mereka perlukan untuk menjana
kes ujian dengan cekap dan optimum.

iv

ABSTRACT

Software testing is an important part of software development as it ensures the proper
functionality of software and reduces the risk of failure. In the case when software is
being adopted in a mission critical application, failure can lead to loss of life and fortunes.
Therefore, it is mandatory to test all possible functional paths of the software
exhaustively. Exhaustive testing is costly and time consuming and with the higher
number of inputs, the number of test cases increases exponentially. Many researchers
suggested the adoption of Modified Condition / Decision Coverage (MC/DC) criterion
as a solution to the problem particularly when the inputs involve Boolean variables.
Often, MC/DC can reduce the number of test cases dramatically and ensure critical paths
are tested. To generate test cases that satisfy MC/DC criterion, many researchers adopt
neighborhood based meta-heuristics algorithms (including that of Simulated Annealing
and Hill Climbing) as the problem itself is neighborhood based. Although useful, the
existing algorithms does not provide any comparative data to select an algorithm based
on the problem size and difficulty and the use of other neighborhood algorithms
(including Great Deluge and Late Acceptance Hill Climbing) has not been sufficiently
explored as well. In order to identify the strength and weakness of these algorithms for
MC/DC compliant test cases, this research proposes an experimental study involving four
neighborhoods based meta-heuristic algorithms. We have chosen four neighborhood
based algorithms which are commonly used in optimization problems and divided them
in newly implemented and re-implemented category. Late Acceptance Hill Climbing
(LAHC) and the Great Deluge Algorithm (GDA) which are our new implementation,
Simulated Annealing (SA) and Hill Climbing (HC) are re-implemented to generate test
cases satisfying MC/DC criterion for comparative analysis. The algorithms are used to
generate test cases for nine different Boolean expressions of different size and
complexities. Performance of each algorithm is compared in terms of number of test cases
generated as well as the run time required. Our experience indicates that all the algorithms
generate nearly similar number of test cases, but in terms of performance, they differ from
one another. The elaborated result of the study will help test engineers to choose the
algorithm they need to generate test cases efficiently and optimally.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Background and Motivation 1

1.1.1 Importance of Software Testing 2

1.2 Problem Statement 4

1.2.1 Problem with Existing Works and Motivation 5

1.3 Research Aim and Objective 6

1.4 Scope of the Research 6

1.5 Organization of the Thesis 7

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 MC/DC Criterion 8

2.2.1 Definitions 8

2.2.2 Structural Coverage and MC/DC 9

vi

2.2.3 MC/DC Test Cases 12

2.3 Overview of Software Testing 15

2.3.1 Black Box Testing 16

2.3.2 White Box Testing 16

2.4 Search Based Software Engineering 17

2.5 Search Based Software Testing 18

2.5.1 Solution 21

2.5.2 Fitness Function 22

2.6 Structural Testing 23

2.7 Use of Metaheuristics Algorithms to Automate Test Case Generation 25

2.7.1 Metaheuristics Algorithms 25

2.7.2 Evolutionary Testing 27

2.7.3 Local Search Techniques 29

2.8 Masking Problem and Modified Condition / Decision Coverage (MC/DC)

Criterion 42

2.9 Summary 50

CHAPTER 3 METHODOLOGY 52

3.1 Introduction 52

3.1.1 Justification of Neighbourhood-based metaheuristics algorithm 52

3.2 Algorithm Implementation Design 52

3.2.1 Control Flow Graph 53

3.2.2 Decision coverage and MC/DC coverage 55

3.3 MC/DC Pair Generation using Neighbourhood-based Algorithm 56

3.3.1 Stopping Criteria 57

3.3.2 Hill Climbing 57

vii

3.3.3 Great Deluge Algorithm 58

3.3.4 Simulated Annealing 60

3.3.5 Late Acceptance Hill Climbing 61

3.4 Algorithm Calibration 64

3.4.1 Comparative Studies 64

3.5 Subject Expressions 65

3.6 Approach Steps 65

3.7 Summary 66

CHAPTER 4 RESULTS AND DISCUSSION 68

4.1 Introduction 68

4.2 Result Presentation 68

4.3 Discussion 69

4.3.1 Group A: Expressions with 3 conditions 70

4.3.2 Group B: Expressions with 4 conditions 74

4.3.3 Group C: Expressions with 8 conditions 78

4.4 Observation 83

4.4.1 Presence of No Free Lunch Theorem: 83

4.4.2 Exploration and Exploitation 84

4.4.3 Easy to use 84

4.5 Summary 84

CHAPTER 5 CONCLUSION 86

5.1 Introduction 86

5.2 Concluding Remarks 86

5.3 Contributions 87

viii

5.4 Scope of Future Work 87

REFERENCES 89

APPENDIX A 95

ix

LIST OF TABLES

Table 2.1 Truth table of decision at line 21 of the Calculate method 15

Table 2.2 A Domestic Case Studies Probability to Overcome Software
Failures 47

Table 3.1 Algorithm Configuration Values 64
Table 3.2 List of Boolean expressions for experiment 65

Table 4.1 Result of minimum, maximum number of test cases generated 69
Table 4.2 Result of minimum, maximum and average run time from

experiments 69

x

LIST OF FIGURES

Figure 2.1 Representations of Elementary Logical Gates 13

Figure 2.2 Calculate Method 14
Figure 2.3 Block diagram of the genetic algorithm 29

Figure 2.5 Local Search Schema 31
Figure 2.6 Local optima problem in local search 32

Figure 2.7 Simulated Annealing Algorithm. Initial Temperature to cooling
down process. 36

Figure 2.8 Schema for Simulated Annealing 37
Figure 2.9 Schema for Great Deluge Algorithm 39

Figure 2.10 Schema for the LAHC algorithm 42
Figure 2.11 Simple function with AND condition 43

Figure 2.12 Simple function with OR condition and control flow graph 44
Figure 2.13 Equivalent If statement for AND operator of Figure 2.11 45

Figure 2.14 Equivalent If statement for OR operator of Figure 2.12 46
Figure 3.1 Calculation function 54

Figure 3.2 CFG of calculation method 55
Figure 3.3 Pseudo Code of Hill Climbing Algorithm 58

Figure 3.4 Great Deluge Algorithm Pseudo Code 60
Figure 3.5 Pseudo code of Simulated Annealing Algorithm 61

Figure 3.6 Late Acceptance Hill Climbing Pseudo Code 63
Figure 3.7 Approach Steps in the Automation of Testing 66

Figure 4.1 Number of test cases generated for the Expression 1 (Group A) 70
Figure 4.2 Number of test cases generated for the Expression 2 (Group A) 71

Figure 4.3 Number of test cases generated for the Expression 3, Group A. 71
Figure 4.4 Time Performance of different algorithms for Expression 1(Group

A) 72

Figure 4.5 Time Performance of different algorithms for Expression 2 (Group
A) 73

Figure 4.6 Time Performance different algorithms for Expression 3 (Group
A) 73

Figure 4.7 Number of test cases generated for the Expression 4 (Group B) 75
Figure 4.8 Number of test cases generated for the Expression 5 (Group B) 75

Figure 4.9 Number of test cases generated for the Expression 6 (Group B) 76
Figure 4.10 Result of Execution time of Expression 4 (Group B) 77

xi

Figure 4.11 Result of execution time for Expression 5 (Group B) 77
Figure 4.12 Time Performance of Algorithms forExpression 6 in Group B 78

Figure 4.13 Number of test cases generated for the expression 7 in Group C. 79
Figure 4.14 Number of test cases generated for the expression 8 in Group C. 80

Figure 4.15 Number of test cases generated for the expression 9 in Group C. 80
Figure 4.16 Time Performance of Algorithms for the expression 7 in Group C 82

Figure 4.17 Time Performance of Algorithms for the expression 7 in Group C 82
Figure 4.18 Time Performance of Algorithms for the expression 9 (Group C) 83

xii

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization
AMP Adaptive Memory Programming
CC Condition Coverage
CFG Control Flow Graph
DC Decision Coverage
ET Evolutionary Testing
FAA Federal Aviation Administration
GDA Great Deluge Algorithm
GPS Global Positioning System
GUI Graphical user Interface
HC Hill Climbing
IDE Integrated Development Environment
LAHC Late Acceptance Hill Climbing
LP Linear Programming
MC/DC Modified Condition Decision Coverage
MCC Multiple Condition Coverage
SA Simulated Annealing

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In the twenty first century, human life has become more comfortable, fast and

productive than at any time in history. The main reason for this change is that, now

machines and electronic devices can very efficiently do the work that people used to do

previously, and they can do it many times more efficiently than humans. Though

machines are physically doing the main work, software is controlling machines to

perform their task. Without software, almost all the machines and devices will be reduced

to some pieces of junk hardware.

From this perspective, application of software can be found almost everywhere.

From digital wristwatches to robots going to Mars or under Atlantic sea, are controlled

by software. From Global Positioning System (GPS) suggesting roads to choose to avoid

traffic jam, to autopilot taking control of airplanes in the sky, satellite orbiting Earth to

perform seamless communication around the Earth in seconds are run by sophisticated

software.

The comfort in human life achieved using software does have errors as well. By

the nature of software development, software may have faults and they can malfunction

in certain condition or time. Software needs to be very carefully designed and rigorously

tested before it is marketed, to avoid or at least reduce chances of malfunctioning.

Software testing is the process of finding defects (i.e. sometimes involve

executing the software of interest) and of validating the software/system against its

specification. Often, software testing adopts a set of test cases (also termed test suite) to

perform the actual tests. A basic test case contains number of certain input parameters

2

and expected output. When these test cases are executed, behaviour of the software

system is monitored to determine its correctness.

Often, test cases are required to cover an accepted percentage of code lines and

functions of the system being tested. A variety of coverage criteria have been proposed

to assess the effectiveness of the sampled set of test cases. As far as structural testing is

concerned, criteria exercising aspects of control flow, such as statement, branch and path

coverage, have been the most common criteria (Zamli, Al-Sewari, & Hassin, 2013).

Owing to resources and timing constraints, development of the right test cases

covering the aforementioned criteria is very challenging as there can be thousands to

millions of test cases depending on the size of particular software of interest. In the worst

scenario, if the software needs redesign and recode, all the test cases might need to be

rewritten also. For this reason, there is a need for an automated test case generation to

alleviate such problem.

Continuing from these aforementioned discussions, the next few sections

highlight overviews on software testing, problem statement discussion, thesis aim and

objectives, and research contributions. Finally, the thesis outline will be elaborated in

final section.

1.1.1 Importance of Software Testing

The effect of the software malfunction can vary with the criticality of the system

in which it is used. Malfunction of mobile phone software or a website providing daily

news or movie information can have no or very little effect on the necessities of human

life, but failure of banking and financial software may affect in financial loss. In June

2006, due to a software bug, a top telecommunication company send incorrect bill to its

11,000 customers and they were over-billed up to several thousand dollars each. They

fixed the bug immediately, but correcting the billing errors took much longer (Hower,

2010). After two months, in August 2006, 21,000 student load borrowers private

information was converted to public information by a software defect in a US

Government student loan service on its website (Kumar, Raghu, & Kumar, 2013). In

January 2009, a large health insurance denied the coverage for needed medicines and

cancelled some benefits. Later, it was found those insurance policies were mistakenly

sold owing to the problem in their computer system. The company was banned by

3

regulators from selling certain types of insurance policies because of the bug in their

system. The regulatory agency stated that the problems were posing "a serious threat to

the health and safety" of beneficiaries (Hower, 2010).

A glitch in the safety of critical software like nuclear plan management system,

air traffic collision avoidance system or aircraft flight control system may have serious

financial loss as well injury or loss of human life. In August 2008, more than 600 U.S.

airline flights were significantly delayed because of a database mismatch resulting in a

software glitch in the U.S. FAA air traffic control system (Hower, 2010). Another

example is the failure of Ariane 5, the rocket launched in 1996 by the European Space

Agency that exploded just forty seconds after its lift-off from Kourou, French Guiana.

The rocket was on its first voyage, and its development cost $7 billion. The cause of the

failure was an overflow in a conversion from a 64-bit floating point to a 16-bit integer.

The overflow caused the rocket computer to shut down for few seconds and lose all

contact with the ground station.

Incidents like this clearly show the importance of Quality Assurance in Software

Development life cycle. Software testing is one of the tools of Software Quality

Assurance (SQA), which validate the software against its actual requirements. Depending

on the genre of the software, different level of testing is required before release to the

market. Obviously, the level of ‘enough’ testing for a word processing application is not

enough for an air traffic collision avoidance system. Hence different testing standards

have emerged to give some guidelines for the right software testing standards. As just

one example, for the aerospace domain software should be compliant with RTCA/DO-

178B standard “Software Considerations in Airborne Systems and Equipment

Certification”. The document provides a set of verification and validation activities to

properly test a safety critical system. Failure to comply with the standard will prevent the

software to get aerospace market release approval from Federal Aviation Administration

(FAA).

While various criteria call for detailed attention and intensive research, the focus

of this work is on one of the criteria included in DO-178B, namely “Modified Condition/

Decision Coverage” (MC/DC). To be specific, MC/DC criterion dictates each condition

within a predicate (i.e. a set of Boolean expressions can independently influence the

4

outcome of the decision - while the outcome of all other conditions remains constant. In

this manner, MC/DC criterion subsumes statements, decisions, and path coverage.

1.2 Problem Statement

As highlighted earlier, test cases are required to cover an accepted percentage of

code lines and functions of the system being tested. At a glance, statement, decision and

path coverage appear sufficiently effective exercising the various parts of the software

implementation. Nonetheless, a closer look reveals otherwise. Statement, branch, and

path coverages are often susceptible to the problem of masking.

For small inputs, the problem of masking can be straightforwardly addressed by

considering all exhaustive input combinations. Yet, for large inputs involving complex

predicates, the number of exhaustive combinations can be prohibitively large.

Additionally, as the software is modified and new test cases are often added to the test

suite, the cost of regression testing keeps increasing. This scenario causes significant

challenge for test engineers, that is, in terms of getting the required sample test cases. To

address the test-suite size problem within the context of structural testing, many

researchers have started to advocate the usage of Modified Condition/Decision Coverage

(MC/DC) criterion as a strategy to systematically minimize the number of test cases for

testing, while keeping the effectiveness of testing at its highest.

As the problem of test case generation fulfilling MC/DC criterion is NP complete,

no single approach can generate optimal test set for every predicate consideration in

polynomial time, especially involving large and complex expressions. Furthermore, the

process of finding a set of test cases to achieve MC/DC criteria is typically a labour

intensive activity requiring much automation support.

Many researchers have already provided different solutions to the problem of Test

Case Generation that satisfy MC/DC criterion. Awedikian’s uses Hill Climbing (HC)

algorithm to generate MC/DC compliant test suite (Awedikian, Ayari, & Antoniol, 2009).

Ghani and Clark adopts Simulated Annealing(SA) (Ghani & Clark, 2009) while Ghada

El-Sayed’s adopts Genetic Algorithm(GA) for the same purpose (El-Sayed, Salama, &

Wahba, 2015).

5

While the aforementioned works have been useful to address the problem of

MC/DC test suite generation, they are not without limitations. HC has been criticized for

the tendency to fall into local optima solution. As such, generating MC/DC for large scale

predicate of Boolean expression can be problematic. SA based strategy is often overly

sensitive to the annealing schedule and initial starting points. Thus, poor annealing

schedule and too distant starting point can also lead to local optima solution. GA based

strategy is computationally heavy owing to the need to frequently interact with the search

environment to perform mutation and crossover. Furthermore, the fact that GA adopts

population based approach may lead to slow convergence as it does not sufficiently utilize

the current best found solution (i.e. lack of exploitation of existing knowledge). For this

reason, given that MC/DC is inherently neighbourhood biased (i.e. changing one Boolean

value at-a-time and holding other Boolean constant), population based meta-heuristic like

GA is deemed unsuitable.

Despite its potential, the adoptions of Great Delude Algorithm (GDA) and Late

Acceptance Hill Climbing Algorithm (LAHC) (E. K. Burke & Bykov, 2012) as the

neighbourhood based solution for generating MC/DC compliant test suite have not been

sufficiently investigated in the literature. Praises for its simplicity, GDA adopts a simple

flood analogy: the water rises continuously and the proposed solution must lie above the

surface to survive. Late Acceptance Hill Climbing Algorithm (LAHC) improves the

standard HC Algorithm by delaying the acceptance of good solution within a memory

such that local optima problem can be overcame.

 Given the aforementioned prospect, thesis investigates the adoption of GDA and

LAHC based strategy for MC/DC compliant test suite generation. To ensure fair

comparison, this work also re-implemented the SA and HC algorithms to allow objective

analysis between these four implementations.

