

Copyright © 2018 Tasiransurini Ab Rahman et al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.27) (2018) 30-37

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Study on the Effect of Local Neighbourhood Parameter

towards the Performance of SAFIRO

Tasiransurini Ab Rahman
1
, Zuwairie Ibrahim

2*
, Nor Azlina Ab. Aziz

3
, Nor Hidayati Abdul Aziz

4
,

Suad Khairi Mohammed
5
, Badaruddin Muhammad

6
 and Zulkifli Md Yusof

7

1Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.
2Faculty of Electrical and Electronic, Universiti Tun Hussein Onn Malaysia, 86400 Johor, Malaysia.

3Faculty of Engineering and Technology, Multimedia University, 75450 Bukit Beruang, Melaka, Malaysia.
4Department of Electrical Engineering, University of Technology, Baghdad, Iraq.

5Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.
*Corresponding author E-mail: zuwairie@ump.edu.my

Abstract

Single-agent Finite Impulse Response Optimizer (SAFIRO) is a recently proposed metaheuristic optimization algorithm which adopted

the procedure of the ultimate unbiased finite impulse response filter (UFIR) in state estimation. In SAFIRO, a random mutation with
shrinking local neighborhood method is employed during measurement phase to balance the exploration and the exploitation process.
Beta, β, is one of the parameters used in the local neighborhood to control the step size. In this study, the effect of β towards the perform-
ance of SAFIRO is observed by assigning the value of 1, 5, 10, 15, and 20. The best setting of β for SAFIRO is also determined. The
CEC2014 Benchmark Test Suite is used to evaluate the SAFIRO performance with different β values. Results show that the performance
of β is depending on the problems to be optimized. 17 out of 30 functions show the best performance of SAFIRO by setting β = 10. Sta-
tistical analysis using Friedman test and Holm post hoc test were performed to rank the performance. β = 10 has the highest rank where
its performance is significantly better than other values, but equivalent to β = 5 and β = 15. Hence, it is recommended to tune the β for

best performance, however, β = 10 is a good value to be used in SAFIRO for solving optimization problems.

Keywords: Finite Impulse Response; Local Search Neighborhood; Metaheuristic; Optimization.

1. Introduction

Single-agent metaheuristic algorithm is a single-solution based
algorithm that used only one agent to find the optimal or the best
near-optimal solution for a given optimization problem. A single-
agent algorithm produces only one solution and improves the solu-
tion based on its current solution until the stopping criterion is
reached. The entire optimization process of the single-agent algo-
rithm is simpler and require a lesser number of function evaluation
compared to multi-agent metaheuristic algorithm.
Among the classical single-agent metaheuristic algorithms are the

Simulated Annealing (SA) [1], Tabu Search (TS) [2], Random
Search (RS) [3], Pattern Search (PS) [4], Greedy Randomized
Adaptive Search Procedures (GRASP) [5], Variable Neighbor-
hood Search (VNS) [6], Guided Local Search (GLS) [7], and Iter-
ated Local Search (ILS) [8].
Boussaid [9] stated that a basic single-agent algorithm tends to
focus on exploitation, meanwhile, multi-agent algorithm biased
towards exploration. Normally, a single-agent metaheuristic algo-

rithm consists of local search-based metaheuristic [10]. Unlike
global search that explores the search space, local search concen-
trates on finding a new solution among a neighborhood of its cur-
rent solution or the best solution found so far [9]. The capability to
balance of global search (diversification) and local search (intensi-
fication) is essential to ensure the efficiency of metaheuristic algo-
rithm [11].
A local search is claimed as one of the successful approach for

approximate algorithms [12]. The descent method is among the
earliest and simplest method for local search [13] where the solu-
tion is chosen from the agent’s neighbour. This simple method
anyhow causes the agent to be easily trapped in a local optimal
[14].
As single-agent metaheuristic algorithm has higher possibility to
trap to the local optima [15], many researchers came out with
strategies for local optimal avoidance. SA algorithm is among the
first algorithms that proposed a strategy to escape from local op-

timal [16], which was introduced by Kirkpatrick et al. in 1983. SA
was inspired by an analogy from thermodynamic systems whereby
the material is heated with high temperature until its molten state
is reached and then the temperature is gradually reduced until no
further change is observed [1][17]. In this method, a random
neighbour of the current candidate solution is compared at every
iteration and replaced if it improves the current solution [18]. Oth-
erwise, the current solution is accepted according to the probabil-

ity where the probability is higher if the temperature is high and
slowly lower as the temperature is getting lower [19][20]. The
possibility to escape from local optima in SA is good due to the
stochastic cooling factor [21]. However, there is still a possibility
for SA to find the same local optimal again throughout the optimi-
zation process [14].
TS algorithm was developed by Glover in 1986 considering the
use of local memory where the recent history of the search is

memorized and stored in Tabu list, and prohibited to be revisited
[19][22]. TS is biased to exploration if the size of Tabu list is in-
creased, whereas it is biased to exploitation if the size of Tabu list

