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ABSTRACT In the past few years, mobile devices have been increasingly replacing traditional computers,
as their capabilities, such as CPU computation, memory, RAM size, and many more, are being enhanced
almost to the level of conventional computers. These capabilities are being exploited by mobile apps
developers to produce apps that offer more functionalities and optimized performance. To ensure acceptable
quality and to meet their specifications (e.g., design), mobile apps need to be tested thoroughly. As the testing
process is often tedious, test automation can be the key to alleviating such laborious activities. In the context
of the Android-basedmobile apps, researchers and practitioners have proposedmany approaches to automate
the testing process mainly on the creation of the test suite. Although useful, most existing approaches rely
on reverse engineering a model of the application under test for test case creation. Often, such approaches
exhibit a lack of comprehensiveness, as the application model does not capture the dynamic behavior of the
applications extensively due to the incompleteness of reverse engineering approaches. To address this issue,
this paper proposes AMOGA, a strategy that uses a hybrid, static-dynamic approach for generating a user
interface model frommobile apps for model-based testing. AMOGA implements a novel crawling technique
that uses the event list of UI element associated with each event to dynamically exercise the events ordering
at the run time to explore the applications’ behavior. An experimental evaluation was performed to assess the
effectiveness of our strategy bymeasuring the code coverage and the fault detection capability through the use
of mutation testing concept. The results of the experimental assessment showed that AMOGA represents an
alternative approach for model-based testing of mobile apps by generating comprehensivemodels to improve
the coverage of the applications. The strategy proved its effectiveness by achieving high code coverage and
mutation score for different applications.

INDEX TERMS Automated testing, reverse engineering, UI Model, mobile apps, model-based testing, GUI
testing, android apps.

I. INTRODUCTION
Smartphones and tablets have dominated the global comput-
ing trend in recent years [1]. A recent study indicated that a
total of 383,504 smartphones were sold to users worldwide
in the first quarter of 2018 and Android OS is leading with
85.9% market share [1]; whereas, the personal computers
(laptop and desktop) sold to users worldwide in the same
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period are 61,686 [2]. This indicates that smartphones are
gradually replacing laptops and desktop computers for per-
forming many computational tasks such as access to email,
Internet surfing, spreadsheet generation/editing, word pro-
cessing, and presentation making/editing. This shift has sig-
nificantly changed the computing landscape. The popularity
of these devices has brought an increase in the development
of mobile applications (apps) to deal with the computational
needs of their users [3]. Mobile apps development has a sig-
nificant impact from both economic and social perspectives.
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It has generated revenue of $86 billion in 2017, and a recent
report estimated that the global applications business would
be worth $110 billion in 2018 and $189 by 2020 [4], [5].

The increase in complexity of mobile apps due to the
increase in capacity, structure, and functionalities has brought
several challenges for the software engineering researchers
such as determining/deriving application’s behaviors and
testing them [6], [7]. Consequently, there is a demand for
software engineering techniques and tools to support the
analysis and testing task for mobile apps [8]–[10]. Testing can
play a significant role in assessing and improving the quality
of software systems [11], [12]. With the recent improve-
ments and complexity of mobile apps, manual testing is no
longer sufficient because it is often tedious, error-prone, and
achieves poor coverage of an application’s behavior [6], [13].
For example, when there is a need to cover a large number
of combinations of usage scenarios, it can be tedious to
manually enter data, swipe the screen, and click on buttons.

Model-based testing (MBT) is a popular approach for
test automation where a model of the application under test
(AUT) is build to derive the test input automatically [14].
It provides a notable improvement to conventional scripted
testing by enhancing the creation of test scripts and test cov-
erage of an application [15]–[17]. However, due to the use of
agile development processes by most developers in which the
requirements and implementation are iterating rapidly from a
version to another, modeling in such a situation is difficult
[16], [18]. Hence, mobile apps model is often not avail-
able or of insufficient quality [19]. The model can be gener-
ated from the application’s documentation [20] or sequences
of actions observed in an application [16]. The reverse engi-
neering approach has been used recently to generate the
model automatically [16], [21]. To benefit from the MBT
approach, there is a demand for techniques/tools to aid auto-
mated model generation from the mobile apps. However,
building these models fully automatically for the Android
apps have several challenges such as exploring system events
(e.g., events due to the incoming call) and some events
that are only visible by toggling the visibility-property of a
panel [22], [23].