1.2.1 Problem with Existing Works and Motivation

Many researchers has already provided different solutions to the problem of Test

Case Generation that satisfy MC/DC criterion. Some mentionable work are, Ghani &

Clark’s use of Simulated Annealing (SA)(Ghani & Clark, 2009)to find MC/DC satisfied

test cases, Awedikian’s use of Hill Climbing algorithm to solve this very problem. Ghada

El-Sayed’s use of Genetic Algorithms etc. Though there are other researchers also who

6

used these same Neighbourhood based algorithms, in this study, after search in several

indexing sites, no research paper was found any implementation of Great Delude

Algorithm (GDA), Late Acceptance Hill Climbing Algorithm (LAHC) to solve this

problem. Also no comparative analysis of existing solutions (in terms of generated test

case number and required time) was found.

Considering the fact of no use of GDA and LAHC to generate MC/DC satisfied

Test Cases and no proper information about, among these neighbourhood based

algorithms, which algorithm perform better to generate test cases satisfying MC/DC

criterion, I become motivated to implement GDA and LAHC to development of a new

test data generation strategy satisfying MC/DC criterion and also re-implement SA and

HC to perform a comparative analysis between this four implementations.

1.3 Research Aim and Objective

The aim of this research is to design and implement neighbourhood based test

case generation strategies comprising of Simulated Annealing (SA), Hill Climbing (HC),

Great Deluge Algorithm (GDA) and Late Acceptance Hill Climbing (LAHC) for

generating MC/DC compliance test suite. The key objectives of this research are:

I. Study the use of neighbourhood based metaheuristic algorithms for test

case generation satisfying the MC/DC Criterion

II. Develop two re-implementations of neighbourhood based algorithms

based on Simulated Annealing (SA), Hill Climbing (HC) and two new

implementation of neighbourhood based algorithm Great Deluge (GDA),

and Late Acceptance Hill Climbing (LAHC) that satisfy MC/DC.

III. Compare and analyse the performance of the developed strategies in terms

of test case size and execution time.

1.4 Scope of the Research

The scope of this research is to develop four strategies for test case development

using neighbourhood based meta-heuristic algorithms. Two of the strategies are new

7

strategy development and two is re-implementation of the algorithm. All the test cases

must satisfy MC/DC Criterion.

In this thesis, four test case development strategies are proposed which are

developed using Simulated Annealing (SA), Hill Climbing (HC), Late Acceptance Hill

Climbing (LAHC) and Great Deluge Algorithm (GDA) meta-heuristic algorithms. An

automated test case generation tool will be developed using the new strategy which will

provide output as test cases based on given input as Boolean expression e.g. (a&&b)!c.

The tool will provide facility to choose any of the four strategies which will be used to

generate the output.

A comparative analysis of performance among four new developed test data

generation strategy is performed in this thesis. In this research, the developed tool will

provide additional meta-data about performance of the strategy which will be used to

perform this comparative analysis of performance based on the result size and execution

time.

1.5 Organization of the Thesis

This rest of the thesis is organized as follows:

Chapter 2 gives overviews on MC/DC criterion and use of Meta-heuristics

algorithm in test case generation. Moreover, existing work on Test Case generation to

satisfy MC/DC criterion is highlighted.

Chapter 3 illustrates the methodology and strategy implementation of Test case

generation satisfying MC/DC criterion. The chapter provides new approach of four

algorithms and explains them.

Chapter 4 involves result and discussion. Functions / Boolean expressions under

experiments, configuration of algorithms are explained.

Chapter 5 draws the conclusion of this research work along with the scope for

future work. Finally, the chapter ends with a closing remark.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Much work has been published in automated test data generation for software

engineering, and particularly software testing. In this chapter, a selective summary of

research work on some of the systematic approaches adopted in MC/DC criterion based

automated test case generation strategy are being presented. The discussion is organized

into a few sections, involving discussion about MC/DC; Structural Testing; Search Based

Software Testing; Meta-heuristic Algorithms in test data generation and the four different

algorithms adopted in this research to experimentally generate test data on some sample

problems. The chapter ends with a brief summary.

2.2 MC/DC Criterion

MC/DC was developed to ease the testing of complex Boolean expressions in

safety-critical applications such as traffic collision avoidance systems in aircrafts, and is

now rigorously applied to several critical domains including patient monitoring systems

in hospitals and nuclear power control systems(Paul & Lau, 2014).

2.2.1 Definitions

For sake of completeness we report in the following paragraphs the basic

definitions which are preliminary to the concept of MC/DC test data generation.

9

A condition is a Boolean expression containing no Boolean operators.

As an example, a <b is a condition, while a ||b is not, since it contains the Boolean

operator OR, denoted by the symbol ||.

A decision is a Boolean expression composed of conditions connected by

Boolean operators. A decision without a Boolean operator is a condition. If a condition

appears more than once in a decision, each occurrence should be treated as a distinct

condition(Hayhurst, Veerhusen, Chilenski, & Rierson, 2001).

For example, a < b && a < c is a decision composed of two conditions. Here &&

is the Boolean operator AND. Each if statement in a code is a decision statement and it

contains one or more conditions.

Other terms that need to be defined are a predicate, major clause and minor clause.

A predicate is a synonym used for condition. A major clause is the condition the test

aims to prove that it affects correctly the outcome of the decision, while minor clauses

are all other conditions in the decision.

2.2.2 Structural Coverage and MC/DC

Structural coverage analysis provides a means to confirm that the requirements-

based test procedures have been exercised the code structure (Authority, 1992; Hayhurst

et al., 2001). The purpose of structural coverage analysis is to complement requirements-

based testing by:

1. Providing evidence that the code structure was verified to the degree

required for the applicable software level;

2. Providing a means to support demonstration of absence of unintended

functions; and

3. establishing the thoroughness of requirements-based testing.

Structural coverage criteria may be categorized into data flow and control flow

criteria. While data flow criteria measure the flow of data between variable assignments

and references to the variables, control flow criteria measure the flow of control between

statements and sequences of statements. In the latter criteria, forming most of the DO-

10

178B standard, the degree of structural coverage achieved is measured in terms of

statement invocations, Boolean expressions evaluated, and control constructs exercised.

The different control flow criteria can be summarized as follows:

The Statement Coverage (SC) criteria insists that every executable statement in

the program is invoked at least once during software testing. It is considered aweak

criterion as itis has been seen to be insensitive to some control structures.

Decision Coverage (DC) requires that every decision in the program has taken

all possible outcomes at least once. DC calls for just two test cases for a decision: one

which has a true(T)outcome, and the other which has a false(F) outcome for that

decision. For simple decisions with just one condition and no Boolean operators, decision

coverage ensures complete testing of control constructs. However, for decisions that

contain one or more Boolean operators, e.g. A OR B, two suitably chosen test cases (e.g.

TF and FF) will affect the outcome of the decision to become both T and F, but leave

the effect of B untested. In other words, the DC criteria for a complex decision with more

than one condition cannot distinguish between the decision A OR B, and the decision with

just one condition A.

Condition coverage (CC) requires that every condition in each of the decisions

of a program has taken all possible outcomes at least once. Thus, CC overcomes the

problem posed by DC, namely the under-testing of multiple conditions in a decision.

However, CC does not require that the decision take on all possible outcome sat least

once. This provides a loophole for the bugs to remain hidden, and does not guarantee the

code to be error-free. For example, for the decision A OR B, the two test cases TF and

FT is sufficient to meet the CC criteria, but do not cause the decision to take on all

possible outcomes.

Condition/ Decision Coverage (C/DC) combines the requirements for decision

coverage with those of condition coverage. That is, there must be sufficient test cases to

get both the decision outcomes T and F, and span through both the condition values of

T and F for either of the conditions A and B. It may be noted that a minimum of two test

cases are necessary for each decision to satisfy the C/DC criteria. Using the same example

A OR B, just two test cases TT and FT would be sufficient to meet the C/DC requirement.

11

However, these two tests do not distinguish the correct expression A OR B from the

expression A, or the expression B, or even from the expression A AND B.

These limitations of the above three criteria, viz. DC, CC and C/DC express the

necessity of a certain coverage condition to be framed so that any bug in the code can be

easily located. This is effectively fulfilled by the following criteria, accepted as standard

for Level A software in DO-178B.

The Modified Condition/Decision Coverage (MC/DC) criterion enhances the

condition/decision coverage or C/DC criterion by requiring that each condition should be

shown to independently affect the outcome of the decision. The independence

requirement ensures that the effect of each condition is tested relative to the other

conditions. However, achieving MC/DC requires more thoughtful selection of the test

cases, and in general, a minimum of (n + 1) test cases for a decision with n inputs. For

the above example concerning the decision a OR b, a test suite consisting of three test

cases TT, FT and FF satisfy the MC/DC criteria completely. For decisions with a large

number of inputs, MC/DC requires considerably more test cases than any of the coverage

measures discussed above.

Finally, there is another criterion called the multiple condition coverage, which

requires that test cases ensure each possible combination of inputs to a decision is

executed at least once; that is, multiple condition coverage requires exhaustive testing of

the input combinations to a decision. Hypothetically, multiple condition coverage is the

strongest and the most desirable structural coverage measure. However, it is

computationally intensive, and turns out to be infeasible for testing of most practical

codes. For a decision with n inputs, multiple condition coverage requires 2n tests.

On the other hand, MC/DC is intended to assure, with a high degree of confidence,

that requirements-based testing has demonstrated that each condition in each decision in

the source code has the proper effect on the outcome of the decision (Hayhurst et al.,

2001). The goal of MC/DC criterion is thus to prove that:

• every decision in the program under test has taken all possible outcomes

at least once,

12

• every condition in a decision of the program has taken all possible

outcomes at least once,

• more importantly, that each condition in a decision affects independently

and correctly the outcome of that decision.

An additional advantage of enforcing the MD/DC criteria is that the tester can

locate where exactly the error is in a decision, if any.

2.2.3 MC/DC Test Cases

There are two MC/DC variants. In the first one, also referred to as the unique

cause MC/DC, minor clauses must hold the same Boolean value for the two values of the

major clause. The second interpretation of MC/DC, a weaker criterion known as the

masking MC/DC, allows minor clauses to be different (Ammann, Offutt, & Huang,

2003). In this work, we will consider the strongest interpretation, the unique cause

MC/DC, as it is the criterion required by the standard DO-178B.

In order to generate the test suite to cover the MC/DC criterion for one decision,

the major clause value should vary while the minor clauses outcomes are fixed, to show

the effects of the major clause on the entire decision. Boolean conditions such as

a < bare denoted by capital letters representing the condition outcome (A, B, C, etc.)

and the Boolean outcomes are denoted true (T) or false (F).

To help understanding a decision such as (A and B), logical operators (or, and,

etc.) are presented schematically by logical gates, and a truth table is built for the entire

logical circuit. This truth table represents the truth table for the decision under test.

13

Schematic Representation Coding format Truth Table

C ≔ A and B

A B C
T T T

T F F

F T F

F F F

C ≔ A or B

A B C
T T T

T F T

F T T

F F F

Figure 2.1 Representations of Elementary Logical Gates
Source: Hayhurst et al. (2001)

Figure 2.1 illustrates the logical AND and OR Boolean operators represented by

logical gates. It also provides the truth table for these gates. Each row in the truth table

presents a possible test case, thus in the truth table of the and gate for example, we have

four possible test cases for the decision A and B. However, when developing test sets,

we want also to minimize the number of test cases required to cover the MC/DC criterion.

Thus, for each major clause, we search for a pair of rows where the condition outcome

varies, the minor clauses outcomes are fixed and the outcome of the entire decision varies.

For the A and B truth table, the pairs of rows for each major clause are:

• Major clause as A: (TT→ T), (FT→ F), where B is held fixed at T.

• Major clause as B: (TT→ T), (TF→ F) , where A is held fixed at T.

Thus, the final test set is [(TT), (FT), (TF)]. As a general rule, a set of test cases

with one more than the number of inputs is needed to provide the minimal coverage for

a multiple-input decision.

A

C

A

C

14

1: public Integer calculate(Integer x, Integer y, Integer z)

2: {

3: Integer result = -1;

4: Boolean fail = false;

5: if (x < 0 || y < 0 || z < 0)

6: {

7: fail = true;

8: }

9: else

10: {

11: fail = false;

12: }

13: if (result == 0);

14: {

15: if (z == 0);

16: {

17: result = x + y;

18: }

19: else

20: {

21: if (z > x && z > y || z > x + y)

22: {

23: result = z;

24: }

25: else

26: {

27: result = x + y

28: }

29: }

30: }

31: return result;

32: }

Figure 2.2 Calculate Method

Consider the Java code in Figure 2.2; suppose we are interested in generating

input data to satisfy the MC/DC for the decision at line 20:

(z > x && z > y || z > x + y).

15

We denote the conditions (z > x) by A, (z > y) by B and (z > x + y) by C,

thus the decision is denoted as :

(A && B || C).

We build the truth table of the correspondent logical circuit.

Table 2.1 Truth table of decision at line 21 of the Calculate method

A B C A && B || C
0 T T T T
1 T T F T
2 T F T T
3 T F F F
4 F T T T
5 F T F F
6 F F T T
7 F F F F

Searching the truth table for the pairs of rows for each major clause, we obtain:

• A: (5,1)

• B: (3,1)

• C: (7,6), (5,4), (3,2)

To save space test cases were represented by a decimal coding thus for example

the number 4 stands for FTTT in the truth table. We have two minimal sets to cover the

MC/DC criterion: [1,3,5,4] and [5,1,3,2]. We can choose any one of the two sets.

2.3 Overview of Software Testing

Though software testing may identify significant amount of bugs in the system, it

never means zero defect (Schulmeyer, 1990). There is no proper guideline for when to

stop testing. It’s a trade-off between budget, time and quality. Depending on the testing

techniques, software testing is usually divided into two main categories, viz. Black box

testing and White box testing. Grey box testing is an intermediate category combining

features of both these two categories. The three categories are briefly described as

follows:

16

2.3.1 Black Box Testing

Black-Box Testing is also known as few other names, e.g. Functional Testing,

Requirement Based Testing, Data Driven Testing, Input / Output driven (Hetzel &

Hetzel, 1988). In Black-box testing, test cases are originate from functional requirement

of the system and program structure is not a concern here (Perry, 1992). This is the reason,

this is known as functional testing. In Black-box testing, the testing process emphasize

on executing the functions and examining their input and output data. Here the test

engineer consider the system under test as a black-box and only input, output and

specification is visible. In practice, multiple numbers of inputs are used and outputs are

compared against its specification to validate the correctness.

There has been less activity in the area of search-based functional testing

compared to structural testing (McMinn, 2004). Functional tests can be derived from

different forms of specification. For tests derived in this way, a common barrier in the

automation of test data generation is that a mapping needs to be provided from the

abstract model of the specification to the concrete form of the implementation. For system

tests, there is also a potential problem in the size of the search space.

There is another category of testing known as Grey-box testing, which combines

both structural and functional information for the purposes of testing. Grey box testing

can be done for different constructs such as Assertions or Exceptions (N. J. Tracey, 2000).

Assertions specify constraints that apply to some state of a computation. When an

assertion evaluates to false, an error has been found in the program. The ability to embed

arbitrary assertions within programs and be able to search for test data in order to check

their violation is a very powerful concept. Some languages such as C++, Java and Ada

provide explicit constructs to handle errors or ‘exceptions’ (as errors are called in these

languages) so that exception-related code can be separated from the main logic of the

program. One particular grey-box testing method consists of generating test data for

raising such exception, and then for the structural coverage of the exception handler.

2.3.2 White Box Testing

White-box testing is also known as structural testing. In this technique, software

is considered as white box, which means anything going on inside the box is visible from

17

outside and is under observation. Testing planes are compiled according to the details of

software implementation, such as programming language, logic etc. Test cases are

derived from the program structure. Rather than focusing on output, the tester

concentrates on how the statements are executing, how the data is passing through the

branches and paths of code.

There are several white box coverage criteria (Ammann et al., 2003; Pandita, Xie,

Tillmann, & de Halleux, 2010) implementing control flow testing, of which statement,

branch and path coverage are the most common (Awedikian et al., 2009). At a glance,

statement, branch and path coverage is sufficiently effective exercising the various parts

of the software implementation. But in deep beneath the statement, branch and path

coverage, they all are vulnerable to the masking problem (Chilenski & Miller, 1994;

Zamli et al., 2013) Here the use of AND and OR operations to form compound predicates as

the control flow for statement, branch and path coverage can potentially be problematic.

Masking problem is described elaborately in Problem Statement section.

2.4 Search Based Software Engineering

Search Based Software Engineering (SBSE) applies search based optimization

algorithms to solve optimization problems drawn from software engineering. The

optimization algorithms are used to find most favorable solutions for a specific problem.

SBSE techniques can be applied when potential solution space is large and complex and

still need to address multiple objectives and/or constraints (Harman, 2007). SBSE is

getting popular in because such situations are common in software engineering.