International Journal of Engineering & Technology 31

is reduced [14]. A local search is applied to move from the current
solution to the improved solution in the neighborhood of the cur-
rent solution. This process continues until the stopping criterion is
met [20].
The algorithms such as the GRASP method, VNS, GLS, and ILS
had been introduced with its respective local search strategies.
Vortex Search (VS) [23], Mean-Variance Mapping Optimization
(MVMO) [24], Simulated Raindrop (SRD) [17], and Single-

solution Simulated Kalman Filter (SSKF) [25], are examples of
modern single-agent metaheuristic algorithm which associated a
local search approach in the respective algorithm.
Vortex Search (VS) algorithm was developed by Dogan and Ol-
mez in 2013 [23]. It adopted the vortex flow of stirred fluids. The
exploration and exploitation phases are balanced by using a vor-
tex-like search method. For each iteration, radius decrement is
done through a new adaptive step-size adjustment scheme using

the inverse incomplete gamma function to improve the perfor-
mance of the search process.
Single-solution Simulated Kalman Filter (SSKF) algorithm [25],
developed by Aziz et.al in 2016 as another version of Simulated
Kalman Filter (SKF) algorithm [26][27]. SSKF also employed a
local search method in its search strategy, which mimics the pre-
diction-measurement-estimation phases in Kalman filter to seek
for the solution. An adaptive neighborhood mechanism is applied

during prediction phase to predict the location of the candidate
solution which is somewhere near the best-so-far solution.
Single-agent Finite Impulse Response Optimizer (SAFIRO), is a
recently developed method for numerical optimization problems
[28]. The search strategy of SAFIRO is inspired by the cycle of
estimation procedure in ultimate unbiased finite impulse response
(UFIR) filter. In state space model, besides Kalman filter, the
UFIR filter is increasingly preferable to be used as an estimator
for state estimation. In SAFIRO, the state estimation is considered

as a solution to the optimization problem. The estimation in
SAFIRO’s sub-iteration is depending on the previous estimation,
measurement and Kalman-like gain. SAFIRO employs a random
mutation of X_best_so_far and shrinking local neighborhood
method to balance the exploration and exploitation process. The
adaptive coefficient, β is one of the parameters used in shrinking
local neighborhood method. This parameter is used in exponential
decay equation to control the reduction of step-size, δ.

The aim of this paper is twofold. First, to observe the effect of β
value towards the performance of SAFIRO. β = 1, 5, 10, 15, and
20; are selected to be used in the experiments and the comparison
is based on the mean fitness value over 51 runs with 500,000 itera-
tions of 50 problem dimension in CEC2014 Benchmark Test
Suite. Second, to determine the best parameter setting of β for
SAFIRO. Friedman and Holm post hoc tests show that β = 10 has
highest ranking where its performance is significantly better than

other values and on par with β = 5 and β = 15. Since 17 out of 30
functions show the best performance is achieved with β = 10,
hence this setting is considered as the best set of β for SAFIRO.
The rest of this paper is organized as follows: Section 2 briefly
introduces the SAFIRO. Section 3 presents the experimental set-
up. In section 4, the experimental results and discussion are pre-
sented. Finally, in Section 5, conclusions and future work are giv-
en.

2. The SAFIRO

SAFIRO is a newly developed metaheuristic algorithm for a nu-
merical optimization problem. SAFIRO makes use of only one
agent to solve an optimization problem by mimicking standard
UFIR filter procedures; measurement and estimation. Only two

parameters need to be initialized in SAFIRO; the horizon length,
N, and the adaptive coefficient, β. The agent in SAFIRO makes an
estimation of the optimal based on N recent measurements. Unlike
a real UFIR filter that takes measurement values from the sensor,
measurement in SAFIRO must be simulated by its own. The esti-

mated position in the search space represents the solution of
SAFIRO. The fitness of the estimated position is then evaluated
based on an objective function. Figure 1 visualized the flow of
SAFIRO. SAFIRO requires N initial measurements to begin the
optimization process. Therefore, the value of N is defined during
the initialization phase. In the original work, N is equal to 4. Four
initial measurements, Y(t), Y(t-1), Y(t-2), and Y(t-3) are randomly
generated and evaluated by using the fitness function of the prob-

lem to determine the initial X_best_so_far. X_best_so_far is the
best-so-far solution. For a minimization problem, the value of
initial X_best_so_far is taken from the initial measurement that
has the smallest fitness value. For a maximization problem, in
contrast, the value of initial X_best_so_far is taken from the initial
measurement that has the largest fitness value.
After N random initial measurements are generated and the initial
X_best_so_far is determined during the initialization phase,

