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Abstract. Flame propagation in the interconnected pipe with various size has a potential to 

initiate an explosion hazard. Thus in this study, the biogas/air flame propagation was investigated 

in the interconnected pipe. The experiment was conducted in pipe interconnected with three 

different diameters which are 5 cm, 10 cm and 46 cm respectively. The biogas is mixed with the 

ratio of 60:40 of methane and carbon dioxide. The concentration of biogas/air was varied at ER: 

0.8 - 1.4 respectively. The mixtures were ignited using a spark plug. The pressure and flame 

speed were measured using thermocouples K type and pressure transducers located along the rig. 

Pure methane was also tested to examine the effect of CO2 on the biogas flame propagation. 

From the experimental analysis, the highest maximum overpressure (2.5 bar) and flame speed 

(41.9 m/s) were recorded at the smallest pipe diameter (0.5 cm) at rich concentration, ER= 1.2 

and 1.4 respectively. The results show that the thermal diffusive effect is one of the factors 

contributed to the flame propagation that resulted to the increase of the maximum overpressure 

and flame speed. However, the presence of CO2 in biogas makes the biogas explosion is less 

severe as compared to the methane. 

 

Keywords: biogas, gas explosion, flame propagation, overpressure, diffusive-thermal instability 

1. Introduction 

Biogas is mainly composed of 50-75% methane (CH4) and 25-50% carbon dioxide (CO2). One of the 

biogas advantages as compared to other fuels such as liquefied petroleum gas and natural gas, biogas 

deflagration speed is lower. Furthermore, other fuels have lower auto-ignition temperature and broader 

in flammability interval than biogas (Cacua et al., 2011).  

Gas explosions in pipelines are among the thermal dynamics disasters that create a serious threat 

associated with safety issues in the transportation of gases or reactive material in the process industries. 

Thus, a comprehensive investigation of the flame propagation mechanism is required for effective 

prevention and mitigation in relation to the gas explosion disasters. One of the major factors affecting 
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flame propagation mechanism and pressure development that contributes to the strong explosion is a 

pipe or duct size (Lautkaski, 2012). Sulaiman et al., (2017) have observed the flame propagation and 

pressure development in a smaller pipe size (diameter: 5 cm and length: 25 cm). They reported that fast 

flame or self-flame accelerations by the elaborate interaction between the quenching effect and re-

ignition process will lead to a violent explosion. Other researches supported the above proposition by 

using somewhat narrow pipe or duct (diameter: 5 cm and length: 10-20 cm) with a sharp vessel-duct 

area (Veracruz, 2002). It was shown that the turbulent flame brings about the stronger explosion (i.e. 

with higher pressure amplitudes) during re-ignition (Gwak & Yoh, 2013), (Liu & Liu, 2013). Moreover, 

a comprehensive experiment on the influence of the pipe or duct size on the flame propagation are 

reported in the literature (Makarov et al., 2007), (Gwak & Yoh, 2013), (Veracruz, 2002). These 

experiments demonstrate that the pipe or duct diameter ranging 6-10 cm (Makarov et al., 2007), 

(Veracruz, 2002), (Gwak & Yoh, 2013), (Liu & Liu, 2013) and duct length ranging 20-80 cm (Kyung 

et al., 2014) have a denoting effect on the dynamic of flame propagation and also pressure characteristic 

during the explosion process. They also reported that the explosion occurred due to the reversal flow 

where the flame will travel backwards from duct to the main vessel, enhancing the burning rate by means 

of rapid pressure rise in the vessel and leads to the extensive damage (Makarov et al., 2007), (Kyung et 

al., 2014), (Gwak & Yoh, 2013). 

 Besides pipe or duct size, fuel concentration (or equivalence ratio of the fuel and air) and the 

turbulent flame are among the factors influencing the flame propagation mechanism which lead to the 

explosion. From the above research, it shows that the gas explosion inside the pipe or duct that has been 

studied, most of the works are limited to a smaller size with the length and diameter ranging from, 10-

80 cm and 5-10 cm respectively. Furthermore, their works are focused on the flame propagation in the 

pipe with the same size and without interconnected, which does not represent the actual pipe 

configuration in the industry. It should be noted that, beyond the limit, the flame propagation mechanism 

and pressure development in the pipe, will be different (Liu & Liu, 2013). For instance, by changing the 

pipe size (diameter and length) and fuel concentrations may change the laminar burning velocity of the 

flame and hence, increasing the mass burning rate of spherical flames (Veracruz, 2002). This would 

significantly affect the flame and pressure development in the pipe or duct. Therefore, the influence of 

interconnected pipe with different pipe size and fuel concentration should be examined thoroughly, as 

it has been recognized as factors contributing to the rigorousness of the explosion. Thus, this research is 

focused on the flame propagation mechanism in the interconnected pipe with different biogas/air 

concentration. The effect of CO2 on the flame speed also was examined in order to analyse the severity 

of the biogas/air flame as compared to the methane/air flame.  

2. Experimental Procedure 

The explosion experiment was carried out in a lab scale explosion test rig. The test rig has three parts; 

mixing chamber, duct and dumping vessel. Shown in Figure 1 is the experimental set-up. Pressure 

transducers are denoted as P1-P5 meanwhile thermocouples are denoted as T1-T10. Pressure transducers 

were used to measure the overpressure while thermocouples were used to measure the flame speed along 

the rig. Biogas was simulated by mixing methane with carbon dioxide. In this study, biogas with 60% 

vol/vol CH4 and 40% vol/vol CO2 was used as a basis. Both gases of CH4 and CO2 with purity 99.9% 

were purchased from a local company.  