As early as 2001, Harman and Jones (Harman & Jones, 2001) claim that “a new

field of software engineering research and practice is emerging: search-based software

engineering.” The paper argues that software engineering is an ideal backdrop for the

application of metaheuristic search techniques such as tabu search, simulated annealing

and genetic algorithm. Such search-based techniques could provide solutions to the

difficult problems of balancing competing (and sometimes inconsistent) constraints and

may suggest ways of finding acceptable solutions in situations where perfect solutions

are either theoretically impossible or practically infeasible. To develop the field of search-

18

based software engineering, the need for a reformulation of classic software engineering

problems as search problems is proposed. The paper briefly sets out key ingredients for

successful reformulation and evaluation criteria for SBSE.

The search based optimization algorithms used in SBSE are meta-heuristic

algorithms such as Linear Programming, Hill climbing, Tabu Search, Simulated

Annealing, Ant Colonies, Random Search, Particle Swarm Optimization, LP, Genetic

Algorithm, and Genetic programming. The search mechanism of these algorithms in large

search spaces is often guided by a fitness function that captures properties of the

acceptable software artefacts we seek.

In the past five years, SBSE techniques were used for several applications such

as model checking (Alba, Chicano, Ferreira, & Gomez-Pulido, 2008), Regression testing

(Li, Harman, & Hierons, 2007), maintenance, test case generation (McMinn &

Holcombe, 2006), etc. We are mostly interested in the application of SBSE to software

testing.

2.5 Search Based Software Testing

We use the term Search Based Software Testing (SBST) throughout our research

to point the application of SBSE to the software testing problems. An important issue in

software testing is generating the test inputs automatically to apply them in the system

under test.

Multiple test cases or a set of test cases are required to cover a test criterion. For

each test caes, we need to generate test input data. This process is known as test data

generation. A successful test data generation is when the generated input parameters of

the system under test is generated in a specific way that satisfy the test case. A simple

process to generate the data is to explore the entire parameter space and find the perfect

combination of values. However, for systems with multiple parameters, exploring the

entire parameter space will increase exponentially, and a full-scale also known as

exhaustive search becomes time consuming and cost in affective. For instance, aerospace

software systems can take up to 15 or more parameters; in this cases, if the parameters

are integers, the parameter’s space is 2(15*32). This is an optimization problem and solution

to this problem is to use an approximation algorithm to search for the data, which is

19

known as heuristic technique. Such a technique risk to either not find a solution, when

there exists one, or to find a non-optimal solution. However, it allows searching for the

data in a reduced search space and in a reduced search time.

A number of approaches based on heuristic search methods have been developed.

In general, SBST uses search based optimization techniques to formulate the test data

generation problem as a search optimization problem (Lakhotia, Harman, & McMinn,

2008). This problem is then addressed using heuristic methods; it can also be formulated

as a constraint optimization problem or a constraint satisfaction problem (Sagarna & Yao,

2008).

Jia, Cohen, Harman and Petke (Jia, Cohen, Harman, & Petke, 2015) have

developed a hyper-heuristic algorithm for combinatorial interaction testing (CIT), which

learns search strategies across a broad range of problem instances, providing a single

generalist approach. The hyper-heuristic is an ensemble approach that chooses the best

strategy for a particular problem from a bewildering choice of CIT techniques known to

software engineers, each specialized for a particular task. The authors report experiments

to show that the proposed algorithm competes with best known solutions across

constrained and unconstrained problems. For all 26 real-world subjects, the hyper-

heuristic algorithm equals or outperforms the best result previously reported in literature.

An evidence is also presented that the algorithm’s strong generic performance results

from its unsupervised learning.

The meta-heuristic search techniques used in Search Based Software Testing

(SBST) are high-level search frameworks that use heuristic methods to find solutions to

combinatorial problems at a rational computational cost. To guide the search, meta-

heuristic algorithms need a fitness function to represent the combinatorial problem. For

this, the testing criterion is transformed into a fitness function. The search space is the

space of possible inputs to the system under test.

SBST has proved to be effective to some extent because it has a wealth of

optimization techniques upon which to draw and because the common nature of the

approach allows it to be adapted by a wide range of test data generation problems; in

20

principle, all that is required to adapt a search based technique to a different test adequacy

criterion is a new fitness function (Lakhotia et al., 2008).

Works on heuristic based approaches to software engineering testing problems

date back to as early as 1976, when Miller and Spooner used optimisation techniques for

test data generation (Miller & Spooner, 1976). In 1992, Xanthakis et al. were the first to

apply meta-heuristic optimization technique for test data generation (Xanthakis et al.,

1992). In recent years, several approaches that use meta-heuristic search techniques to

automatically generate the test inputs for a given test criterion have been proposed. As

the MC/DC is a structural testing criterion, we are mainly interested in meta-heuristics

based works done on structural testing.

Here, we present two main researches done in this field. The first one is by Miller

and Spooner, as it was the first work to use search based optimization techniques for test

data generation (Miller & Spooner, 1976). The second work done by Korel is the first to

use data analysis to help the heuristic search (Korel, 1990b). In the following section, we

will present more recent work that uses different search approaches for SBST problems.

The software tester is given the responsibility to select the input data for which

she evaluates the its quality(i.e. meeting its functional specifications). If done manually,

such a practice is extremely costly, difficult and laborious. Moreover, due to mundane

limitations, the manual testing may often fail to reveal serious bugs in the software.

Search based software engineering (SBSE) aims at solving optimization problems by

applying heuristics techniques to explore large input spaces of a software, and find out

the minimal set of inputs required for testing consideration. The generation of input data

can be modelled as a search problem in a large search space that we aim to optimize. The

input search space is the set of all possible variable values that the software can take as

input, while each of these values (solutions) are graded according to a fitness function

defined by the user to quantitatively express the level to which the software fulfils the

goal of the particular test. Thus, we apply the SBSE techniques to our research at hand.

Meta-heuristic search techniques used in SBST are high-level frameworks which

utilize different search techniques to find solutions to combinatorial problems at a

reasonable computational cost. The problem may be NP-complete or NP-hard, or a

21

polynomial time algorithm is known to exist but still beyond the reach of available

computational resources. Metaheuristics are not standalone algorithms in themselves, but

rather strategies that can be readily adapted to specific problems such as software testing.

For each software testing problem, there are usually two main decisions to be

implemented: the first one being the encoding of the solution, for example, how many

variables a solution has, their types, etc.; and the second being the transformation of the

test criteria into a fitness function, i.e. the degree to which the final goal of the test is

achieved. Once these two are ascertained for a particular problem at hand, it can very

well fit in to a metaheuristic solution technique. The generic nature of the solution

methodology makes SBST very attractive for metaheuristic searches. Simply by

changing the input space and fitness function, the approach can be adapted to different

test data generation problems.

Metaheuristic search techniques have been applied to automate test data

generation in different areas such as: structural (or white-box) testing, functional

(orblack-box) testing, sometimes a testing that combines both structural and functional

information (or gray-box testing), and non-functional testing. Structural testing is one of

the most prospective areas where metaheuristic search techniques have received the

greatest share of attention from researchers. MC/DC falls in this category of testing.

2.5.1 Solution

In SBST, a solution is a test input data generated for which the software is

executed and its output tested for coherence with the expected outcome. The input data

is the set of values of the variables which the software requires for its input, and on which

the output possibly depends. The input space within which test data is sought is typically

large, but well defined, which makes different metaheuristic search algorithms very well

suited and effective for software testing problems. One MC/DC test case is executed at a

time using one solution for each decision in the code. If we need to generate test data for

a Triangle function, for example, the function’s parameters are three integers a, b and c.

Thus, an input data is a triplet of integers, forming a solution drawn from a 3-dimensional

search space.

22

The function of a metaheuristic is to choose the best set of solutions or input

parameter values for which the software will be most rigorously tested. Thus, it is an

optimization problem of maximizing the efficiency of tests with minimal test data. A

good metaheuristic can be expected to approach the efficiency of exhaustive software

tests, using only a small fraction of the exhaustive test data.

2.5.2 Fitness Function

The fitness function of a metaheuristic algorithm tries to quantify the extent to

which its objective has been achieved by a particular solution. It is useful in guiding the

heuristic effectively into a promising neighbourhood of the search space, seeking the

perfect solution. For the testing problem, the test criterion objective is translated into a

fitness function. The form of the fitness function is generated offline by the user, typically

before the actual search for the data is started. When the meta-heuristic algorithm

generates solutions one by one, the fitness is calculated for each solution generated and

its value is used to compare and contrast the solutions with respect to the overall search

goal. In most of the paradigms, better solutions marked by higher fitness values are either

used directly, or to influence later solutions.

In SBST, the test objectives need to be defined numerically and transformed into

a fitness function. Objective function is the quantified form of the optimizing goal that is

either to be maximized or minimized. In case of maximization, as when finding out the

number of correct outputs, the fitness function is usually taken to be the objective function

itself

() () for maximizationF f=x x

where F(x) is the fitness function, and f(x) is some objective function that is to be

maximized. On the other hand, if it is a minimization problem, like minimization of

number of errors or mismatches, then fitness is taken to be the reciprocal of the objective

function

1() for minimization
1 ()

F
f

=
+

x
x

where the addition of 1 to the objective function prevents division by zero.

23

The search space is the system under test input domain and the fitness is computed

by monitoring program execution results. With feedback from the objective function, the

metaheuristic searches for ‘better’ solutions based on knowledge and experience of

previous solutions. A proper selection of the objective function is therefore critical to the

success of the search heuristic (McMinn, 2004).

2.6 Structural Testing

Automation of structural testing and structural coverage criteria has been the most

widely investigated subjects. In the beginning of structural testing automation, Miller and

Spooner used local search to develop the automation strategy (Miller & Spooner, 1976).

Their goal was to automate the generation of input data that cover particular paths in a

program. They prepared the problem as a numerical maximization problem and used

heuristic approach to solve it. Miller & Spooner was focused to generate floating point

data to cover test cases for branch testing criterion. The used approach fixes every integer

parameters in the program, and tries to produce values for the remaining floating point

parameters for all possible paths in the program. Since every program execution takes the

form of a straight-line program, it is possible to collect any path constraints for a given

execution. The approach uses the collected constraints to form the fitness function. The

approach applies numerical techniques for constrain maximization and the process starts

from a random initial point. A loop iterates until the fitness function become positive

which is the final goal here to complete the process (Miller & Spooner, 1976).

This discussed approach has two disadvantages. First it only targets floating

points parameters; second, often inappropriate paths are selected; as a result, significant

computational effort is wasted analysing these paths and trying to find data covering

them.

Korel extended the work later in 1990 (Korel, 1990b). Like Miller, goal of this

research is to generate test cases that cover branch testing criterion. While the earlier

work depends on the static constraints in the program execution to form the fitness

function guiding the search, Korel uses a dynamic method that relies on the actual

execution of the program with input data.

24

Initially random inputs are given to execute the program. During each execution

for a selected branch, a search procedure determines whether the execution should

continue through the current branch or an alternative branch should be taken. This choice

is made based on the control flow graph of the program, determined prior to the execution

of the program. Branches are organized into categories as critical branches, required

branches, semi-required branches, and non-required branches. These categories represent

the control dependencies between branches. Thus, if the execution flow is diverging from

the targeted branch, a real valued function is associated with this branch; the fitness value.

A minimization search algorithm is then used to automatically generate data to change

the flow of execution at this branch. To speed up the search, Korel uses a data flow

analysis technique to determine input variables that are responsible for the undesirable

program behaviour. The technique is used for software programs with some high numbers

of parameter such as big size arrays, and it aims at detecting which of the input influences

more the targeted branch. Therefore, if T = <nkl, nk2, ..., n> is a path navigated on a

program input x, where x can be an array of 30 elements, the technique controls the

influence of the elements of x on the nodes in the path (in terms of used variables), and

the influence of each node nk on the node following it until the targeted branch is touched.

This way, for a certain target branch, the author only considers the influential input

variables (elements of the array in our example) in the search technique (Korel, 1990b).

Though this approach improves the previous work (Miller & Spooner, 1976), it

does not present an implementation of the data flow analysis. On the other hand, the data

flow analysis is used only to choose the input variables influencing the branch to test and

thus starting the search of required data for these variables. However, the author does not

take advantage of dependencies to guide the search using the data flow analysis

information. This is what we call data dependencies between the nodes of the program,

and it can actually help the search converge faster to the required solution.

The local search used to find the test data can lead to local optimum solutions in

the search space when trying to minimize the fitness function. In order to, overcome this

problem, researchers investigated more sophisticated meta-heuristics such as the

Simulated Annealing, Hill Climbing, Great Deluge Algorithm and many other search

algorithms. We will discuss the work done on these algorithms in the following section.

25

2.7 Use of Metaheuristics Algorithms to Automate Test Case Generation

2.7.1 Metaheuristics Algorithms

A metaheuristic is a general algorithmic framework which can be applied to

different optimization problems with relatively few modifications to make them adapted

to a specific problem. Many optimization problems of practical as well as theoretical

importance consist of the search for the “best” configuration of a set of variables to

achieve some goals that depend on those variables. Metaheuristics are typically high-

level strategies which guide an underlying, more problem specific heuristic, to increase

their performance. The ultimate objective is to avoid the disadvantages of iterative

improvement by allowing the local search to escape from local optima to which a local

search typically gets stuck. This is achieved by either allowing worsening moves or

generating new starting solutions for the local search in a more intelligent way than just

providing random initial solutions(Stützle, 1998).

Many metaheuristic algorithms, called nature-inspired algorithms, are based on

different natural phenomena, such as ants searching for food, evolution of species, or

highlands escaping from flood. As an interpretation of nature, they are typically not

perfect in finding the best or optimum goal, but are able to find what are called sub-

optimal or near-optimal solutions. However, in doing so they trade-off quality with cost,

thus achieving solutions which are very near to the best, but at much lower and affordable

time and computation.

Meta-heurisitic algorithms have been applied to many software engineering

activities (i.e. termed Search based Software Engineering) ranging from Requirement

Engineering to Software Quality Assurance(Ghani & Clark, 2009). SBSE is playing a

major role in Software Testing by introducing Search Based Test Data Generation

(SBTDG) approach(Varshney & Mehrotra, 2013). SBSE applies metaheuristic

algorithms like Simulated Annealing, Hill Climbing, Genetic Algorithm, Great Deluge,

or Tabu Search in the relevant search space to find near-optimal solutions. In the search

space, metaheuristic algorithms use a fitness function that compare current and neighbour

solution and choose the better option based on the search goal. For test data generation,

the objective function of the algorithm is configured based on the problem scope (in our

case MC/DC criterion) to generate test data.

26

New metaheuristic algorithm like Late Acceptance Hill Climbing (E. K. Burke &

Bykov, 2012; Bykov, 2011) are becoming very promising to researchers to solve

searching problems. Known for quite some time, and perform very efficiently, viz. Great

Deluge Algorithm (Dueck, 1993) was never implemented for automated test data

generation satisfying MC/DC criterion.

In today’s literature, several works use meta-heuristic algorithms as search tools

to automate the test cases or test suite generation. Due to the computational complexity

of the search problem, exact techniques like linear programming are mostly impractical

for large scale software engineering problems and manual search is mostly impossible.

Thus, Search Based Software Engineering (SBSE) is an approach to apply meta-heuristic

search techniques like Genetic Algorithms, Simulated Annealing, and Tabu Search to

seek solutions for combinatorial problems at a reasonable computational cost. In SBSE,

we apply search techniques to search large search spaces, guided by a fitness function

that compare solutions with respect to the search goal and determine which is the better

solution and thus to direct the automated search into potentially promising areas of the

search space (McMinn, 2004).

For test data generation, this involves the transformation of test criteria to

objective functions. For each test criterion, a family of different objective functions is

needed. The algorithm iterates then to generate the appropriate data to make the fitness

function as close as possible to zero, meaning the algorithm found the data for the test

case.

For each problem solved using meta-heuristic techniques, there are usually two

main decisions of implementation. The first one being the encoding of the solution, i.e.,

the structure (e.g., array, tree), how many variables it has, their types, etc, and the second

main decision is the transformation of the test criteria into a fitness function. The fitness

function models the closeness of the input data to cover the criterion tested. It is usually

calculated at the end of each iteration and it compares and contrasts the solutions with

respect to the overall search goal to guide the search into a promising neighbourhood of

the search space.

27

There are several types of meta-heuristic algorithms that were used in literature

to automate the data generation. We will describe here works based on tabu search,

simulated annealing, the Great Deluge algorithm and evolutionary techniques such as the

genetic algorithm.

2.7.2 Evolutionary Testing

Evolutionary approaches are search algorithms tailored to automate and support

testing activities, i.e., to generate test input data. They are often referred to as evolutionary

based software testing or simply Evolutionary Testing (ET). Genetic algorithm (GA) is

an ET algorithm.

2.7.2.1 Genetic Algorithm (GA)

In 1997, GA was used by Wegener et al. to test real-time systems for functional

correctness. A common definition of a real-time system is that it must deliver the result

within a specified time interval and this adds an extra constraint to the validation of such

systems, namely that their temporal correctness must be checked (Wegener, Sthamer,

Jones, & Eyres, 1997). The standard technique for real-time testing is the classification

tree method; it was used to generate the test cases forming the objective of the search.