SAFIRO’s agent makes the next step, which is the measurement
phase. For each iiteration, a new measurement is produced by
using random mutation of X_best_so_far and shrinking local
neighborhood method. This approach encourages the exploration
through mutation, and at the same time making a balance between
the exploration and exploitation through shrinking local
neighborhood. Every dimension of the problem to be optimized is
associated to a random value between 0 to 1. Dimension, d, that

has a random value ≤ 0.5 will assume the X_best_so_far value as
their measurement value as follows:

_ _(_)d dbesY t t so far X (1)

Meanwhile, dimensions with a random value > 0.5, will undergo
the mutation process to produce a new candidate solution, which
is conducted in a local neighborhood of X_best_so_far. The

measurement values for these respective dimensions is shown in
(2),

() ([,])_d dbest so faY t rand Ur X (2)

where

2

t
-β× X - X

max minTe × (3)

The local neighborhood radius is determined by the step size, δ, as
in (3), where β is an adaptive coefficient value; t is the number of

current iteration; T is the number of maximum iteration;
maxX is

the upper limit of search space, and
minX is the lower limit of

search space. The exponential decay equation,
t

Te

is used to

scale down the local neighborhood radius, while max min() / 2X X

ensure the maximum coverage of the search space. The adaptive
step-size adjustment process allows the exploration behavior oc-
curred at the beginning of steps and subsequently transform to the
exploitation behavior towards the end of the steps [23]. As the
iteration increases, the δ is reduced. Figure 2 shows plots of

t

Te

 for different values of β. The value of β helps to control the

reduction speed of neighborhood’s size. A small β value causes a
linear reduction, whereas a higher β value causes a faster conver-
gence speed [25]. The convergence speed reflects the transition

process from exploration to exploitation. Theoretically, β = 1 has a
slower convergence speed, β = 10, 15, and 20 in contrast, have a
faster convergence speed, whereas β = 5 has a moderate conver-
gence speed.

32 International Journal of Engineering & Technology

Fig. 1: SAFIRO algorithm [28].

Fig. 2: The plot of δ with different β values.

Fig. 3: Estimation stage in SAFIRO algorithm (N=4) [28].

International Journal of Engineering & Technology 33

Table 1: The CEC2014 benchmark test suite [29]

Types N

o.

Functions Ideal

Fitness

Unimodal

functions

1 Rotated High Conditioned Elliptic func-

tion

100

2 Rotated Bent Cigar function 200

3 Rotated Discus function 300

Simple

multimodal

functions

4 Shifted and Rotated Rosenbrock’s func-

tion

400

5 Shifted and Rotated Ackley’s function 500

6 Shifted and Rotated Weierstrass function 600

7 Shifted and Rotated Griewank’s function 700

8 Shifted Rastrigin’s function 800

9 Shifted and Rotated Rastrigin’s function 900

1

0

Shifted Schwefel’s function 1000

1

1

Shifted and Rotated Schwefel’s function 1100

1

2

Shifted and Rotated Katsura

function

1200

1

3

Shifted and Rotated HappyCat function 1300

1

4

Shifted and Rotated HGBat

function

1400

1

5

Shifted and Rotated Expanded

Griewank’s plus Rosenbrock’s function

1500

1

6

Shifted and Rotated Expanded Scaffer’s

F6 function

1600

Hybrid

functions

1

7

Hybrid function 1 (N=3) 1700

1

8

Hybrid function 2 (N=3) 1800

1

9

Hybrid function 3 (N=4) 1900

2

0

Hybrid function 4 (N=4) 2000

2

1

Hybrid function 5 (N=5) 2100

2

2

Hybrid function 6 (N=5) 2200

Composition

functions

2

3

Composition function 1 (N=5) 2300

2

4

Composition function 2 (N=3) 2400

2

5

Composition function 3 (N=3) 2500

2

6

Composition function 4 (N=5) 2600

2

7

Composition function 5 (N=5) 2700

2

8

Composition function 6 (N=5) 2800

2

9

Composition function 7 (N=3) 2900

3

0

Composition function 8 (N=3) 3000

After producing measurement values during the measurement
phase, SAFIRO’s agent conducts the next step, which is the esti-
mation phase. During this stage, SAFIRO’s solution is updated

using four recent measurements correspond to its horizon length.
As depicted in Figure 3, the first two measurements (Y(t-3) and
Y(t-2)) are used for initial estimation whereas the other two meas-
urements are used for iterative estimation (Y(t-1) and Y(t)). Each

iteration, t, consists of sub-iteration, k. The initial estimation, X

(k=2), is generated randomly between [lower limit, upper limit] of
the first and the second point of the horizon. The iterative estima-

tion, X (k=3) until X (k=N) are used to improve the solution by

using (4) and (5),

() (1) ()(() (1)k k K k t N k k X X Y X (4)