In the context of UI testing, many reverse engineering
tools for the automated model generation from mobile apps
have emerged. Most of these tools are typically based on
dynamic approaches where an application is dynamically
analyzed at the run-time to extract information. For exam-
ple, Android GUITAR [24], Android GUI Ripper [22],
MCrawlT [13], and test automation system [25] are all based
on this approach. However, the information extracted by a
pure dynamic approach is incomplete due to the inability
to explore infeasible paths (e.g., windows that require a
password) and providing user inputs [16], [26]. As such the
models generated by these tools are incomplete due to the
limitations of pure dynamic analysis [27], [28]. Tools that
combine both static (analysis of bytecode/source code to
extract valuable information) and dynamic (analyzing appli-
cation at the run time) approaches were proposed recently

to improve the coverage and the quality of the generated
models from the mobile apps such as Orbit [6] and A3E [29].
Nonetheless, the models generated by these tools are incom-
plete. One of the limitations of these approaches is that
the static analysis employed by them is less comprehen-
sive as it does not capture menus and dialog, it does not
consider the UI effects of event handlers and the triggered
callbacks [30], [31].

Addressing the issues raised above, this paper proposes a
hybrid approach, by combining static and dynamic technique.
As the name implies, the static technique extracts the mobile
app’s events statically by analyzing the corresponding byte-
codes. Meanwhile, the dynamic technique matches the event
list of UI element associated with each event to dynamically
exercise the events ordering at the run-time to explore the
applications’ behavior. The contributions of this work can be
summarized as follows:

• We propose a novel dynamic crawling algorithm for
exploring a mobile application and constructing the
interaction model of the UI. The new crawler reduces
the crawling and model construction time by using an
enhanced search algorithm.

• Unlike the other approach, we also propose a ground-
breaking approach towards completing and support-
ing the dynamically constructed model (i.e., using the
crawler) by refining it using a static analysis algorithm
for producing the mobile apps’ events.

• We developed an Automated Model Generator for
Android apps (AMOGA), a tool for automated UImodel
generation from mobile applications.

• We evaluated the effectiveness of the proposed novel
approach on different real worlds case studies of
Android apps and compared the results with the current
state-of-the-art tools and algorithms. We showed the
effectiveness of AMOGA in terms of code coverage and
fault detection ability.

The rest of this paper is organized as follows. Section II
discusses the background. Section III presents a moti-
vating example. Section IV presents the proposed hybrid
approach. Section V discussed the results of the experimental
evaluation. Section VI discusses the related works. Finally,
section VII concludes the paper.

II. BACKGROUND
The popular tool categories in the literature for automated
test cases generation and execution in the context of mobile
apps are script-based, capture/replay, random walk, system-
atic exploration, andmodel-based [14], [32]. The script-based
technique requires writing test cases manually to automat-
ically interact with the GUI using scripting languages that
programmatically control the GUI. The languages utilize the
JUnit framework [33], a tool developed for unit testing. Cap-
ture/replay tools are interactive tools that reduce the burden
of manual scripting through the provision of interactive tool
support. They provide a mechanism that allows the tester to
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record interactions with the UI and save the interactions as
test cases that can be replayed automatically. An example
of capture/replay tool is Selenium IDE [34]. Random walk
tools explore the UI and execute all events encountered in
sequence. As the tools do not generate test cases, they cannot
replay the exact sequences encountered. An example of such
tool is Android Monkey [35]. Systematic exploration tools
use more advanced techniques, such as symbolic execution,
to guide the exploration upon providing specific inputs. Sym-
bolic execution analyses the code of a program and automat-
ically generates test data for it. An example of this tool is
A3E [29].