The genetic algorithm aimed to find the longest execution time, and then the shortest of

the real system response time. Wegener et al. concluded from their work that genetic

algorithms are able to check large programs and they show considerable promise in

establishing the validity of the temporal behaviour of real-time software(Wegener et al.,

1997).

Tonella (Tonella, 2004) in a 2004 ACM Conference reported the use of GA to

produce test cases automatically for unit testing of classes in a generic application

condition. Test cases were formulated as chromosomes, which include information

regarding the objects to create, the methods to invoke and the values to be used as input.

The proposed methodology evolves test cases with the aim of maximizing a suitable

measure quantifying coverage. The article describes implementation of the algorithm and

its application to classes from the Java standard library. Usage of a genetic algorithm for

the unit testing of classes was reported to be extremely powerful. Optimal coverage of

the public cmethod branches was achieved within a reasonable computation time, and the

28

resulting test suites obtained were quite compact. The study on the fault revealing

capability of the generated test cases described in this paper, however, were admitted to

be quite preliminary. The article also expresses the need to carry out additional

experiments in future with more number of faults seeded into the class methods.

Nguyen et al. (Nguyen et al., 2012) argues that autonomy in software agents

defies the complete control of the user, thus requiring a more thorough and accurate

testing procedure testing of autonomous agents. This necessarily involves a wide range

of test case contexts that can search for the most demanding test cases— even those that

are not apparent to the developers or testers. The article address this problem by

introducing an approach to testing autonomous agents that uses evolutionary optimisation

to generate such demanding test cases. The authors propose a methodology to derive

objective or fitness functions that regulate evolutionary algorithms. The approach is

evaluated with two simulated autonomous agents. The reported results illustrate that the

approach is effective in finding good test cases automatically.

In a very recent paper by Soltani, Panichella and van Deursen (Soltani, Panichella,

& van Deursen, 2016), a new solution for automatic crash reproduction is proposed based

on evolutionary unit test generation techniques. As a first step towards software

debugging, reproduction of software crashes is a labour-intensive and time-consuming

task. In this scenario, the paper tries to overcome the limitations adversely affecting the

capabilities of existing state-of-the-art solutions in generating helpful tests that trigger

specific execution paths. The proposed solution uses crash data from collected stack

traces to guide search-based algorithms toward the generation of unit test cases that can

reproduce the original crashes in case of a wide range of crashes. The methodology

implemented is an extension of Evo Suite, which uses a suitable novel fitness function

defined for crash reproduction. Results from a preliminary study on real crashes from

Apache Commons libraries show that our solution can successfully reproduce crashes

which are not reproducible by two other state-of-art techniques.

A recent article by Rathore et al.(Rathore, Bohara, Prashil, Prashanth, &

Srivastava, 2011)presents a technique for automatic test-data generation in software

testing. The proposed approach is based on a hybridization of genetic algorithm and the

tabu search method. It combines the strength of both metaheuristic techniques and

29

produces efficient results. The conventional approach for test-data generation using

genetic algorithm is modified by applying a tabu search heuristic in the mutation step. It

also incorporates backtracking process to move the search away from local optima. The

experimental results show that the proposed hybrid algorithm is effective in providing

test data and its performance is better than simple genetic algorithm.

Figure 2.3 Block diagram of the genetic algorithm

The used GA's block diagram is illustrated in the algorithm iterates with a

population of candidate solutions. It initializes with a randomly generated population then

it evolves by combining and mutating the current generation in order to generate possible

solutions. An evaluation is performed on the newly generated solutions and a selection

technique is then used to transmit only the fittest individuals into the next generation. The

algorithm iterates until a solution is found to satisfy the optimization criteria.

2.7.3 Local Search Techniques

Local search is a family of metaheuristic algorithms based on the concept of

neighbourhood of the current configuration (solution). There are mainly two types of

local search, the gradient descent techniques and more advanced techniques such as

simulated annealing and Tabu search. The main idea of local search is to start with one

initial solution and modify it iteratively following certain criteria. At each iteration, the

30

current solution is modified according to some deterministic or probabilistic rule to

produce a new candidate solution. The candidate can be accepted or rejected according

to some given acceptance criteria. If accepted it becomes the valid solution for the next

iteration. If the candidate is rejected, then the next iteration is carried out with the same

existing solution. Usually the search continues till no further improvement is possible. In

such a situation convergence is said to have been achieved, and the optimal solution is

printed.

Local search algorithms rely on the neighbourhood of the current solution. To

solve an optimization problem using local search algorithms, we need first to define the

solution space S, i.e., the search space of possible solutions, and the objective function

f(s) that evaluates a real value in ℝ for each solution sЄ	S such that:

f : S®ℝ

The definition of a neighbourhood is very crucial for any local search algorithm.

A function 𝒩 is usually defined as 𝒩(s) ⊆	𝒫(S) that associates s with a subset of all

possible solutions 𝒫(S) as ‘neighbours’ of the current solution s such that:

 : S®𝒫(S)

In each iteration, the algorithm defines the set of neighbours of the current

solution, selects one of the neighbours and makes it the new current solution.

We call a solution s in the solution neighbourhood 𝒩(s) a local minimum if

∀		𝑠*ϵ	𝒩 𝑠 , 𝑓(𝑠) ≤ 𝑓(𝑠′)

Alternatively, we call s in the solution neighbourhood 𝒩(s) a local maximum if,

∀		𝑠*ϵ𝒩 𝑠 , 𝑓(𝑠) ≥ 𝑓(𝑠′)

A typical schema of a local search algorithm is shown in Figure 2.4.

31

1: Build initial configuration s

2: Best_S ⟵ s

3: Iterate

4: Select s' from 𝒩(s)

5: s ⟵ s' // not obligatory

6: If (s > Best_S)

7: Best_S ⟵ s

8: Return Best_S
Figure 2.4 Local Search Schema

There are different strategies for the choice of a neighbour solution s' from the

possible neighbours 𝒩(s) of s at line 4 in Figure 2.4. Each local search metaheuristic

algorithm applies a different neighbour selection strategy.

The affectation of the current solution by the neighbour solution at line 5 in

Figure 2.4 is not mandatory. In fact in some local search algorithms such as the descent

algorithm or the Hill-Climbing (HC) methodology (Appleby, Blake, & Newman, 1961),

the neighbour solution becomes the current solution only if its fitness is better than the

current solution. This kind of approach is called the ‘greedy’ approach (E. K. Burke &

Bykov, 2012), where the algorithm looks for short-term benefit, and stays at the risk of

losing sight of better solutions which could have been achievable through smaller

immediate sacrifices or gambits. The HC methodology is reported to be very fast, but the

disadvantage is that the algorithm can converge quickly to a local optimum and the search

is stopped prematurely before reaching the global optima when the search space is similar

to Figure 2.5. Such search spaces have more than one local optima, and are referred to as

multimodal functions. There are several established methods to deal with such complex

multimodal optimization problems, some of which are discussed below.

32

Figure 2.5 Local optima problem in local search

One technique to deal with the situation when the search gets stuck in some local

optima consists of performing a random restart when an optimum is intermediately

reached. The algorithm restarts the search several times, each time with a new randomly

generated initial solution. This approach allows exploring different regions of the search

space, however its inconvenience lies in the fact that the algorithm does not benefit from

the knowledge acquired during the previous search. A second approach is to add a bit of

randomness in the local search, thus, the algorithm can accept some of the degrading

solutions on the short term, which might lead to a better optimum on the long run. An

example of such an algorithm is simulated annealing. A third approach is to memorize

the solutions already visited and ban them and their neighbourhoods in future searches,

so that the algorithm is forced to try unexplored neighbours. This is the case of Tabu

search.

2.7.3.1 Tabu Search

A technique of interest in software testing is Tabu Search (TS) proposed by

Glover(F Glover, 1985). This method evaluates the complete set of possible

modifications of the current solution and the candidate with the best cost is accepted. To

avoid cycling, it was proposed to also reject solutions, which were already accepted at

relatively recent previous iterations. For this purpose, TS maintains a list of previous

solutions (or moves) known as the “tabu list”, where all elements are compared with the

complete set of candidates at each iteration. The method has two interesting properties.

33

Firstly, it does not employ any version of a problem-dependent cooling schedule like

simulated annealing (discussed in the following subsection). Secondly, as noted by

Laguna and Glover (Fred Glover, 1997), the employing of a tabu list follows the idea of

the “intelligent” use of information collected during the search. Later, this idea was

expanded and called Adaptive Memory Programming (AMP). In addition to Tabu Search,

the authors also considered the GA and ACO as examples of AMP(Taillard,

Gambardella, Gendreau, & Potvin, 2001).

Tabu search-based approach has been proposed by Hwang, Yin and Yeh (Hwang,

Yin, & Yeh, 2006) for more efficient composition of near-optimal test sheets from very

large item banks, while meeting multiple assessment criteria. Based on the proposed

approach, a computer-assisted testing system has been developed, and a series of

experiments have been conducted to compare the efficiency and efficacy of this approach

with other approaches. The experimental results show that the new approach is desirable

for the composition of near-optimal test sheets from large item banks.

Díaz, Tuya, Blanco and Dolado (Díaz, Tuya, Blanco, & Dolado, 2008) present a

tabu search metaheuristic algorithm for the automatic generation of structural software

tests. It is a novel work since tabu search is applied to the automation of the test generation

task, whereas previous works have used other techniques such as genetic algorithms. The

developed test generator has a cost function for intensifying the search and another for

diversifying the search that is used when the intensification is not successful. It also

combines the use of memory with a backtracking process to avoid getting stuck in local

minima. Evaluation of the generator was performed using complex programs under test

and large ranges for input variables. Results show that the developed generator is both

effective and efficient.

2.7.3.2 Simulated Annealing Algorithm

Ghani and Clark (Ghani & Clark, 2009) introduce an automatic framework to

extend the capabilities of search based testing technique for MC/DC. The advantage of

this framework is that it can be used to test stronger coverage criteria such as Multiple

Condition Coverage and MC/DC. Simulated annealing optimization technique is used

into this framework. The framework is compared with other tools for software testing;

34

Triangle, CalDate, Quadratic, Complex and Expint. The result shows that the search by

this framework manages to get 100 % coverage for all tools except for Expint.

To overcome the limitations associated with local search optimum, Simulated

Annealing (SA) was used as another type of meta-heuristic search algorithms. Tracey et

al. proposed in 1998, an optimization-based framework to be applied to a number of

structural testing problems (N. Tracey, Clark, Mander, & McDermid, 1998). Tracey’s

work focuses on branch coverage. Their goal is to search for program input which forces

execution of the desired part of the software under test. For the search to succeed, a fitness

function is needed to guide the search, relating a program input to a measure of how

“good” the input is to achieve a certain test target. The fitness function returns good

values for test-data that nearly executes the desired statement and bad values for test-data

that is a long way from executing the desired statement. In general, the input domain of

most programs is likely to be very large, and given the complexities of systems it is

extremely unlikely that the fitness surface would be linear or continuous. The size and

complexity of the search space therefore limits the effectiveness of simple gradient-

descent or neighbourhood searches as they are likely to get stuck in locally optimal

solutions and hence fail to find the desired test-data (N. Tracey et al., 1998). Thus, a more

sophisticated approach is needed such as the SA. SA allows movements which worsen

the value of the fitness function based on a control parameter known as the temperature.

At the early stage of the search iterations, inferior solutions are accepted with relative

freedom, but as the search progresses, accepting inferior solutions becomes more and

more restricted. The aim of accepting these inferior solutions is to accept a short-term

penalty in the hope of longer term rewards.

The fitness function designed by Tracey et al. evaluates to zero if the branch

predicate evaluates to the desired condition and positive otherwise (N. Tracey et al.,

1998). It is designed based on the structure of the system under test; for each predicate

controlling the target node, if the target node is only reachable if the branch predicate is

true then the fitness of the branch predicate is added to the overall fitness for the current

test-data otherwise the fitness of (branch predicate) is used. For loop predicates, the

desired number of iterations determines whether the fitness of the loop predicate or (loop

predicate) is used. The simulated annealing search uses this to guide its generation of test-

35

data until either it has successfully found test-data or until the search freezes and no

further progress can be made (N. Tracey et al., 1998).

The automation framework was tested on small Ada 95 programs to cover the

branch coverage criterion. The programs ranged from 20 to 200 lines of codes. The

reported coverage percentage is 100% for all but one case; the failing case achieved 100%

branch coverage in 40 out of the 50 trials. The search time of SA is 2 to 35 seconds.

Unfortunately, the programs tested are not available and thus we were unable to verify

their structural complexity. Moreover, no comparison with other search techniques

performance is presented. Still, this work provides an automated platform for structural

testing. We aim in our work to build a similar platform, however achieving the MC/DC

coverage and not the branch coverage.

One of the most well-known metaheuristics which accepts slightly worse

solutions in the beginning of the search is Simulated Annealing (SA) proposed by

Kirkpatrik, Gellat and Vecci (Kirkpatrick, Gelatt, & Vecchi, 1983). The method models

the physical process of heating a material followed by controlled cooling, which increases

the grain size and consequently helps to remove certain defects like internal stresses,

effectually minimizing the thermodynamic free energy of the system.

It is a stochastic algorithm, which accepts a worse candidate with the probability

1, if () ()
() ()exp , otherwise

f s f s
P f s f s

T

¢ £ì
ï= ¢ -í é ù
ï ê úë ûî

where sand s'are the current and candidate solutions respectively, and T is a

control parameter called ‘temperature’ which varies as the search progresses

characterizes the cooling schedule.

36

Figure 2.6 Simulated Annealing Algorithm. Initial Temperature to cooling down
process.

Simulated annealing (SA) algorithm deals with an initial temperature, cooling

rate, current solution and a neighbour solution. At the beginning, SA generates an initial

current solution and start keeps searching for result in its search space. On every

iterations, SA generates a neighbour solution s' based on its current solution s. Then, the

fitness function process the current and neighbour solution to return results f (s') and f (s)

respectively. If the neighbour solution is better than the current solution, determined by

the condition f (s')>f (s), then SA accepts the neighbour solution and stores it as the current

best solution. If current solution is better than the neighbour solution, then SA generates

a probability P(T, s', s) and a random number between 0 and 1. If probability is greater

than the random number, only then the current solution will be stored as best solution. At

the end of the loop, temperature will be reduced based on cooling rate. Once the

temperature reaches sub-zero, i.e. T≤ 0, the algorithm stops searching. Steps of this

algorithm are presented in Figure 2.7.

37

 1: s ⟵GenerateInitialSolution()

 2: T ⟵ T0 // initial temperature

 3: while termination condition not met do

 4: Select s' from 𝒩(s)

 5: if f(s') > f(s)

 6: s ⟵ s'

 7: else

 8: Accept s' as new solution with probability P(T, s', s)

 9: end if

10: Update T // based on cooling rate

11: end while

Figure 2.7 Schema for Simulated Annealing

Different researchers have proposed different values of initial temperatures so that

a certain percentage of worsening moves are accepted in the beginning. For example

Johnson et al. proposed (D. S. Johnson, Aragon, McGeoch, & Schevon, 1989) to have T0

between 40% and 90%, while Thomson and Dowsl and proposed 75% (Thompson &

Dowsland, 1995), and Cohn and Fielding 95%(Cohn & Fielding, 1999). The final value

of the temperature should be zero or at least close to zero in order to guarantee

convergence. A popular cooling schedules called ‘geometric cooling’ is represented by

the expression

Ti = Ti-1* β

i.e. the temperature at the ith iteration is equal to the previous temperature Ti-1

multiplied by a user-defined cooling factor β (0 < β < 1). However, some authors have

suggested the use of alternative functions, such as the ‘quadratic cooling schedule’

(Andersen, Vidal, & Iversen, 1993) or even temporary increases in the temperature, for

example, adaptive cooling(Thompson & Dowsland, 1995) or reheating (Osman, 1993).

2.7.3.3 Great Deluge Algorithm

One further variant of hill climbing and simulated annealing is the great flood or

great deluge algorithm first introduced by G. Dueck (Dueck, 1993). It is also termed

threshold accepting. This follows a strategy similar to simulated annealing but often

displays more rapid convergence. Instead of using probability to decide on a move when

the cost is higher, a worse feasible solution is chosen if the cost is less than the current

threshold. This threshold value is sometimes referred to as the water level which, in a

profit maximizing problem, would be rising rather than falling (as is happening in this

38

case). As the algorithm progresses, the threshold is reduced, moving it closer to the

optimal cost. This algorithm has not been used for finding covering arrays and so it may

provide some interesting new results(Cohen, 2004).