1
()K k

k
 (5)

where X (k) is the estimated solution for current sub-iteration.
The estimated solution is depending on the differences between
current measurement, Y (t – N + k) and the previously estimated

solution, X (k - 1). The Kalman-like gain, K(k), helps to improve
the estimated solution. As the sub-iteration, k increases, the value

of K(k) is decreases. The sub-iteration process continues until the
k=N. At the end of the sub-iteration, a better estimation is pro-

duced. The final updated solution of X (k) is then assigned as
X(t). Therefore, X(t) represents the estimated value for the corre-
sponding iteration.
After finding the estimated solution, X(t), the evaluation phase is
carried out to assess its fitness. The fitness of X(t) is then com-
pared to the fitness of X_best_so_far. The X_best_so_far is updat-

ed when a better solution is found. For minimization problem,
X_best_so_far is updated if fit(X(t)) < fit(X_best_so_far), where-
as for maximization problem, X_best_so_far is updated if fit(X(t))
> fit(X_best_so_far). Measurement and estimation phases contin-
ue until the stopping condition, which is the maximum iteration, T,
is met. Then, the X_best_so_far returns as the solution, to the
given optimization problem.

3. Experimental Setup

The CEC2014 Benchmark Test Suite for single-objective optimi-
zation is employed to observe the performance of SAFIRO with
different β values. This test suite comprises of 30 functions, which
represent 30 real optimization problems. Every function has their
own ideal fitness to represent the optimal or the global solution.

As shown in Table 1, the functions are categorized into 4 major
groups; unimodal test suite, simple multimodal test suite, hybrid
test suite, and composition test suite. The capability of exploita-
tion process of an algorithm can be evaluated by solving unimodal
functions, whereas, exploration capability can be evaluated by
solving multimodal functions [30]. The capability for both explo-
ration and exploitation, on the other hand, can be evaluated in
parallel by solving the composition functions.
In this study, the value of β = 1, β = 5, β = 10, β =15, and β = 20

are chosen to be used in (3). β = 1 is assigned to allow a slower
size reduction which represents slower transition between explora-
tion phase to exploitation phase, β = 5, on the other hand, allows a
moderate transition from the exploration phase to the exploitation
phase, whereas β = 10, 15, and 20 allow a faster speed of the tran-
sition process from exploration phase to exploitation phase. The
aims are to observe the effect of using different values of β to-
wards SAFIRO performance and to determine which setting is the

best for SAFIRO. Therefore, by using these values, SAFIRO need
to solve 30 optimization problems in CEC2014 Benchmark Test
Suite.
To provide a fair comparison, the problem dimension is set as 50
for all variants of SAFIRO, while the maximum iteration is set as
500,000. The stopping condition is set to be the maximum itera-
tion. Each variant of SAFIRO is run 51 times on each of the func-
tion. The observation is based on the mean performance of this

setting.
The Friedman test for the non-parametric test is then performed to
rank these variants of SAFIRO with 5% significant level. The null
hypothesis for Friedman test stated that the performances of all
tested algorithms are equal, with no significant differences [31].
The performances are ranked statistically according to its mean
fitness. The significant differences are then observed.
The Holm post hoc test with tolerance, α=0.05 is then performed

to analyze the significant differences of SAFIRO with variants of
β values. The null hypothesis of Holm is rejected if the statistical
value is smaller than the p-value. In Holm test, the p-value corre-

34 International Journal of Engineering & Technology

sponds to their own null hypothesis,

1 2 3, , ,.., ,.., ,l kH H H H H where

the null hypothesis stated that the performance of algorithms are
statistically equal [31]. All tests are performed by using the KEEL
Software Tool, which can be downloaded through
http://www.keel.es.

4. Result and Discussion

Table 2 shows the mean fitness and the mean error values ob-
tained by SAFIRO in solving CEC2014 Benchmark Test Suite,
with various values of β. The reading of β=10 is as presented in
the original paper of SAFIRO [28]. As the problems in CEC2014
are minimization problems, the smaller reading indicates the better
result.
The unimodal test suite is the first group of problems need to be

solved by SAFIRO. This test suite consists of three optimization
problems (Fn1, Fn2, Fn3) which is related to rotation problems.
Fn1 and Fn2 are more difficult to handle because it involved a
quadratic ill-conditioned property and a smooth but narrow ridge
property, respectively [29]. The one sensitive direction property in
Fn3, on the other hand, make it easier to be solved compared to
Fn1 and Fn2. Results in Table 2 on the whole, shows that β = 10,
is the best setting for solving all unimodal test suite of CEC’14.