 

The tested mixture, biogas-air was applied at different concentration with equivalent ratios, ER 

(ER= 0.8, 1.0, 1.2, 1.4). The biogas/air mixture was mixed directly in the test rig using the partial 

pressure method. The partial pressure method of mixture preparation adds the flammable gas to a 

vacuum and then adds air to approx. 1.013 bar. The biogas/air mixture was ignited at the centre of one 

end of the pipe by means of a spark discharge (ignition energy approximately 16J). The ignition source 

was placed at the centre of one of the blind flanges. Three experiments were performed for each 

condition to ensure good reproducibility. 
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Figure 1: Experimental Set-up 

 

3. Results and discussions 

 

3.1 Maximum overpressure along the pipe 

Figure 2 shows the effect of equivalence ratio, ER on the maximum overpressure pressure in the pipe 

interconnected with three different sizes. It is clearly shown that the maximum overpressure was 

increased when entering the smaller pipe (5 cm) before decrease as soon as reaches at the bigger pipe 

(46 cm) for all fuel concentration. The decreasing overpressure was suspected due to the reverse flow. 

The negative pressure difference occurred once the flame travel from the bigger pipe to the smaller pipe. 

This phenomenon leads to the reversal flow and subsequently creates turbulence. At this instance, the 

flame surface area increase resulted to the increase of the mass burning rate as well the maximum over 

pressure. This would be the reason for the increase of the maximum overpressure to about 32% when 

the flame entering the small duct (5 cm).  Apart from that, the decreasing of the overpressure once flame 

travel to the bigger pipe (46 cm) was due to the quenching effect. Once the flame touches the pipe wall, 

it will quench and cause the turbulent flame to become more stable. This condition gives a negative 

effect towards mass burning rate and resulted to the decrease of maximum overpressure once the flame 

enters the bigger pipe. 

 

 
Figure 2: Maximum overpressure trend along the pipe 

 

 

Furthermore, Figure 2 shows that the highest maximum overpressure pressure was attained at 

ER=1.2 (rich concentration) and not at stoichiometric concentration. The pressure was recorded at 2.5 

bar. The peculiar trend was due to the diffusive-thermal instability (Im & Chen (2002). At rich 

concentration (ER=1.2) thermal diffusive dominates the flame curvature and increasing the flame 

surface area. At this instance, the mass burning rate increase which leads to the increase of the maximum 

overpressure. 
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3.2 Flame speed along the pipe 

The flame speed trend for all biogas/air concentration (ER) is illustrated in Figure 3. It is clearly shown 

that the flame speed trend is consistent for all concentrations. The flame speed increased to about 8% 

when the flame entered the smaller pipe (5 cm). When flame propagates in smaller pipe diameter, the 

flame curvature tends to decrease leading to the rapid propagation. This resulted to the fast combustion 

and hence increasing the flame speed. However, due to the quenching effect and continually combustion, 

the flame propagates at a constant velocity. This phenomenon describes the fluctuated flame speed trend 

along the smaller pipe diameter. Figure 3 also shows that; the second acceleration was recorded when 

the flame enters the 46 cm pipe diameter before decreased as soon approach to the end of a pipe. In 

larger pipe diameter, the unburned gas amount reacted with the flame is more as compared to the smaller 

pipe diameter. This interaction makes the flame re-accelerates until reach to the highest speed.  

 

Moreover, Figure 3 also shows that the highest flame speed; 41.9 m/s was achieved at rich biogas/air 

concentration (ER=1.4). To be noted methane is the main reactive component in biogas. According to 

Anggono, 2017, methane is prone to fast diffusion and promotes more intense mixing between unburned 

and burned gases. This condition may increase the flame stretch effect, leading to a higher mass burning 

rate and hence increase the flame speeds (Anggono et al., 2012). It is suspected that at ER 1.4, the stretch 

effect makes the methane flame curvature increase and resulted to the highest flame speed as compared 

to the other concentration. 

 

 
 

Figure 3: Flame speed propagation in pipe 

 

 

3.3 Effect of presence of carbon dioxide 

Figure 4 illustrates the flame speed trend for both biogas/air and methane/air mixtures at different 

concentration. The flame speed was recorded at T1. From the figure, it is clearly shown that the flame 

speed methane/air flame is higher to about 15-28% for all concentration as compared to the biogas/air 

flame. The presence of the CO2 in biogas makes the biogas/air flame propagates slower the methane/air 

flame. According to Ayache (2017), CO2 has a better suppression effect. CO2 tends to absorbed the heat 

during the combustion process and reduced the adiabatic flame temperature as well as burning velocity. 

This condition resulted to the decrease of the biogas/air flame speed and makes the methane/air flame 

is severe as compared to the biogas/air flame.  
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Figure 4: Biogas and methane flame propagation in pipe 

 

4. Conclusion 

i. The highest maximum overpressure (2.5 bar), was reached at ER=1.2) while the highest flame speed 

(41.9 m/s) was attained at ER=1.4. Both explosion characteristic (maximum overpressure and flame 

speed) was attained at rich concentration instead of stoichiometry concentration. 

ii. At rich concentration (ER=1.2 & 1.4), biogas flame the flame was instable due to thermal diffusive 

effect. At this instance biogas flame tend to stretch resulted to the higher mass burning rate and 

therefore, increase the flame speeds and maximum overpressure.  

iii. The presence of CO2 in biogas has suppressed the biogas/air flame to propagate. This makes the 

biogas is less severe as compared to the methane/air flame.  
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