Bryce and Colbourn (Cohen, 2004) compare the results of a simple greedy

algorithm called density algorithm with the results from four heuristic search algorithms,

namely simple hill climbing, SA, TS, and the great deluge algorithm to construct a

methodology which dispenses one test at a time. The proposed algorithm attempts to

maximize the number oft-tuples covered by the earliest tests so that if a tester only runs

a partial test suite, the test should include as many t-tuples as possible. Heuristic search

is shown to provide effective methods for achieving such coverage.

The great deluge algorithm (GDA) is originally proposed by Dueck (Dueck,

1993). GDA is developed while further experimenting with the threshold accepting (TA)

algorithm, which produced better results than the SA algorithm. It is a mathematical

allegory of the great deluge that was described in the Book of Genesis of the Bible, and

believed to have occurred sometime around 3000 BC. The algorithm walks around in a

country in search of dry land, where it begins to rain without end. However, it never steps

beyond the ever-increasing water level, and at last reaches the highest points in the

country signifying the optimum or near-optimum solution. The basic idea is very similar

to simulated annealing (Aarts & Korst, 1991). However, the difference lies in their

acceptance rules for worse intermediate solutions. The GDA is a one-parameter

algorithm, where it is necessary to choose only one parameter for the best possible

performance of the metaheuristic, whereas the cooling schedule of SA is dependent on a

sequence of parameters (Dueck, 1993). The algorithm was first applied to the 442 cities

travelling salesman (Grötschel’s) problem, but later saw applications in a host of other

practical domains.

The control parameter in GDA is called ‘water level’ which plays the part of the

cooling schedule in simulated annealing. Its value is set to a value higher than the

expected penalty of the best solution at the start of the search. Then the water level is

decreased during the search until it reaches a value of zero. In classical GDA, it was

recommended that the initial value of water level be equal to the initial cost function and

that it should be lowered linearly during the search. However, other variations were also

39

proposed, such as: initialization with a higher level(E. Burke, Elliman, Ford, & Weare,

1995), non-linear level lowering(Obit, Landa-Silva, Ouelhadj, & Sevaux, 2009) or

reheating mechanisms(Mcmullan, 2007) . During the search the algorithm explores

solutions in the neighbourhood of the best solution. A new solution with a lower penalty

is accepted straight away replacing the best solution. A new solution with a higher penalty

is accepted only if this worse penalty is not higher than the current water level.

1: Choose an initial solution s

2: Choose WL // initial water level

3: Choose Up // initial rain speed

4: for i = 0 to n // no. of iterations

5: Generate a small stochastic perturbation s' of the solution s

6: if f(s') > WL

7: s ⟵ s'

8: end if

9: WL = WL + Up

10: end for

Figure 2.8 Schema for Great Deluge Algorithm

The value of the rain speed Up is the single parameter which trades off quality of

the solution with computation time. With a high rain speed the algorithm converges very

fast, but the results are poor. A slower rain speed gives the algorithm more time to search

for high land, and eventually, running for longer computation time, returns much better

results. The optimum speed for a particular problem depends on its complexity and the

available resources.

2.7.3.4 Late Acceptance Hill Climbing

Late Acceptance Hill Climbing (LAHC) algorithm was first introduced by Burke

and Bykov in 2008 (E. K. Burke & Bykov, 2008). This algorithm is developed based on

the general Hill Climbing (HC) algorithm. While HC compares the candidate solution

with the current solution for acceptance, LAHC delays this comparison till the candidate

is compared with a solution which was ‘current’ several steps before. In LAHC, each

current solution still takes on the role of an acceptance benchmark, but only to be used in

some later step. The net effect of this ‘late acceptance’ criteria is that LAHC also allows

some worsening moves, which can help to avoid local minima/maxima. Secondly the

method being a derivative of HC, one of the simplest iterative search algorithm in

optimization literature till today removes its tendency of getting stuck locally, but still

maintains the original simplicity through using a single parameter denoting the length of

40

the list to be remembered. The LCHC was first applied to the exam timetabling problem,

and tested on 13 different benchmark problems taken from the University of Toronto

collection with different values of the list length L. The experiment with LCHC was

carried out alongside experiments on the same problems with simple HC. It was reported

that an increase in L increases the computational cost and simultaneously helps to achieve

better solutions.

The algorithm was later applied to the liner shipping fleet repositioning problem

by Tierney (Tierney, 2013) in 2013. The class of problem belongs to the shipping

industry, which involves the movement of vessels between routes in a liner shipping

network subject to complex costs and timing restrictions. The author carries out

experiments with 88 different instances, using both with LAHC and SA, taking care to

maintain the same neighbourhoods and tuning processes at every instance. The paper

concludes with the observation that LAHC fails to overcome the local optima obstacle as

effectively as SA. The reason of failure of LAHC in solving a difficult and complicated

real-world problem like the shipping fleet problem was attributed to be the possible

simplicity of the algorithm in comparison to SA. Possibility of future work was indicated

towards hybridizations of LAHC and SA, as well as extensions to LAHC proposed by

Burke and Bykov (E. K. Burke & Bykov, 2012). In a paper by Yuan, Zhang and Shao

(Yuan, Zhang, & Shao, 2015) published in 2015, an integer programming model is

constructed and solved for the two-sided assembly line balancing problem containing the

three additional constraints of zoning, positional, and synchronism, over and above the

fundamental constraints of the conventional line balancing problem which make the

problem quite complex. The integer programming model is reported to be suitable for

solving small-sized problems, but does not fare well in solving problems of large size.

compared with results obtained using the late acceptance hill-climbing algorithm. The

proposed algorithm is tested on four small-sized problems and three large-sized

problems. The experiment validates the effectiveness of the LAHC algorithm.

Cohen, Gibbons, Mugridge and Colbourn (Cohen, Gibbons, Mugridge, &

Colbourn, 2003) study the mixed level covering array and propose a new object, called

the variable strength covering array, which provides a more robust environment for

software interaction testing. Initial results are presented suggesting that heuristic search

techniques such as tabu search, simulated annealing are more effective than some of the

41

known greedy methods like simple hill climbing, for finding smaller sized test suites. The

authors present a discussion of an integrated approach for finding covering arrays,

discussing how application of these techniques can be used to construct variable strength

arrays. The principal idea was to use pair-wise or t-way testing to provide a guarantee

that all pairs or t-way combinations are tested together.

The Late Acceptance Hill-Climbing algorithm (LAHC) is a recently invented

general-purpose metaheuristic. It was first presented at the PATAT 2008 conference by

Burke and Bykov (Appleby et al., 1961), where the method was applied to examination

timetabling problems. Since then LAHC has become highly popular and seen application

in different problems like the travelling salesman problem, scheduling problems in the

manufacturing (Yuan et al., 2015) or shipping industry (Tierney, 2013), and has even

been extended to solve multi-objective optimization problems (Vancroonenburg &

Wauters, 2013).

The LAHC start from a single stochastic initial solution and at each iteration it

evaluates a new candidate in order to accept or reject it. To employ its acceptance rule,

LAHC maintains a fixed length list of previous values of the current cost function. The

candidate cost is compared with the last element of the list and if not worse, then accepted.

After the acceptance procedure, the cost of the new current solution is inserted into the

beginning of the list and the last element is removed from the end of the list. Note that

the inserted current cost is equal to the candidate's cost in the case of accepting only, but

in the case of rejecting it is equal to the previous value.

42

1: Produce an initial solution s

2: Calculate initial cost function C(s)

3: for all k ∊ (0, 1, 2, …, L−1) do
4: Ĉk ← C(s)

5: end for

6: I ← 0 // assign the initial number of iteration

7: do until a chosen stopping condition

8: Construct a candidate solution s'

9: Calculate its cost function C(s')

10: v ← I mod L

11: if C(s') ≤ Ĉv then

12: s ← s' // accept candidate

13: Ĉv ← C(s) // insert cost value into the list

14: I ← I + 1 // increment the number of iteration

15: end do

Figure 2.9 Schema for the LAHC algorithm
Source: E. K. Burke & Bykov (2008)

The novelty of the LAHC is a new acceptance condition. Its basic idea is to accept

the candidates with cost function better (or equal) than the cost of the solution, which was

the current several iterations before. Thus, the LAHC maintains the fitness array (memory

size) Ĉk, (k = 1, 2, ..., L) of a particular length L, which contains previous current costs.

At each iteration, the candidate cost C(s') is compared with the last element of the fitness

array ĈL. After the acceptance decision, the current cost is inserted into the beginning of

the fitness array for later comparison, and the last element is removed from the fitness

array. Steps of LAHC algorithm are presented in Figure 2.9.

2.8 Masking Problem and Modified Condition / Decision Coverage (MC/DC)

Criterion

To control a flow of software functionality, control flow operator is used such as

AND, OR and NOT operators. For example, consider two predicates (a AND b) and (a

OR b). Result of (a AND b) is always false when a is false, regardless the value of b and

vice versa. For result of (a OR b), the result is always true, only if a is true, regardless the

value of b and vice versa. In this situation, a and b is masking each other. The situation

is visualized in Figure 2.10.

43

Figure 2.10 Simple function with AND condition

Considering a = 20and b = 8We can get a control

• Path i: 1, 2, 3, 6

Again, considering a = 12and b = 8 We can get another control

• Path ii: 1, 2, 4, 5, 6

All paths are covered without changing the value of b.

44

Figure 2.11 Simple function with OR condition and control flow graph

To perform the same inspection for OR operator, considering: a = 20 andb = 8,

we can get control flow path

• Path i: 1, 2, 3, 6

Yet again Considering a = 12 and b = 8, the control flow path will be

• Path 1: 1, 2, 4, 5, 6

All paths are covered without changing the value of b.

In Figure 2.10 and Figure 2.11, it is clearly visible that for both AND and OR

operator, decision coverage is 100% even without need to change the value of b. Here a

is always masking b and giving a misleading coverage. To illustrate further, consider the

nested if statements for both AND and OR operator as shown in Figure 2.11.

45

Figure 2.12 Equivalent If statement for AND operator of Figure 2.10

We have successfully identified new control flow paths. New paths of Figure 2.12

are:

• Path i: 1, 2, 7, 8, 9

• Path ii: 1, 2, 3, 4, 9

• Path iii: 1, 2, 3, 5, 6, 9

46

Figure 2.13 Equivalent If statement for OR operator of Figure 2.11

Newly identified Control flow paths of Figure 2.13 are:

• Path i: 1, 2, 3, 8

• Path ii: 1, 2, 4, 6, 7, 9

• Path iii: 1, 2, 4, 5, 9

In Figure 2.12, When same inputs are given for a AND b (a=20, b=8 and a=12,

b=8), Path ii: 1, 2, 3, 4, 9 remain uncovered.

Using same inputs in Figure 2.13 for OR based control flow, Path iii: 1, 2, 4, 5, 9

remains uncovered.

The main concern here is how to cover the uncovered paths and at the same time

eliminate the masking problem of both AND and OR operations.

47

Table 2.2 A Domestic Case Studies Probability to Overcome Software Failures

Coverage Criteria Statemen
t

Coverage

Decision
Coverag

e

Conditio
n

Coverage

Conditio
n /

Decision
Coverag

e

MC/D
C

Multiple
Conditio

n
Coverag

e
Every point of entry

and exit in the
program has been

invoked at least once

 • • • • •

Every statement in the
program has been

invoked at least once

• •

Every decision in the
program has taken all
possible outcomes at

least once

 • • • •

Every condition in a
decision in the

program has taken all
possible outcomes at

least once

 • • • •

Every condition in a
decision has been

shown to
independently affect

that decision’s
outcome

 • •

Every combination of
condition outcomes

within a decision has
been invoked at least

once

 •

Source: Hayhurst et al. (2001)

Referring to Table 2.2, Multiple Condition Coverage (aka Exhaustive testing) is

most desirable solution to solve masking problem but this is only appropriate for small

inputs. However, considering MCC is practically infeasible specially when the

combinations are large. Here, the number of conditions grew with 2n where n is the

number of Boolean variables.

Condition coverage (CC) and Condition/Decision coverage(C/DC) are also

possible. CC dictates that every condition in a decision has taken all possible outcomes

at least once. C/DC requires CC and dictates the true and false decision outcome at least

once. Despite being useful, CC and C/DC does not consider independence as the criteria

48

for selecting test cases. Statement coverage and Decision coverage covers only small part

of coverage criteria.

It is clear that MC/DC is the most viable alternative but with significantly reduced

test size as compared to MCC. Here, MC/DC dictates that each condition within a

predicate can independently influence the outcome of the decision. MC/DC is a stricter

form of decision coverage. For decision coverage, each decision statement must evaluate

to true on some execution of the program and must evaluate to false on some execution

of the program. MC/DC, however, requires execution coverage at the condition level.

Along with Hayhurst et al (Hayhurst et al., 2001), other researchers (Awedikian et al.,

2009; Chang & Huang, 2007; Ghani & Clark, 2009; Jones & Harrold, 2003) also

suggested to use MC/DC to solve masking problem.

The aim of the MC/DC criterion is to confirm that each condition in a decision

affect properly the outcome of the decision. Once the following statements bellow is

confirmed, the testing will achieve MC/DC criterion:

1. Each entry and exit point is invoked

2. Each decision tries every possible outcome

3. Each condition in a decision takes on every possible outcome

4. Each condition in a decision is shown to independently affect the outcome

of the decision.

Considering the if statement in Figure 2.10, containing the decision if(a>15 AND

b<10), MC/DC criterion requires to prove that each part of the decision (a>15) and (b<10)

will affect properly the outcome of this decision. To test this program, we need (i) a=true

&& b=true, (ii) a=true && b=false, and (iii) a=false && b=true or three test cases as per

the MC/DC criterion. Our goal here is to generate these test cases automatically from a

given equivalent Boolean expression e.g. (a&&b).

The MC/DC criterion is suggested for use in structural testing to solve Masking

problem (also mentioned in previous section). More importantly this is a required testing

49

criterion as mentioned in DO-178B safety assessment document. The document divides

the software into multiple levels in a decreasing order of safety criticality, from level A

to D. Level A is most safety critical which is defined as “Where a software/hardware

failure would cause and/or contribute to a catastrophic failure of the aircraft flight

control systems” by the FAA (Hayhurst et al., 2001).

For a better understanding of MC/DC criterion, Hayhurst et al. one may refers to

the explanation of MC/DC in “A Practical Tutorial on Modified Condition/ Decision

Coverage” (Hayhurst et al., 2001). However, implementation of MC/DC is left as an open

choice to researchers.

Chilenski and Miller(Chilenski & Miller, 1994) developed MC/DC criteria to

achieve a degree of confidence in the software with fewer test cases but same effective

as exhaustive testing (Multiple Condition Coverage). MC/DC becomes an important

requirement for RTCA/DO-178B document, Software Considerations in Airborne

Systems and Equipment Certification (L. A. Johnson, 1998), that is the primary processes

used by aviation software developers to achieve FAA approval of airborne computer

software(Authority, 1992; Chilenski & Miller, 1994). DO-178B describes software life

cycle activities, design considerations and enumerates sets of objectives for the software

development life cycle processes. The objectives are set based on the software level

determined by a system safety assessment. For level A software, tests should achieve

Modified Condition/Decision Coverage (MC/DC).

Achieving MC/DC criterion is a complicated task. Hayhurst et al. published a

tutorial (Hayhurst et al., 2001) and a practical approach (Hayhurst & Veerhusen, 2001)

on MC/DC in 2001 for better understanding of it. Here Hayhurst provided detailed

definition of MC/DC and defined scope of it as in a Boolean expression (a AND b)or(a

AND c), a, b and c Boolean variables are 3 inputs only that contains 4 conditions (first a,

b, c and second a) because each occurrence of a is considered as unique condition. They

also discussed how to test AND, OR and NOT logical operators and how to evaluate the

result. With the help of their tutorial, MC/DC pairs can be identified although for large

input involving complex conditions, it will be hard for human to identify. Thus, the need

of automation is required to simplify the process.

50

Jones and Harrold (Jones & Harrold, 2003) have proposed an algorithm for

MC/DC with prioritization. There are four steps involved to reduce the number of test

cases. The steps are: removing uncovered pairs, identifying test cases, assigning test cases

contributions and removing weakest test cases. Here, prioritization involves two steps

which are selecting the highest entity coverage and choosing the highest contribution

values test cases.

In another work Jun-Ru and Chin-Yu (Chang & Huang, 2007) usefully exploit n-

cube graph in order to generate appropriate MC/DC compliant test data. In this case, the

vertex of the cube represents the resultant Boolean enumeration for predicates under

evaluation. Each vertex is traversed and arranged and evaluated using Gray Code

sequence ordering until all the required sequences are covered. A tool called TASTE

(Tool for Automatic Software Regression Testing) has been developed as a result.

Kandl and Kirner exploit MC/DC to automotive domain. The goal of their study

(Kandl & Kirner, 2011) is to inspect the error detection rate of a set of test that attains

maximum possible MC/DC coverage. The first stage was done by generating the test

cases. Here, test cases are generated using a model checker followed by transforming the

program into three different errors circumstances. The results proved that fewer errors

were detected when a system was tested with a set of test that attains maximum possible

MC/DC on the code.