For Fn3, SAFIRO with β = 10 and β = 15 managed to produce the
optimal solution of 300 with 0 mean error. These results indicate
that SAFIRO needs a faster speed of the exploration phase com-
pared to the exploitation phase in solving the Rotated Discus func-
tion. The graph of mean fitness for Fn3 can be shown in Figure 4.
The lower reading indicates the better result.
Subsequently, the second group of problems need to be handled
by SAFIRO is a simple multimodal test suite which has 13 func-

tions (Fn4 until Fn16). These functions mostly consist of shifting
and rotation problems. As tabulated in Table 2, β = 10 is the best
setting value for the majority of functions in the simple multimo-
dal test suite. The functions are Fn4, Fn6, Fn10, Fn12, Fn13,
Fn15, and Fn16. On the other hand, β = 5 is the best setting for
Fn8, Fn9, and Fn11. The readings show that SAFIRO needs mod-
erate transition speed between exploration phase and exploitation
phase in solving these three functions which comprise a huge
number of local optima.

On the contrary, although Fn5 also has many local optima,
SAFIRO requires a larger β value (β = 20) to obtain the best per-
formance. As shown in Figure 5, the larger value of β shows better
performance of SAFIRO in solving the Shifted and Rotated Ack-
ley’s function. Fn7 and Fn14, on the other hand, suite-well with β
= 15 to produce the best solution. On top of that, with a suitable
value of beta, SAFIRO shows a superior performance in solving
this test suite with a very small value of mean error especially for

Fn7, Fn12, Fn14, Fn13, Fn15, Fn6, Fn5, and Fn16. A very small
value of the mean error indicates SAFIRO able to provide a near-
optimal solution.
Next, the hybrid test suite (Fn17 until Fn22) which consist of ei-
ther combination of several multimodal functions (Fn19, Fn21,
and Fn22), or combination of unimodal functions with simple
multimodal functions (Fn17, Fn18, and Fn20), make it more chal-
lenging to be handled. Table 3 shows the same trend with the sim-

ple multimodal test suite where in most functions, the best per-
formances are obtained when β = 10. The functions are Fn17,
Fn19, Fn21, and Fn22. The SAFIRO shows a very near-optimal
solution for Fn19 with only 20.6 mean error. For Fn18, the best
performance is recorded when a higher value of β (β = 20), ap-
plied. The graph of mean fitness for Fn18 is depicted in Figure 6.
For Fn20, in contrast, the SAFIRO needs a lower value of β (β =
5), to give the best performance.

Fig. 4: Mean fitness of SAFIRO for Fn3.

Fig. 5: Mean fitness of SAFIRO for Fn5.

Fig. 6: Mean fitness of SAFIRO for Fn18.

Fig. 7: Mean fitness of SAFIRO for Fn28.

http://www.keel.es/

International Journal of Engineering & Technology 35

Table 2: Mean fitness and mean error with different β values for unimodal and multimodal functions