MBT is a popular area of research in recent years. It can
enhance the creation of test scripts and test coverage of an
application [17]. As the model depicts an abstract repre-
sentation of the expected behavior, the test scripts that are
generated from such model can check conformance of the
implementation with the expected behavior [16]. Using a
model to depict the behavior of a software system has been
proven to be of significant advantage. Nonetheless, building
the model is one of the crucial steps in MBT when the
model is not available. It can be constructed manually as
in [36], or using automatic modeling techniques [37], [38].
However, constructing the model manually is tedious, error-
prone and time-consuming [6] as it requires careful inspec-
tion of the application to represent the GUI at design and
implementation levels. Automated model generation is a
reverse engineering task that involves extracting the design
artifacts and deriving abstractions of an application. Hence,
the quality of a model with respect to its level of abstraction
depends on the amount of information captured.

Several model reverse engineering techniques/tools were
proposed for automated testing of Android apps over the last
decade. Most of these tools are pure black-box techniques
that perform dynamic analysis of applications. A few of those
tools are based on the gray-box (hybrid) technique.

The black-box technique is a method of testing where the
tester examines the behavior of an application without know-
ing the app’s code/internal structure [39]. The focus is mainly
on the outputs generated in response to the selected inputs
and execution conditions. In this technique, test input can
be obtained by dynamically analyzing an application at run-
time [39] or from the external descriptions of the application,
including specifications, requirements and design parameters
[40], [41]. It is particularly suited for extracting information
about the UI’s external behavior [27]. One of the most chal-
lenging issues in dynamic reverse engineering is how events
are found and fired in controlling themodel exploration. Also,
the inability to explore certain UI due to the presence of infea-
sible paths such as those that require user inputs andmodal UI
(dialog box) that can sometimes be visible or invisible [16],
[27]. Hence, the extracted information about the behavior of
the application could be inaccurate and incomplete which
affects the quality of the generated model.

White-box technique (otherwise known as code-based test-
ing) is based on the static analysis of the code to test the

internal structures of an application. White-box technique
involves the analysis of the application’s code without execut-
ing the application itself to generate a human-readable form
of representation [39]. It is well suited for extracting informa-
tion about the internal structure of the system and dependen-
cies among the structural elements such as classes, methods,
and variables information [27]. Furthermore, it can retrieve
more accurate information from an application. Nonetheless,
the dynamic object-oriented nature of the UI applications
makes it difficult or even impossible to generate comprehen-
sive information about the behavior of the application (e.g.,
behaviors of the dynamically created UI widgets) by just
analyzing their source code [16].

Gray-box technique is a combination of the black-box and
white-box technique [32]. In this technique, the tester per-
forms a static analysis (white-box) of the application’s code
to acquire the inputs that can be used for the dynamic analy-
sis (black-box). Nowadays, this approach otherwise referred
to as the hybrid approach. Recently, the hybrid approach
has been the focus of researchers in the area of UI reverse
engineering, particularly for the Android apps [42]. The
hybrid approach can provide enhancement in terms of the
scope, completeness, and precision of reverse engineering
as it exploits the capabilities of both static and dynamic
approaches while trying to maximize the quality of the
extracted information [26].

III. MOTIVATING EXAMPLE
Figure 1 shows a simple example derived from an Android
app called OpenManager. OpenManager is an open-source
filemanager app that allows you to browse your device, create
directories, rename, copy, move, and delete files. It consists
of thirteen windows (five Activities and eight dialogs). The
main window displays directories currently in the device.
Clicking on a directory displays its contents. The help button
displays a dialog (image 2) with two options, Email Devel-
oper for the user to ask the developer any question about
the application and Website option that directs to the website
of the application. The directoryInfo button displays a new
window with the current directory information (image 3).
A click on the manage button displays a new window (image
4). The window is an instance of the AlertDialog that is
used to show two selectable items (e.g., the running process
info, or to backup applications to the SD card). The multi-
select button displays a window that is associated with the
main windowwith changes in its visual representation (image
5). It consists of the attach button for attaching a file, delete
button to delete a file, copy and move button for copying or to
delete a file. Finally, the menu is opened by clicking the menu
button from any window (not shown in the figure). The new
directory option in the menu leads to a dialog for typing
the new directory name. The search option takes the users
to another dialog for typing name of the file to search. The
settings option on the menu directs the user to a window with
five settings options. The quit option in the menu closes the
application.
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FIGURE 1. Example derived from OpenManager app.