2.9 Summary

Search Based Software Engineering (SBSE) has emerged to be a widening field

of study and active research from the start of the millennium. As a part of SBSE Search

Based Software Testing (SBST) claims a major share of the efforts of researchers. The

different categories of SBST include structural testing (also called white box testing),

functional (black box) testing and non-functional (grey box) testing. Structural or white

box testing reveals the most of the bugs as the code is visible to the tester, making it

possible to indicate which part of it contain bugs to be removed.

Different metaheuristics have been seen to perform well in generating a test suite

for different testing conditions including modified condition/ decision coverage

(MC/DC). Of them hill climbing (HC) being the most naïve, but is at the same time the

51

simplest. Different worsening moves were made possible by tabu search (TS), simulated

annealing (SA), and the great deluge algorithm (GDA), which help the solution to move

to other less-explored areas of the search space when it gets stuck in some local optima.

Though the introduction of complexity in these algorithms has produced better results,

the simplicity of the greedy hill climbing algorithm seems to have been lost in such

sophistication. Another advancement in this line is the application of evolution-based

algorithms like Genetic Algorithm (GA) or the Bat-Inspired algorithm to software testing

problem.

However, late trends in SBST have seen a refuge to the old Hill Climbing criteria,

but with a delay in comparison of the candidate solution with the current solution a few

iterations back. This algorithm calls itself the Late Acceptance Hill Climbing (LAHC)

Algorithm. Several algorithms like GDA and LAHC has seen little application to the

software testing problem, particularly in testing the MC/DC criteria.

52

CHAPTER 3

METHODOLOGY

3.1 Introduction

In the previous chapter, the review of existing work has been presented. This

chapter will elaborate the methods of neighbourhood-based algorithms and approach

steps of generating MC/DC pairs by modifying four selected neighbourhood-based

algorithms.

3.1.1 Justification of Neighbourhood-based metaheuristics algorithm

Solutions of MC/DC always found in pairs. By changing one value of a predicate,

next MC/DC pair can be found. Neighbourhood-based meta-heuristics algorithms works

exactly in same pattern. These algorithms start the heuristic from a random position and

move to next position by changing the value of current position. This similarity of finding

solution makes all neighbourhood-based algorithms a better candidate to apply to find

MC/DC solutions.

3.2 Algorithm Implementation Design

Results of a 1999 survey of the aviation software industry showed that more than

75% of the survey respondents stated that meeting the MC/DC requirement in DO-178B

was difficult, and 74% of the respondents said the cost was either substantial or nearly

prohibitive (Hayhurst & Veerhusen, 2001; Hayhurst et al., 2001). In fact, the main

challenge when trying to achieve the MC/DC coverage is to overcome the complexity of

the code under test; it is not sufficient to generate test data for a program’s decisions

isolated, rather test data should be appropriately chosen to reach the targeted decisions

and to achieve the relative test cases.

53

The most common approach to analyse the structure of the code under test is to

extract its control flow graph (CFG). In fact, most of the structural testing approaches

rely on the CFG to measure coverage and guide the search for the test input data. We can

cite (Korel, 1990a) as examples the work of Korel in 1990 on branch coverage, the work

of Baresel (Harman, Hu, Hierons, Baresel, & Sthamer, 2002) in 2002 on structural testing

using evolutionary testing relying on the CFG to build the fitness function and the work

of McMinn (McMinn, 2004) in 2004 also using the CFG to build the fitness function for

branch testing MC/DC Test case generation Algorithms.

3.2.1 Control Flow Graph

A CFG is a graph representing the program structure. The CFG nodes represent

computations. While in some CFG forms, a node represents one statement of code, in

other CFG forms, a node can represent a code segment depending on the convention used;

a segment being one or more lexically contiguous statements with no conditionally

executed statements in it (Binder, 2000). Nodes can be named or numbered by any useful

convention.

The edges (also called branches) represent the flow of control, which is usually a

conditional transfer of control between a node and another one. An edge connects two

nodes, representing the entry into and the exit from the statement. The entry point of a

program is represented by an entry node with no incoming edges. The exit point of a

program on the other hand is represented by the exit node with no outbound edges

(Binder, 2000).

The CFG is an essential for the MC/DC testing because the flow of control is

directed by the conditional nodes in the CFG; these nodes being predicate expressions

such as an “if”, “while”, “do until”, etc. The CFG of a program is the fundamental

structure required to guide the input data into the correct path to reach a targeted decision.

54

1: public Integer calculate(Integer x, Integer y, Integer z)

 2: {

 3: Integer result = -1;

 4: Boolean fail = false;

 5: if (x < 0 || y < 0 || z < 0)

 7: {

 8: fail = true;

 9: }

10: else

11: {

12: fail = false;

13: }

14: if (! fail)

15: {

16: x = y;

17: result = 0;

18: }

19: if (result == -1);

20: {

21: if (z == 0);

22: {

23: result = x + y;

24: }

25: else

26: {

27: if (z > x && z > y || z > x + y)

28: {

29: result = z;

30: }

31: else

32: {

33: result = x + y

34: }

35: }

36: }

37: return result;

38: }

Figure 3.1 Calculation function

55

Figure 3.2 CFG of calculation method

The CFG of the calculate() method is shown in Figure 3.1. To reach the node

19 of Figure 3.2 for example, nodes 1 to 3 are traversed, then either the true edge or the

false edge of both decisions nodes 6 and 12 can be traversed. However, the true edges of

nodes 17 and 18 must be traversed to reach 14.

3.2.2 Decision coverage and MC/DC coverage

Decision coverage, also known as branch coverage, is achieved when each edge

in a CFG is covered, and thus every edge from a decision node is traversed at least once.

Ensuring that all decisions in the CFG are tested at least once implies the necessity to

reach the decisions first. Let us assume that we want to test the decision at line 16 in the

Calculate method in Figure 3.1. At a first look at the CFG, we can deduce that the input

data generated must traverse the true branch of the decision at line 17 and the else branch

of the decision at line 18 to reach the target decision. We can deduce that our target

decision at line 21 is dependent on the flow of control through the decisions 17 and 18.

We call such dependencies control dependencies. Moreover, a test data diverging away

from the target at line 18 would be closer to the target from a test data diverging at line

56

17. In general, to automate the search for test data reaching a target statement, we need a

cost function that determines which test data is closer to reach the target node. The cost

function verifies for each test data how many controlling nodes were traversed in the

required manner. The more traversed controlling nodes the better the cost function. This

cost function is the Control Dependencies fitness function.

The problem with the search relying solely on the control dependencies between

nodes is that it ignores prior statements that need to be executed first to make the path

feasible to reach the target. Going back to our targeted decision at line 21, even though

this decision does not appear to depend on decisions at lines 6 and 12, following the CFG,

the outcome of these decisions play a decisive role in reaching our target. In fact, the

variable “result” used at line 17 depends on the true branch of the decision at line 12.

In turn, the decision at line 12 depends on the variable “fail”, which is modified in the

else branch of the decision at line 6.

As proposed by (McMinn & Holcombe, 2006) for branch coverage, we will

integrate both cost functions for MC/DC coverage. The integrated fitness functions form

the Approach level.

Assuming now that we reach the target decision with a test data xi, then we need

to verify if xi achieves one of the MC/DC test goals. Moreover, if two test data xi and yi

reach the target decision, but none of them achieve an MC/DC condition, a new cost

function is needed to measure which of two test data is closer to achieve the test goal t

the condition. In this case, the evaluation function relies on the structure of the target

decision and the test case at hand. Such an evaluation function is called Branch fitness

function.

3.3 MC/DC Pair Generation using Neighbourhood-based Algorithm

The first strategy used to automate the test data generation for structural testing

was local search used by Miller and Spooner in 1976 (Miller & Spooner, 1976). A

solution in a testing problem is an input test data. The objective function for a specific

target in the program under test is the fitness function generated for each test case. Thus,

applying local search to the MC/DC data generation problem, the algorithm evolves one

57

test input data as a possible solution, improving it in iterations, aiming to reach a test data

that would achieve the MC/DC test goal selected.

3.3.1 Stopping Criteria

The goal of the local search being minimization of the fitness function, the first

stopping criterion is the fitness function of an individual found equal to zero; in this case

the test data achieved the test goal. The algorithm selects another test goal and restarts

the search, until all MC/DC test goals for the target are reached. If after a maximum

allowed number of iterations, the algorithm fails to find a test data with a zero fitness

function, the search is forced to stop so that it does not loop forever. In this case, it is

either that the test goal is impossible to achieve or that the algorithm just failed in its

search. Either way, the test goal is reported as failed.

3.3.2 Hill Climbing

Hill Climbing (Awedikian, 2009) algorithm deals with current and neighbour

solution. At the beginning of the search, initial current solution is generated. An index is

used to control the loop. The loop continues to search in the search space until the index

reaches the stopping condition that is iterator in this case. In every iteration of the loop,

a neighbour solution is generated based on current solution. The fitness function

compares the current solution with neighbour solution and return the result. If fitness

function is true which mean the neighbour solution is better than the current solution,

then current solution will be replaced by neighbour solution. If the fitness function is

false, the value of the current solution remains same and in next iteration it generates

another neighbour solution from the same current solution.

The pseudo code of Hill Climbing (Awedikian, 2009) algorithm is given at Figure

3.3. The algorithm start from line 1 (indicated as 1:) by initiating result array and

variable initiation continues until line 3. In line 2 and 3, the function initiate mcdc_pairs

and iterator variable. The algorithm starts with an outer loop at line 4. This outer loop

continues until all the predicates in the expression is executed. Before starting the search

algorithm, a routine randomly chooses an initial current solution s in line 5. An index

variable is initiated at line 6 to control the algorithm loop. The search loop at line 7

continue to iterate until the index is less then iterator. In each iteration of the algorithm,

at line 8, a neighbour solution h is generated based on current solution s. At line 10, a

58

fitness function compares the current s and neighbour solution h and return result as T

or F. If condition is T there, that means the neighbour solution h is better than current

solution s. Then value of neighbour solution h is set to current solution s, both current s

and neighbour solution h is appended as mcdc_pair which is our test case (line 12:15)

and the index is increased at line 17. If the condition is F, that means neighbour solution

h is worst then current solution s and then index is increased and in next iteration a new

neighbour is generated from the previous current solution. At the end of the function, the

mcdc_pairs variable will have our expected test suite.

 1: Begin

 2: Array result

 3: Array mcdc_pairs

 4: Integer iterator

 5: While result size < expression size

 6: Generate current solution s

 7: Integer index

 8: While index < iterator

 9: Generate move neighbor Îh(s)

10: Where h is neighbor solution.

11: If (ƒ(s) – ƒ(h)) < 0

12: Set result = index(expression)

13: Set mcdc_pairs = mcdc_pairs(s)

14: Set mcdc_pairs = mcdc_pairs(h)

15: Set s = h

16:

17: End if

18: Set index++

19: End While

20: End While

21: End

Figure 3.3 Pseudo Code of Hill Climbing Algorithm

3.3.3 Great Deluge Algorithm

In our implementation of Great Deluge algorithm, the step starts from step 0 and

the loop is completed while the step size becomes ³ the current expression size.

Variable expression contains the Boolean expression. While our outer loop start

execution, we generate an initial current solution, set a current_water_level (line 10)

59

and flood_level = initial_water_level (line 11) which was set at the beginning.

At line 12, the inner while loop starts and continue until

(current_water_level<rain_drop_speed) AND (flood_level £delta_level).

Inside the inner loop at line 13, we generate a neighbour solution based on current

solution. Then in line 15 the fitness function decides if the neighbour solution is better

than the current solution. If neighbour solution is better than current solution, then assign

neighbour solution to current solution, add current and neighbour solution to mcdc_pairs

collection and add the current expression position to step (Line17-20). After the fitness

function check, increase the current_water_level and decrease the flood_level as

per water_level. While the outer loop completes its first iteration, it moves to next

expression variable to search and start with generating a new current solution. By the

time the outer loop complete the heuristic in Boolean expression, we have our list of

mcdc_pairs as test suite and each pair is considered as test case.

60

1: Begin

 2: Array mcdc_pairs

 3: Float initial_water_level iwl

 4: Float rain_drop_speed rdp

 5: Integer step = 0

 6: Float initial_water_level il

 7: Float delta_level dl

 8: Float water_level = (iwl - dl) / rdp

 9: While step size ≤ expression size

10: Generate current solution s

11: Integer current_water_level cwl

12: Float flood_level fl = iwl

13: While ((cwl < rds) AND (fl ≤ dl))

14: Generate move neighbor Îh(s)
15: Where h is neighbor solution.
16: If (ƒ(s) – ƒ(h)) < 0

17: If step Ï index(expression)

18: Set step = index(expression)
19: Set mcdc_pairs = mcdc_pairs(s)
20: Set mcdc_pairs = mcdc_pairs(h)
21: Set s = h
22: End If

23: End If

24: Set index++

25: Set fl = fl – water_level

26: End while

27: End while

28: End

Figure 3.4 Great Deluge Algorithm Pseudo Code

3.3.4 Simulated Annealing

The algorithm takes initial_temperature and cooling_rate as parameters.

The ‘expression’ in line 4 contains the Boolean expression to test. This starts with a

local search from line 4 to ensure all expression variables are loop through. Before

starting the final search, a process randomly chose an initial solution current solution s

(line 5). The search loop continues until the temperature t cool down to 0 or less (line 7).

Inside the loop, in each iteration, the temperature t is dropped while multiplying it with

cooling_rate µ (line 22). Inside the loop, a neighbour solution h is generated based on

current solution s (line 8). The fitness function determines if the current solution s will

61

continue in the next iteration or current solution will be replaced by neighbour solution

h (line 10). In case of false result from fitness function, a probability function p

determines the fate of current solution (line 16-20).

 1: Begin
 2: Array result
 3: Array mcdc_pairs
 4: Select a cooling_rate µ
 5: While result< expression size
 6: Generate current solution s
 7: Set initial temperature t
 8: While t> 0
 9: Generate move neighbor Îh(s)
10: Where h is neighbor solution.
11: If (ƒ(s) – ƒ(h)) < 0
12: Set result = index(expression)
13: Set mcdc_pairs = mcdc_pairs(s)
14: Set mcdc_pairs = mcdc_pairs(h)
15:
16: Else
17: Set D = s energy – h(energy)

18: Set probability p = 𝑒5∆ 7
19: If p> between 0 and 1
20: Set s = h
21: End If
22: End If
23: Set t = t * µ
24: End While
25: End While
26: End

Figure 3.5 Pseudo code of Simulated Annealing Algorithm

3.3.5 Late Acceptance Hill Climbing

The algorithm starts with outer loop at line 5, before which initialization of the

variables is done. The while loop continues until result < expression variable

size. On every iteration, the history_memory makes a reset (line 6) and starts to fill

the memory with current solutions (line 10) until the history_memory = memory_size

62

is reached. Now memory_size is a pre-defined variable here. An index variable,

starting from 0 (line 13) is used to count the iteration of second loop (line 31) and used

to get the memory from history_memory (line 18). In the second loop at line 8, the

algorithm generates a neighbour solution based on current solution. The fitness function

(line 19) checks if the candidate will take the role of current solution at the next iteration.

If fitness function return T and result not contain expression variable position (line 20),

add the solution in mcdc_pair array (line 22) and set current solution = neighbour

solution (line 24). When then index become ³ then iterator the second loop will stop

(line 27-29).

63

 1: Begin
 2: Array result, mcdc_pairs, history_memory
 3: Integer iterator
 4: Integer memory_size
 5: Integer loop
 6: While result size < expression variable size
 7: Reset history_memory
 8: Reset loop = 0
 9: While loop<memory_size
10: Generate current solution s
11: Push history_memory(s)
12: Set loop++
13: End While
14: Integer index = 0
15: Boolean is_complete = false
16: While is_complete = false
17: Generate move neighbor Îh(s)
18: Where h is neighbor solution.
19: Integer value = index mod memory_size
18: Set memory= history_memory
19: If (ƒ(s) – ƒ(h)) < 0
20: If stepÏ index(expression)
21: Set step = index(expression)
22: Set mcdc_pairs = mcdc_pairs(s)
23: Set mcdc_pairs = mcdc_pairs(h)
24: Set s = h
25: End if
26: End if
27: If index>= then iterator
28: is_complete = true
29: break;
30: End if
31: Set index++
32: End While
33: End While
34: End

Figure 3.6 Late Acceptance Hill Climbing Pseudo Code

64

3.4 Algorithm Calibration

We present in the following sections the algorithmic settings for each of the HC,

SA, GD and the LAHC algorithms.