Fn Ideal Fitness

β = 1 β = 5 β = 10 β = 15 β = 20 The best β

1 100
Mean Fitness 9.71E+07 3.41E+06 7.98E+05 1.06E+06 1.26E+06 10

Mean Error 9.71E+07 3.41E+06 7.98E+05 1.06E+06 1.26E+06

2 200

Mean Fitness 4.23E+09 1.88E+06 7695.60 8461.01 1.04E+04 10

Mean Error 4.23E+09 1.88E+06 7495.60 8261.01 1.02E+04

3 300

Mean Fitness 1.55E+04 312.82 300.00 300.00 300.0097 10 & 15

Mean Error 1.52E+04 12.82 0.00 0.00 0.01

4 400

Mean Fitness 924.62 502.89 488.72 504.45 495.15 10

Mean Error 524.62 102.89 88.72 104.45 95.15

5 500

Mean Fitness 521.14 520.93 520.00 520.00003 519.999997 20

Mean Error 21.14 20.93 20.00 20.00 20.00

6 600

Mean Fitness 643.39 619.32 619.03 620.43 621.17 10

Mean Error 43.39 19.32 19.03 20.43 21.17

7 700

Mean Fitness 742.33 700.96 700.01 700.0065 700.008 15

Mean Error 42.33 0.96 0.01 0.01 0.01

8 800

Mean Fitness 1241.49 973.34 994.29 1006.09 1004.84 5

Mean Error 441.49 173.34 194.29 206.09 204.84

9 900

Mean Fitness 1361.21 1079.78 1095.90 1111.61 1114.57 5

Mean Error 461.21 179.78 195.90 211.61 214.57

10 1000

Mean Fitness 12804.77 5805.68 5785.20 6004.76 6060.21 10

Mean Error 11804.77 4805.68 4785.20 5004.76 5060.21

11 1100

Mean Fitness 13839.28 6172.98 6462.40 6497.61 6638.93 5

Mean Error 12739.28 5072.98 5362.40 5397.61 5538.93

12 1200

Mean Fitness 1203.36 1200.45 1200.10 1200.13 1200.16 10

Mean Error 3.36 0.45 0.10 0.13 0.16

13 1300

Mean Fitness 1300.78 1300.63 1300.60 1300.67 1300.68 10

Mean Error 0.78 0.63 0.60 0.67 0.68

14 1400

Mean Fitness 1402.93 1400.47 1400.50 1400.45 1400.54 15

Mean Error 2.93 0.47 0.50 0.45 0.54

15 1500

Mean Fitness 1607.99 1524.41 1511.20 1512.08 1511.82 10

Mean Error 107.99 24.41 11.20 12.08 11.82

16 1600

Mean Fitness 1621.63 1620.603 1620.600 1621.12 1620.86 10

Mean Error 21.63 20.60 20.60 21.12 20.86

The composition test suite (Fn23 until Fn30) is the last group of
problems completed by SAFIRO in these simulation experiments.
Compared to the other test suites, β = 5 is the best setting for the
majority of the functions, where Fn24 until Fn28 show the best

results with this setting. Figure 7 shows the graph of mean fitness
for Fn28. For the rest functions which are Fn23, Fn29, and Fn30,
the best results obtained when β = 10.
Overall, there are 17 out of 30 functions which show the best re-
sults with β = 10. Majority of the functions in the unimodal test
suite, simple unimodal test suite, and hybrid test suite provides the
best performance with these setting. It can be confirmed that none
of the CEC2014 functions provided the best performance with β =

1. This means that the SAFIRO needs more exploitation in the
search space in solving all functions in CEC2014 Benchmark Test
Suite.
The performances of SAFIRO with different β values are then
ranked by using the Friedman 1×4 statistical test. The average
Friedman ranking of SAFIRO’s performance with β = 1, β = 5, β
= 10, β = 15, and β = 20 is tabulated in Table 4. According to the
table, Friedman test ranks the SAFIRO with β = 10 the highest,

followed by β = 15, β = 5, β = 20, and lastly β = 1.
Based on the Friedman test statistic of 75.353, distributed accord-
ing to a chi-square distribution with 4 degrees of freedom, a sig-
nificant difference exists between the compared values. To test
which values is significantly better than the other, Holm post hoc
test is performed. The results are shown in Table 5. From the ta-
ble, Holm’s procedure rejects those hypotheses that have unad-
justed p-value equal or less than 0.01. Hence, SAFIRO with β=10

performs significantly better than β = 1 and β = 20 but has an
equivalent performance with β = 5 and β = 15 in solving the
CEC2014 Benchmark Test Suite.

5. Conclusion

It can be concluded that the effect of beta towards SAFIRO per-
formance depends on the given function. Increasing the value of β
helps to improve the performance of SAFIRO for Fn5 and Fn18.
On the contrary, SAFIRO shows a better performance with a
smaller value of β for Fn9, Fn11, Fn20, Fn24, Fn25, Fn27, and
Fn28. The statistical tests show that β = 10 has the highest rank
where this setting has outperformed β = 1 and β = 20 and has an
equivalent performance with β = 5 and β = 15. As a conclusion,

the user is recommended to tune the β for best performance. How-
ever, β = 10 is a good value to be used in SAFIRO for solving
most optimization problems. This is based on the result of the
mean fitness (17 out of 30 functions show the best results with β =
10) as well as the statistical tests. Hence, the initial setting in
SAFIRO’s original paper is considered as a robust value setting
for SAFIRO. As a future work, an auto-tuning of parameters in
SAFIRO is considered.

Acknowledgement

This research is financially supported by the Universiti Malaysia
Pahang (UMP) internal research fund (RDU1703234). The authors
would like to thank anonymous reviewers for their constructive
comments, and Universiti Malaysia Pahang, Universiti Tun Hus-

sein Onn Malaysia, MOE, and Multimedia University for their
logistics support.