We calibrated the algorithms with the help of a simple experiment. We set a

counter in each algorithm and administrate the search loop to run 500 times strictly. We

run SA first and record the execution time and output. Then we move to GD and did the

same. Until the GD records match with SA, we keep tuning the algorithm variables. When

GD is settled, we did same for LAHC. After the calibration, algorithm configuration

values are given in Table 3.1

Table 3.1 Algorithm Configuration Values

Algorithm Parameter Value
Hill Climbing (HC) Iterator 100

Simulated Annealing (SA) Cooling Rate 0.01
Initial Temperature 10000.00

Great Deluge Algorithm (GDA) Iterator 10
Final level 0.05

Late Acceptance Hill Climbing
(LAHC)

Iterator 10
History Memory Size 100

After finalizing the algorithm parameters in Table 3.1, we used selected

parameters from Table 3.2 and execute each algorithm for 30 times. The result of outcome

is presented in next chapter.

3.4.1 Comparative Studies

For each iteration, we have collected number of test cases, execution time and

cumulative data of minimum and maximum test cases; minimum, maximum and average

execution time for all algorithms. Our experiment is performed in Intel® Core i5 (1.4GHz,

3MB L3, 256KB L2 cache) with 4GB of RAM on Mac OS X Yosemite Operating

System.

65

3.5 Subject Expressions

For our experiment, we applied all four algorithm implementations in all nine

Boolean expressions of Table 3.2 and recorded the output. These Boolean expressions

are expressions converted from the functions in Function Name column of same table.

Algorithms are set to run 30 times for each Boolean expressions. Before executing final

experiment, we calibrate our algorithms with their different variables, so that each

algorithm takes close enough average time.

Table 3.2 List of Boolean expressions for experiment

Expression
No.

Symbol Expression No. of
conditions

Group

1 E1 (a + b + c) 3 A
Simple 2 E2 ((a + b)+ c) 3

3 E3 (a +(b + c)) 3

4 E4 (a(bc)+ d))
4 B

Medium
Complex 5 E5 ((ab)+(bd + c)) 4

6 E6 +((a c)(b + cd)) 4

7 E7 (abcd(ef)(g+h)) 8 C
Complex 8 E8 +(abcd) (ef+gh)) 8

9 E9 + +((ab) (cd) (df)+(gh)) 8

In this experiment, Expressions of Group A in Table 3.2 are considered as simple

complexity expression as they have lowest number of conditions and decision in our

experiment. Group B is considered as medium complexity expressions as they have more

decisions then group A and less then Group B. Group C is considered as complex

expressions as they have heights number of conditions and decisions in our list of

expressions to test.

3.6 Approach Steps

The automation of the testing approach is divided mainly into five steps illustrated

in Figure 3.7.

66

Figure 3.7 Approach Steps in the Automation of Testing

The function under test is first fed into the Input module. The Input module

validate the input, identify size of expression and list of logical operators and output to

the MC/DC test suite generator. The MC/DC test case generator control the meta-

heuristics algorithm configuration and fed the expression and expression size. The fourth

step is the meta-heuristic algorithm that process the expression and output the result as

test data.

3.7 Summary

Different criteria for software testing that assures the program to be bug-free has

been discussed. Starting with the essential definitions, the Modified Condition/ Coverage

Criteria is shown an enhancement of the simple combination of the Condition criterion

and the Coverage criterion. Though the multiple condition coverage criteria assures an

exhaustive testing, it is not always feasible due to its exponential time complexity of the

2n test cases it require for a decision with n inputs which calls for the MC/DC to provide

the minimal test cases which require each condition to independently affect the outcome

of a decision. This gives a reasonable guarantee to be error-free, and makes fault finding

convenient, whilst maintaining a linear time complexity with n + 1 test cases.

The method for automated test data generation is discussed in the next section of

this chapter. This comprises of the employment of four metaheuristics, namely hill

climbing, great deluge algorithm, simulated annealing and the late acceptance hill

1. Function
under test

2. Input
module

3. MC/DC
test case
generator

4. Meta-
heuristic
s
algorith

5. Test data

67

climbing in an effort to find the optimal test cases required to satisfy the MC/DC criteria

for a sample condition is generated with the help of each of these metaheuristics. The

pseudo code is presented for each.

It remains to be seen which of these metaheuristics perform better with respect to

generation of automated test cases for the MC/DC criteria. This forms the focus of the

next chapter.

68

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, we report results from a preliminary experimental study carried

out to evaluate the performance of our approach for MC/DC automatic test input data

generation using Hill Climbing (HC), Simulated Annealing (SA), Great Deluge (GD) and

Late Acceptance Hill Climbing (LAHC). Each algorithm is compared with other

algorithms. In the next subsections, we briefly describe selected Boolean expressions to

experiment and the main experimental steps, details about the algorithmic settings, and

finally, we present results and their interpretation.

4.2 Result Presentation

In Table 4.1 and Table 4.2, the Expression Number column refers to the

Expression Number column of Table 3.2, meaning data in row 1 of Table 4.1 and Table

4.2 is data of Boolean expression(a+b+c). Condition column indicates number of

conditions (literals) in the Boolean expression. From third column, every two columns in

Table 4.1 and every three columns in Table 4.2 are grouped for one algorithm. Min and

Max columns in Table 4.1 contain the maximum and minimum number of test cases for

current algorithm, while Min, Max and Avg in Table 4.2 represents average, maximum

and minimum run times for the algorithms. From now on, Expression Id. 1 to 9 will be

symbolized as E1 , E2 , E3 , …, E9 ., while the number of conditions are symbolized by

nc. The expressions E1 , E2and E3 of Table 4.2 are Boolean expression with nc = 3.

These can be considered as simple expressions. We call this as Group A. Boolean

expressions in E4 , E5 , E6 are with nc = 4. We will call it Group B. Group C contains

the three Boolean expressions E7 , E8 , E9 with nc = 8. Group C is considered as complex

expressions.

69

Table 4.1 Result of minimum, maximum number of test cases generated

Expressio
n Id.
(E*)

No. of
condition

s (nc)

Simulated
Annealing

Hill Climbing Great Deluge
Algorithm

Late
Acceptance Hill

Climbing
Min Max Min Max Min Max Min Max

1 3 4 5 4 5 4 5 4 5
2 3 4 4 4 4 4 4 4 4
3 3 4 4 4 4 4 4 4 4
4 4 5 7 5 7 5 7 5 7
5 4 5 7 5 7 5 7 5 8
6 4 5 8 5 8 5 8 6 7
7 8 9 10 9 10 9 10 9 10
8 8 12 16 11 15 11 16 14 16
9 8 12 16 11 15 11 16 13 16

Table 4.2 Result of minimum, maximum and average run time from experiments

E* nc Simulated Annealing Hill Climbing Great Deluge
Algorithm

Late Acceptance Hill
Climbing

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

1 3 0.08 0.22 0.15 0.03 0.61 0.14 0.07 0.52 0.21 0.12 0.59 0.30
2 3 0.02 1.42 0.28 0.08 1.16 0.36 0.06 1.77 0.41 0.12 0.72 0.37
3 3 0.02 1.24 0.22 0.07 0.42 0.18 0.02 0.65 0.19 0.05 1.00 0.25
4 4 0.05 0.43 0.19 0.03 1.49 0.36 0.10 1.18 0.51 0.11 1.23 0.64
5 4 0.08 0.75 0.24 0.06 1.08 0.25 0.07 1.25 0.27 0.11 1.02 0.51
6 4 0.06 1.24 0.40 0.07 1.02 0.40 0.08 1.82 0.42 0.11 2.31 0.81
7 8 0.72 29.34 7.72 0.92 23.99 10.19 2.49 28.65 10.65 72.14 451.75 205.18
8 8 0.26 1.68 0.93 0.31 2.36 1.21 0.28 2.72 1.06 6.00 71.27 26.02
9 8 0.34 3.51 1.47 0.12 3.80 1.28 0.28 2.75 0.99 6.42 71.59 24.92

4.3 Discussion

In the following subsections, we present the comparison of the efficiencies of the

four algorithms in producing the exact number of test cases and the time required to

produce them from the minimum and maximum test cases produced in our experiments,

and the minimum, maximum and average run times recorded in the respective algorithms.

70

4.3.1 Group A: Expressions with 3 conditions

In Group A, SA, HC, GD and LAHC perform exactly same in number of test case

generation. All the algorithms have 4 test cases in minimum and maximum category. But

in terms of performance, they actually fluctuate.

Figure 4.1 Number of test cases generated for the Expression 1 (Group A)

71

Figure 4.2 Number of test cases generated for the Expression 2 (Group A)

Figure 4.3 Number of test cases generated for the Expression 3, Group A.

72

In Figure 4.1, Figure 4.2, Figure 4.3, figures represent the number of test cases

generated for Expressions of Group A. Each bar represents the number of test cases

generated for different algorithms, with the bottom denoting the minimum and the top

denoting the maximum number of test cases generated.

In Group A, For E2 and E3, all algorithms generated 4 test cases and for E1, 5

test cases. We can easily say we observed a pure reflection of No Free Lunch Theorem

(Wolpert & Macready, 1997) here, as even the algorithms have different number of

parameters to configure and tune, which increase or decrease complexity of algorithms,

but here the complexity does not effects the output of the algorithms.

In the next section, we will look for the performance of the algorithms and will

try to see if the complexity effects the time performance.

Figure 4.4 Time Performance of different algorithms for Expression 1(Group A)

73

Figure 4.5 Time Performance of different algorithms for Expression 2 (Group A)

Figure 4.6 Time Performance different algorithms for Expression 3 (Group A)

74

In Figure 4.4, Figure 4.5, Figure 4.6, each bar represents the run time in seconds

for different algorithms, with the bottom denoting the minimum, the top denoting the

maximum, and the white horizontal line in between denoting the average time taken in

different runs of the same expression.

From Figure 4.5 and Figure 4.6, it is clearly visible that the average test case

generation time of HC is the lowest for E1 and E3. SA is wining here for E2. Both GD

and LAHC require a higher time to execute the same expression while producing the

same result. In case of maximum time required, GD is performing very poor as for a case

it took 1.77 seconds to execute E2. SA is 2nd in low performing in our experiment as E2

and E3 took more than 1.20 seconds for each. LAHC looks pretty stable and no big jump

among same type of expressions for maximum time required.

4.3.2 Group B: Expressions with 4 conditions

Maximum and minimum number of test cases generated for Group B is presented

in Figure 4.4. For minimum test cases, SA, GD, HC and LAHC performed exactly same

(5 test cases) except only for E6 (LAHC produce 6 test cases). For maximum number of

test cases, SA, GD, HC produce same result for all expressions (E4 = 7, E5 = 7, E6 = 8)

except LAHC produce 8 test cases for E5 and 7 test cases for E4 and E6.

We can come to a conclusion that

• In Group B; while SA, GD, HC has an exact output, LAHC trend to

produce more test cases.

75

Figure 4.7 Number of test cases generated for the Expression 4 (Group B)

Figure 4.8 Number of test cases generated for the Expression 5 (Group B)

76

Figure 4.9 Number of test cases generated for the Expression 6 (Group B)

Results of execution time for this group is visualized in Figure 4.10, Figure 4.11,

Figure 4.12. For Average execution time, SA wins for all expressions with lowest average

followed by HC, GD and LAHC after it. Though average of E5 and E6 are pretty

consistence in all algorithms; E4, which has 𝑎 + 𝑎 logic, in average takes more time to

produce test cases, except GD has best average for this expression. When SA, HC, GD

has average between 0.24 to 0.27 seconds, LAHC has 0.51 seconds to produce result.

LAHC has very consistent minimum execution time while maximum execution time is

very inconsistent compared to other algorithms. We can conclude here LAHC has worst

average while SA has the best average execution time. Although minimum execution

time is relatively near between all algorithms, maximum execution time differs in all

algorithms. SA, GD, LAHC took more time for E6 while HC managed it very well,

though HC fail to handle E5 in a short period of.

77

Figure 4.10 Result of Execution time of Expression 4 (Group B)

Figure 4.11 Result of execution time for Expression 5 (Group B)

78

Figure 4.12 Time Performance of Algorithms forExpression 6 in Group B

4.3.3 Group C: Expressions with 8 conditions

In Group C, though all expressions have 8 conditions, E7 is one large expression

and logics are grouped inside the parentheses. E8 is constructed with 2 groups of logics,

each containing 4 conditions and E9 has 4 groups of logics with 2 conditions in each

group. In the Figure 5.6, maximum and minimum number of test cases are presented in

the form of a bar chart. For E7, all the algorithms generated 9 minimum test cases and 10

maximum test cases while LAHC have generated 10 minimum cases as well. For E8 and

E9), algorithms trend to generate more test cases for these expressions. For these two

expressions, HC & GD generated lowest minimum test cases (11 test cases). SA is in 2nd

position with 12 test cases and LAHC produce poorest result with 14 and 13 test cases.

For maximum test cases of E8 and E9, HC produces 15 test cases only where SA, GD

and LAHC product 16 test cases. After observing this relational behavior of algorithms

and grouped Boolean expressions,

79

If one or more decision exists in a Boolean expression/predicate, that dramatically

affects the output of algorithms ignoring the number of total conditions.

Figure 4.13 Number of test cases generated for the expression 7 in Group C.

80

Figure 4.14 Number of test cases generated for the expression 8 in Group C.

Figure 4.15 Number of test cases generated for the expression 9 in Group C.

81

Though the algorithms generated more test cases for E8 and E9, with E7 having

less test cases, all algorithms performed almost similarly in execution time except LAHC,

which took excessively long time to produce test cases for E7. For E7, while we recorded

average time for SA 7.72 seconds, HC 10.19 seconds and GD 10.65 seconds, LAHC took

average time of 205.18 seconds for same 8 condition expressions. In terms of maximum

time required, LAHC took 451.75 seconds (7.54 minutes) while 2nd maximum time from

other algorithms is 28.65 seconds by GD. Lowest maximum time is taken by HC, 23.99

seconds. The execution times are presented in Figure 4.16,Figure 4.17 and Figure 4.18

To accommodate the huge variation of times recorded by LAHC (nearly 10 times) in

comparison with SA, HC and GD, the time is plotted on a logarithmic scale to enable

comparison on the same axis.

Algorithms showed a completely different behaviour while generating output for

other 2 expressions. SA, HC, GD took average of less than 1.5 seconds for E8 and E9.

Even LAHC took 26.02 seconds (E8) and 24.92 seconds (E9) for generating test cases

for them.

From this observation, we can say,

• though the algorithms generated lower number of test cases for one big

group of conditions, there is a price in terms of execution time.

• algorithms took significantly less time for same number of conditions with

multiple decisions in an expression. Here, algorithms compensate time

with number of test cases.

• Comparing number of test cases and execution time, LAHC is poor for

such use, especially for expressions with more conditions.

• GD is also low performing compared to SA and HC, yet not totally outcast

like LAHC.

82

Figure 4.16 Time Performance of Algorithms for the expression 7 in Group C

Figure 4.17 Time Performance of Algorithms for the expression 7 in Group C

83

Figure 4.18 Time Performance of Algorithms for the expression 9 (Group C)

The run-time is plotted on a logarithmic scale to accommodate the huge variation

of times recorded by the algorithms

4.4 Observation

From the results, we have observed Time performance and output of algorithms

also depends on various other features. Here is an explanation about the observed features

are given:

4.4.1 Presence of No Free Lunch Theorem:

In all our figures in this chapter, we can see different algorithms are producing

different results and performing differently without any specific order. This does not

mean an algorithm is better than another algorithm. As per No Free Lunch Theorem

(Wolpert & Macready, 1997), one algorithm producing better result for a specific

problem might not show the same performance in another algorithm. In Chapter 2, we

discussed LAHC is performing excellent in few problems (Verstichel & Berghe, 2009)

but here in most expressions, especially in Group C, the algorithm does not produce

84

satisfactory result compared to other algorithms. Average time requires to generate the

test cases for SA and HC are lower from GD and LAHC.

4.4.2 Exploration and Exploitation

Hill Climbing (Renders & Bersini, 1994) Algorithm is better at Exploitation as

the algorithm always look for the next better solution based on the current solution in

local optimum. Late Acceptance Hill Climbing derived the Exploitation property from

Hill Climbing algorithm and use stored memory exploit few steps older solutions to

achieve the best result. Simulated Annealing try to find a solution by exploiting previous

solution. If the current solution is not better than the previous solution, SA use exploration

technique to find next solution. Great Deluge Algorithm can also be configured to have

a quicker exploration rate (Mcmullan, 2007) by tuning the rain fall parameter.

4.4.3 Easy to use

From this observation, we can summarize,

• Though the algorithms generated lower number of test cases for one big

group of conditions, the cost is execution time for that.

• Algorithms took significantly less time for same number of conditions

with multiple decisions in an expression. Here algorithms compensate

time with number of test cases.

• Comparing number of test cases and execution time, LAHC is poor for

such use, specially for expressions with more conditions.

• GD is also low performing compared to SA and HC, yet not totally outcast

like LAHC.

4.5 Summary

In a nutshell, the results for the four different algorithms reveal quite a few

important observations regarding accuracy and efficiency in generating test cases for

software testing. The first observation is, the four algorithms do not differ much from the

85

accuracy point of view. This is shown by the fact that the number of test cases generated

are roughly equal for all the four algorithms. However, so far as the run times of the test

case generation code is concerned, thus indicating efficiency of the algorithms, the most

consistent performer seems to be the simplest algorithm, viz. Hill Climbing. And,

interestingly, the algorithm that required the most time is Late Acceptance Hill Climbing.

Great Deluge performed better and ranks second in requiring less time to get the required

number of test cases, followed by Simulated Annealing which ranks third.

86

CHAPTER 5

CONCLUSION

5.1 Introduction

The previous chapter has subjected our implemented algorithms with several

experiments in order to discover its comparative analysis. Within the context of this

research, this chapter discusses the impact of the results achieved and implication for

future work.

5.2 Concluding Remarks

This research was aimed to study and investigate neighbourhood based mate-

heuristic algorithms for test suite generation satisfying MC/DC criterion. Than develop

two new neighbourhood based metaheuristics algorithm implementation to generate Test

suite that satisfy MC/DC criterion and perform a comparative analysis with two re-

implemented meta-heuristic algorithms. The research objectives for this study were as

follows:

1. Study and investigate the use of neighbourhood metaheuristic algorithms

for test case generation satisfying the MC/DC Criterion.

2. Develop four new implementations of neighbourhood based strategies

based on Simulated Annealing, Hill Climbing, Great Deluge, and Late

Acceptance Hill Climbing that satisfy MC/DC.

3. Compare and analyse the performance of the developed strategies in terms

of test case size and execution time.

87

Addressing the first objective, we elaborate on the need of Modified Condition/

Decision Criteria (MC/DC) in software structural testing and demonstrate the need of

neighbourhood based metaheuristics search algorithms in finding a suitable test suite

within a reasonable time and cost. Different neighbourhood search algorithms are

illustrated, and their relative advantages and disadvantages are discussed, keeping in the

background their application to different domains by previous researchers.

Concerning the second objective, we implemented two new neighbourhood based

metaheuristic strategies, namely Late Acceptance Hill Climbing (LAHC) and the Great

Deluge (GD) Algorithm in finding an optimal test suite for 9 exemplary expressions of

different complexity. The performance of these two algorithms in terms of number of test

cases generated, and run time (minimum, maximum and average) is compared with two

other re-implemented neighbourhood based meta-heuristics algorithms Simulated

Annealing (SA) and Hill Climbing (HC).

As for the final objective, we successfully identified the strength and weaknesses

of each of these algorithms and their behavioural activity toward different sizes of

Boolean expressions. In particular, it was observed that while GD performed well for

most expressions, LAHC could outperform the other search strategies only for the simple

expressions.

5.3 Contributions

Main contributions of this research are:

1. Two (LAHC and GDA) new implementation of neighbourhood based

meta-heuristics algorithm to generate test suite satisfying MC/DC

criterion.

2. Comparative performance analysis of Neighbourhood based meta-

heuristics algorithms between SA, HC, LAHC and GDA.

5.4 Scope of Future Work

As future extension of this study, an in-depth analysis about the performance of

LAHC and GD by tuning their configuration parameters (where they need not stay sync

88

with other algorithms) can be implemented. Implementation of other search algorithms

like the Tabu Search can also be conceived, with due comparison with the metaheuristic

search strategies already carried out in this thesis. Population based algorithms and

Global optimization techniques can be applied to generate MC/DC criterion compliant

test cases. Bat algorithm, Cuckoo algorithm, Firefly algorithm are new optimization

approaches and can be applied to test case generation. I also suggest to Memetic

algorithm to generate test case satisfying MC/DC Criterion as this algorithm use both

Local and Global optimization techniques. Such a study with five or six search strategies

and different parametric settings can really help the software tester to get an optimal test

suite with high reliability and lowered cost.

89

REFERENCES

Aarts, E., & Korst, J. (1991). Simulated annealing and boltzmann machines: a
stochastic approach to combinatorial optimization and neural computing: Wiley.

Alba, E., Chicano, F., Ferreira, M., & Gomez-Pulido, J. (2008). Finding deadlocks in
large concurrent java programs using genetic algorithms. Paper presented at the
Proceedings of the 10th Annual conference on Genetic and Evolutionary
computation.

Ammann, P., Offutt, J., & Huang, H. (2003). Coverage criteria for logical expressions.
Paper presented at the 14th International Symposium on Software Reliability
Engineering, 2003.

Andersen, K., Vidal, R. V. V., & Iversen, V. B. (1993). Design of a teleprocessing
communication network using simulated annealing Applied Simulated
Annealing (pp. 201-215): Springer.

Appleby, J., Blake, D., & Newman, E. (1961). Techniques for producing school
timetables on a computer and their application to other scheduling problems.
The Computer Journal, 3(4), 237-245.

Authority, F. A. (1992). Software considerations in airborne systems and equipment
certification Document No. RTCA/DO-178B.

Awedikian, Z. (2009). Automated test data generation for mc/dc test criterion using
metaheuristic algorithms. (Masters), Université De Montréal, Canada.

Awedikian, Z., Ayari, K., & Antoniol, G. (2009). Mc/dc automatic test input data
generation. Paper presented at the Proceedings of the 11th Annual Conference
On Genetic And Evolutionary Computation, 2009.

Binder, R. (2000). Testing object-oriented systems: models, patterns, and tools:
Addison-Wesley Professional.

Burke, E., Elliman, D., Ford, P., & Weare, R. (1995). Examination timetabling in
British universities: A survey. Paper presented at the International Conference
on the Practice and Theory of Automated Timetabling.

Burke, E. K., & Bykov, Y. (2008). A late acceptance strategy in hill-climbing for exam
timetabling problems. Paper presented at the Practice and Theory of Automated
Timetabling (PATAT) Conference, 2008, Montreal, Canada.

Burke, E. K., & Bykov, Y. (2012). The Late Acceptance Hill-Climbing Heuristic
(CSM-192). Retrieved from UK:

90

Bykov, Y. (2011). The Late Acceptance Hill-Climbing Algorithm For The Magic
Square Problem. Article. Nottingham, United Kingdom.

Chang, J.-R., & Huang, C.-Y. (2007). A study of enhanced mc/dc coverage criterion for
software testing. Paper presented at the Proceedings of 31st Annual
International Computer Software and Applications Conference, 2007.

Chilenski, J. J., & Miller, S. P. (1994). Applicability of modified condition/decision
coverage to software testing. Software Engineering Journal, 9(5), 193-200.

Cohen, M. B. (2004). Designing Test Suites for Software Interactions Testing. (Doctor
of Philosophy), The University of Auckland, Auckland, New Zealand.

Cohen, M. B., Gibbons, P. B., Mugridge, W. B., & Colbourn, C. J. (2003). Constructing
test suites for interaction testing. Paper presented at the Software Engineering,
2003. Proceedings. 25th International Conference on.

Cohn, H., & Fielding, M. (1999). Simulated annealing: searching for an optimal
temperature schedule. SIAM Journal on Optimization, 9(3), 779-802.

Díaz, E., Tuya, J., Blanco, R., & Dolado, J. J. (2008). A tabu search algorithm for
structural software testing. Computers & Operations Research, 35(10), 3052-
3072.

Dueck, G. (1993). New optimization heuristics: the great deluge algorithm and the
record-to-record travel. Journal of Computational Physics, 104(1), 86-92.

El-Sayed, G., Salama, C., & Wahba, A. (2015). Optimization of Generated Test Data
for MC/DC Intelligent Software Methodologies, Tools and Techniques (Vol.
532, pp. 161-172): Springer.

Ghani, K., & Clark, J. A. (2009). Automatic test data generation for multiple condition
and MCDC coverage. Paper presented at the Proceedings of 4th International
Conference on Software Engineering Advances, 2009.

Glover, F. (1985). Future Paths for Integer Programming and Links to Artificial
Intelligence', CAAI Report 85-8. Center for Applied Artificial Intelligence,
University of Colorado, October.

Glover, F. (1997). Tabu search and adaptive memory programming—advances,
applications and challenges Interfaces in computer science and operations
research (pp. 1-75): Springer.

Harman, M. (2007). Search based software engineering for program comprehension.
Paper presented at the 15th IEEE International Conference on Program
Comprehension, 2007. .

91

Harman, M., Hu, L., Hierons, R. M., Baresel, A., & Sthamer, H. (2002). Improving
Evolutionary Testing By Flag Removal. Paper presented at the The Genetic and
Evolutionary Computation Conference (GECCO) 2002, New York City, United
States.

Harman, M., & Jones, B. F. (2001). Search-based software engineering. Information
and Software Technology, 43(14), 833-839.

Hayhurst, K. J., & Veerhusen, D. S. (2001). A practical approach to modified
condition/decision coverage. Paper presented at the Digital Avionics Systems,
2001. DASC. 20th Conference.

Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., & Rierson, L. K. (2001). A practical
tutorial on modified condition/decision coverage: National Aeronautics and
Space Administration, Langley Research Center.

Hetzel, W. C., & Hetzel, B. (1988). The complete guide to software testing: QED
Information Sciences Wellesley, MA.

Hower, R. (2010). Software QA and testing frequently-asked-questions. Software QA
Test. Retrieved from http://www.softwareqatest.com/qatfaq1.html

Hwang, G.-J., Yin, P.-Y., & Yeh, S.-H. (2006). A tabu search approach to generating
test sheets for multiple assessment criteria. IEEE Transactions on Education,
49(1), 88-97.

Jia, Y., Cohen, M. B., Harman, M., & Petke, J. (2015). Learning combinatorial
interaction test generation strategies using hyperheuristic search. Paper
presented at the Proceedings of the 37th International Conference on Software
Engineering-Volume 1.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1989). Optimization by
simulated annealing: an experimental evaluation; part I, graph partitioning.
Operations research, 37(6), 865-892.

Johnson, L. A. (1998). DO-178B, Software considerations in airborne systems and
equipment certification. Crosstalk, October.

Jones, J. A., & Harrold, M. J. (2003). Test-suite reduction and prioritization for
modified condition/decision coverage. IEEE Transactions on Software
Engineering, 29(3), 195-209.

Kandl, S., & Kirner, R. (2011). Error detection rate of mc/dc for a case study from the
automotive domain Software Technologies for Embedded and Ubiquitous
Systems (pp. 131-142): Springer.

92

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simmulated
annealing. science, 220(4598), 671-680.

Korel, B. (1990a). Automated software test data generation. IEEE Transactions on
Software Engineering, 16(8), 870-879.

Korel, B. (1990b). A dynamic approach of test data generation. Paper presented at the
Software Maintenance, 1990, Proceedings., Conference on.

Kumar, C. S., Raghu, D., & Kumar, P. R. (2013). A Domestic Case Studies Probability
to Overcome Software Failures. Journal of Telematics and Informatics, 1(1), 20-
25.

Lakhotia, K., Harman, M., & McMinn, P. (2008). Handling dynamic data structures in
search based testing. Paper presented at the Proceedings of the 10th annual
conference on Genetic and evolutionary computation.

Li, Z., Harman, M., & Hierons, R. M. (2007). Search algorithms for regression test case
prioritization. IEEE Transactions on Software Engineering, 33(4), 225-237.

McMinn, P. (2004). Search-based software test data generation: a survey. Software
testing, Verification and reliability, 14(2), 105-156.

McMinn, P., & Holcombe, M. (2006). Evolutionary testing using an extended chaining
approach. Evolutionary Computation, 14(1), 41-64.

Mcmullan, P. (2007). An extended implementation of the great deluge algorithm for
course timetabling. Paper presented at the International Conference on
Computational Science.

Miller, W., & Spooner, D. L. (1976). Automatic generation of floating-point test data.
IEEE Transactions on Software Engineering, 2(3), 223-226.

Nguyen, C. D., Miles, S., Perini, A., Tonella, P., Harman, M., & Luck, M. (2012).
Evolutionary testing of autonomous software agents. Autonomous Agents and
Multi-Agent Systems, 25(2), 260-283.

Obit, J., Landa-Silva, D., Ouelhadj, D., & Sevaux, M. (2009). Non-linear great deluge
with learning mechanism for solving the course timetabling problem. Paper
presented at the 8th Metaheuristics International Conference (MIC 2009).

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41(4), 421-451.

93

Pandita, R., Xie, T., Tillmann, N., & de Halleux, J. (2010). Guided test generation for
coverage criteria. Paper presented at the Software Maintenance (ICSM), 2010
IEEE International Conference on.

Paul, T. K., & Lau, M. F. (2014). A systematic literature review on modified condition
and decision coverage. Paper presented at the Proceedings of the 29th Annual
ACM Symposium on Applied Computing.

Perry, W. E. (1992). A standard for testing application software: Auerbach Publishers.

Rathore, A., Bohara, A., Prashil, R. G., Prashanth, T., & Srivastava, P. R. (2011).
Application of genetic algorithm and tabu search in software testing. Paper
presented at the Proceedings of the Fourth Annual ACM Bangalore Conference.

Renders, J.-M., & Bersini, H. (1994). Hybridizing genetic algorithms with hill-climbing
methods for global optimization: two possible ways. Paper presented at the
Evolutionary Computation, 1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on.

Sagarna, R., & Yao, X. (2008). Handling constraints for search based software test data
generation. Paper presented at the Software Testing Verification and Validation
Workshop, 2008. ICSTW'08. IEEE International Conference on.

Schulmeyer, G. G. (1990). Zero defect software: McGraw-Hill, Inc.

Soltani, M., Panichella, A., & van Deursen, A. (2016). Evolutionary testing for crash
reproduction. Paper presented at the Proceedings of the 9th International
Workshop on Search-Based Software Testing.

Stützle, T. (1998). Local search algorithms for combinatorial problems. Darmstadt
University of Technology PhD Thesis, 20.

Taillard, É. D., Gambardella, L. M., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive
memory programming: A unified view of metaheuristics. European Journal of
Operational Research, 135(1), 1-16.

Thompson, J., & Dowsland, K. A. (1995). General cooling schedules for a simulated
annealing based timetabling system. Paper presented at the International
Conference on the Practice and Theory of Automated Timetabling.

Tierney, K. (2013). Late acceptance hill climbing for the liner shipping fleet
repositioning problem. Paper presented at the 14th Workshop of the EURO
Working Group “EU/ME: the metaheuristics community”, 2013, Hamburg,
Germany.

Tonella, P. (2004). Evolutionary testing of classes (1581138202). Retrieved from

94

Tracey, N., Clark, J., Mander, K., & McDermid, J. (1998). An automated framework
for structural test-data generation. Paper presented at the Automated Software
Engineering, 1998. Proceedings. 13th IEEE International Conference on.

Tracey, N. J. (2000). A search-based automated test-data generation framework for
safety-critical software. Citeseer.

Vancroonenburg, W., & Wauters, T. (2013). Extending the late acceptance
metaheuristic for multi-objective optimization. Paper presented at the
Proceedings of the 6th Multidisciplinary International Scheduling conference:
Theory & Applications (MISTA2013).

Varshney, S., & Mehrotra, M. (2013). Search based software test data generation for
structural testing: a perspective. SIGSOFT Software Engineering Notes, 38(4),
1-6. doi:10.1145/2492248.2492277

Verstichel, J., & Berghe, G. V. (2009). A late acceptance algorithm for the lock
scheduling problem Logistik Management (pp. 457-478): Springer.

Wegener, J., Sthamer, H., Jones, B. F., & Eyres, D. E. (1997). Testing real-time systems
using genetic algorithms. Software Quality Journal, 6(2), 127-135.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1), 67-82.

Xanthakis, S., Ellis, C., Skourlas, C., Le Gall, A., Katsikas, S., & Karapoulios, K.
(1992). Application of genetic algorithms to software testing. Paper presented at
the Proceedings of the 5th International Conference on Software Engineering
and its Applications.

Yuan, B., Zhang, C., & Shao, X. (2015). A late acceptance hill-climbing algorithm for
balancing two-sided assembly lines with multiple constraints. Journal of
Intelligent Manufacturing, 26(1), 159-168.

Zamli, K. Z., Al-Sewari, A. A., & Hassin, M. H. M. (2013). On test case generation
satisfying the mc/dc criterion. International Journal of Advances in Soft
Computing and Its Applications, 5(3).

95

APPENDIX A

Publications:

1. An Automated Tool for MC/DC Test Data Generation, Presented in IEEE Symposium on
Computers & Informatics (ISCI) 2014, 130-135

2 Comparative Performance Analysis of Simulated Annealingand Late Acceptance Hill
Climbing Algorithm for Generating the MC/DC Compliant Test Suite, Published in “8th
SOFTEC Asia Conference 2015”.

Awards:

1. Silver Medal in CITREx 2014 by UMP For project “A Web Based Automated Tool for
Generating MCDC Compliant Test Suite”

2. Silver Medal in Malaysia Technology Expo (MTE) 2015 for project MCDC + Pairwise
Test Case Generation Tool "MC/DC Pro”.