36 International Journal of Engineering & Technology

Table 3: Mean fitness and mean error with different β values for hybrid and composition functions

 Fn

Ideal

Fitness β = 1 β = 5 β = 10 β = 15 β = 20 The best β

17 1700
Mean Fitness 4.78E+06 2.23E+05 4.60E+04 5.79E+04 7.83E+04 10

Mean Error 4.77E+06 2.21E+05 4.43E+04 5.62E+04 7.66E+04

18 1800

Mean Fitness 1.15E+08 5.48E+04 3.98E+03 3.70E+03 3.58E+03 20

Mean Error 1.15E+08 5.30E+04 2.18E+03 1.90E+03 1.78E+03

19 1900

Mean Fitness 1968.02 1922.74 1920.60 1924.70 1925.85 10

Mean Error 68.02 22.74 20.60 24.70 25.85

20 2000

Mean Fitness 4041.59 2467.45 2476.10 2499.59 2561.37 5

Mean Error 2041.59 467.45 476.10 499.59 561.37

21 2100

Mean Fitness 1.76E+06 2.07E+05 6.11E+04 6.75E+04 7.93E+04 10

Mean Error 1.76E+06 2.04E+05 5.90E+04 6.54E+04 7.72E+04

22 2200

Mean Fitness 3617.39 2993.56 2920.90 3007.73 3024.94 10

Mean Error 1417.39 793.56 720.90 807.73 824.94

23 2300

Mean Fitness 2709.71 2646.13 2645.00 2645.44 2646.12 10

Mean Error 409.71 346.13 345.00 345.44 346.12

24 2400

Mean Fitness 2722.67 2676.81 2678.70 2678.80 2679.70 5

Mean Error 322.67 276.81 278.70 278.80 279.70

25 2500

Mean Fitness 2733.23 2711.88 2712.50 2714.34 2714.89 5

Mean Error 233.23 211.88 212.50 214.34 214.89

26 2600

Mean Fitness 2782.51 2757.37 2778.70 2772.47 2790.16 5

Mean Error 182.51 157.37 178.70 172.47 190.16

27 2700

Mean Fitness 4090.92 3496.66 3519.20 3544.06 3587.06 5

Mean Error 1390.92 796.66 819.20 844.06 887.06

28 2800

Mean Fitness 6059.83 4954.57 5252.50 5421.25 5449.55 5

Mean Error 3259.83 2154.57 2452.50 2621.25 2649.55

29 2900

Mean Fitness 1.40E+07 3.78E+04 2.89E+04 3.03E+04 3.06E+04 10

Mean Error 1.40E+07 3.49E+04 2.60E+04 2.74E+04 2.77E+04

30 3000

Mean Fitness 2.21E+05 4.72E+04 3.87E+04 4.21E+04 4.34E+04 10

Mean Error 2.18E+05 4.42E+04 3.57E+04 3.91E+04 4.04E+04

Table 4: Average Friedman ranking of β

Algorithm Ranking

β = 10 1.5833

β = 15 2.5833

β = 5 2.6

β = 20 3.2667

β = 1 4.9667

Table 5: Holm post Hoc result of β value for α = 0.05

β p Holm

β = 1 vs β = 10 0 0.005

β = 1 vs β = 15 0 0.005556

β = 1 vs β = 5 0 0.00625

β = 1 vs β = 20 0.000031 0.007143

β = 10 vs β = 20 0.000037 0.008333

β = 5 vs β = 10 0.012763 0.01

β = 10 vs β = 15 0.014306 0.0125

β = 15 vs β = 20 0.094166 0.016667

β = 5 vs β= 20 0.10247 0.025

β = 5 vs β= 15 0.967436 0.05

References

[1] Kirkpatrick S, Gelatt CD, & Vecchi MP (1983), Optimization by

Simulated Annealing, Science, Vol. 220, No. 4598, pp. 671–680.

[2] Glover F (1989), Tabu Search - Part I, ORSA J. Comput., Vol. 1,

No. 3, pp. 190–206.

[3] Solis FJ & Wets RJB (1981), Minimization By Random Search

Techniques, Math. Oper. Res., Vol. 6, No. 1, pp. 19–30.

[4] Michael Lewis R & Torczon V (1996), Pattern Search Algorithms

for Bound Constrained Minimization.

[5] Feo TA & Resende MGC (1995), Greedy Randomized Adaptive

Search Procedures, J. Glob. Optim., Vol. 6, pp. 109–133.

[6] Mladenovic N & Hansen P (1997), Variable Neighborhood Search,

Comput. Oper. Res., Vol. 24, No. 11, pp. 1097–1100.

[7] Voudouris C & Tsang E (1999), Guided Local Search and its

Application to the Traveling Salesman Problem, Eur. J. Oper. Res.,

Vol. 113, No. 2, pp. 469–499.

[8] Lourenço HR, Martin O, & Stützle T, A Beginner’s Introduction to

Iterated Local Search, Proceeding 4th Metaheuristics Int. Conf.,

June 2014, (2001), pp. 4-11.

[9] Boussaid I, Lepagnot J & Siarry P (2013), A Survey on

Optimization Metaheuristics, Inf. Sci. (Ny)., Vol. 237, pp. 82–117.

[10] Yang XS (2015), Recent Advances in Swarm Intelligence and

Evolutionary Computation, Springer International Publishing

Switzerland.

[11] Yang XS, Deb S & Fong S (2014), Metaheuristic Algorithms:

Optimal Balance of Intensification and Diversification, Appl. Math.

Inf. Sci., Vol. 8, No. 3, pp. 977–983.

[12] Dumitrescu I & Stützle T (2013), A Survey of Methods that

Combine Local Search and Exact Algorithms, Appl. Evol. Comput.,

pp. 57–68.

[13] Osman IH & Laporte G (1996), Metaheuristics: A Bibliography,

Ann. Oper. Res., Vol. 63, No. 5, pp. 511–623.

[14] Héliodore F, Amir N, Ismail B, Ouchraa S & Schmitt L (2017),

Metaheuristics for Intelligent Electrical Networks, ISTE Ltd and

John Wiley & Sons, Inc.

[15] Bertsimas D & Tsitsiklis J (1993), Simulated Annealing, Statistical

Science, Vol. 8, No. 1. pp. 10–15.

[16] Blum C & Roli A (2003), Metaheuristics in Combinatorial

Optimization : Overview and Conceptual Comparison, Vol. 35, No.

3, pp. 268–308.

[17] Ibrahim A, Rahnamayan S & Martin MV, Simulated Raindrop

Algorithm for Global Optimization, Canadian Conference on

Electrical and Computer Engineering, (2014), pp. 1–8.

[18] Idoumghar L, Melkemi M, Schott R, and Aouad MI (2011), Hybrid

PSO-SA Type Algorithms for Multimodal Function Optimization

and Reducing Energy Consumption in Embedded Systems, Appl.

Comput. Intell. Soft Comput., Vol. 2011, pp. 1–12.

[19] Sevaux M, Sörensen K & Glover F (2016), Metaheuristics, October

2016.

[20] Beheshti Z & Shamsuddin SM (2013), A Review of Population-

based Meta-Heuristic Algorithms, Int. J. Adv. Soft Comput. Appl.,

Vol. 5, No. 1, pp. 1–35.

[21] Saremi S, Mirjalili S & Lewis A (2017), Grasshopper Optimisation

Algorithm: Theory and Application, Adv. Eng. Softw., Vol. 105, pp.

30–47.

[22] Glover F & Kochenberger G (2003), Handbook of Metaheuristics,

Kluwer Academic Publishers.

[23] Dogan B & Olmez T (2015), A New Metaheuristic for Numerical

Function Optimization: Vortex Search Algorithm, Inf. Sci. (Ny).,

Vol. 293, pp. 125–145.

[24] Rueda JL & Erlich I, MVMO for Bound Constrained Single-

objective Computationally Expensive Numerical Optimization,”

2015 IEEE Congress on Evolutionary Computation, (2015), pp.

International Journal of Engineering & Technology 37

1011–1017.

[25] Abdul Aziz NH, Ibrahim Z, Ab. Aziz NA, Mohamad MS & Watada

J (2018), Single-solution simulated Kalman filter algorithm for

global optimisation problems, Sadhana, Vol. 123, No. 4, pp. 2333–

2335.

[26] Ibrahim Z, Abdul Aziz NH, Ab. Aziz NA, Razali S, Shapiai MI,

Nawawi SW & Mohamad MS (2015), A Kalman Filter Approach

for Solving Unimodal Optimization Problems, ICIC Express Letters,

Vol. 9, Issue 12, pp. 3415-3422.

[27] Ibrahim Z, Abdul Aziz NH, Ab. Aziz NA, Razali R & Mohamad

MS (2016), Simulated Kalman Filter: A Novel Estimation-Based

Metaheuristic Optimization Algorithm, Advance Science Letters,

Vol. 22, pp. 2941-2946.

[28] Ab Rahman T, Ibrahim Z, Ab. Aziz NA, Zhao S & Abdul Aziz NH

(2018), Single-Agent Finite Impulse Response Optimizer for Nu-

merical Optimization Problems, IEEE Access, Vol. 6, pp. 9358-

9374.

[29] Liang JJ, Qu BY & Suganthan PN (2013), Problem Definitions and

Evaluation Criteria for the CEC 2014 Special Session and

Competition on Single Objective Real-Parameter Numerical

Optimization.

[30] Mirjalili S, Mirjalili SM & Lewis A (2014), Grey Wolf Optimizer,

Adv. Eng. Softw., Vol. 69, pp. 46-61.

[31] Ab. Aziz NA, Mubin M, Ibrahim Z & Nawawi SW (2015),

Statistical Analysis for Swarm Intelligence - Simplified, Int. J.

Futur. Comput. Commun., Vol. 4, No. 3, pp. 193-197, 2015.