The other windows 4-7 are dialogs that are not directly
accessible via a simple button click. A long click on any
directory opens a dialog, folder operations (image 4), with
several selectable options. A long click on any file in a direc-
tory leads to a dialog, file operations (image 5), with several
selectable options. Clicking on the delete file option in the file
operation dialog takes the user to a warning dialog (image 6)
to confirm the request and clicking the rename option leads
the user to a dialog to type the new name. The long click
events are examples of events that are typically inaccessible
by the dynamic approach. The dialogs and menus are other
essential applications’ windows that affect the visible state
and possible run-time behavior of applications. These events
are not handled by the other hybrid approaches/tools as dis-
cussed in section VI.

IV. THE PROPOSED APPROACH
We now describe the hybrid approach for reverse engineering
model of a given mobile app. As discussed in the previous
section, one of the significant challenges in testing mobile
apps is how to generate input events that are used to control
the exploration. Our approach performs a static analysis of the
mobile app’s bytecode to extract a set of events supported by
the UIs which can be used as input for the dynamic analysis.
This step is followed by a dynamic crawler, whose primary
goal is to systematically fire the extracted events on the
running application to explore and reverse engineer a model
of the application. The framework of the proposed approach is
shown in Figure 2. The following subsections elaborate these
steps in detail.

A. EVENTS TRACKING ALGORITHM
Exploring a mobile app for model reverse engineering
requires knowledge of the precise set of events supported by

FIGURE 2. Framework of AMOGA.

the application. A common practice is the use of dynamic
analysis to rip this information and use it for the exploration.
Most state-of-the-art tools such as MobiGUITAR [43] are
based on the dynamic approach that analyzes the applica-
tion’s UI at run-time to extract and create a task list that can
be used as input in controlling the model exploration. How-
ever, with the limitations of dynamic analysis as discussed in
Section II, several researchers believed that using static anal-
ysis to generate meaningful input for the dynamic exploration
can ensure the generation of a high-quality model [44].

The control flow in Android is non-standard as in tra-
ditional Java applications but centered around callbacks
invoke by the Android framework as the users trigger
actions [6], [29]. The callback methods can significantly
affect the life-cycle and consequently state of an appli-
cation. Thus, analyzing callbacks is essential to ensure
comprehensive coverage of application’s state. AMOGA per-
forms a callback control-flow analysis on mobile apps.
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Algorithm 1 Events Tracking
Input: WTG g = (w, p)
Output: eS = eventSet
1. Procedure EventsTracking(g)
2. Initialization: Priority queue(PQ), visited set(vSet)
3. Enqueue intial window(W, 0)
4. while PQ 6= empty
5. dequeueCurrFrom PQ
6. addCurrToVisitedSet
7. foreach curr neighbors, n do //paths connecting to other nodes
8. enqueue n onto PQ //enqueue n with its priority
9. eventSet eS ← getAll n from vSet //starting with n with min priority
10. foreach event e ∈ eS do
11. sWindow← getSourceWindow(g)
12. mTrigger ← getTriggerMethod(e)
13. foreachmTrigger ∈ mTriggerSet do
14. v← getWidget(t)
15. id ← getParameters(v)
16. e.S.add(e, id)
17. end
18. end
19. end
20. end

The common types of system events triggered by the
Android system are the calls to launch-activity (e.g., the star-
tActivity calls) which uses an intent object to specify the
target activity, interrupt due to an incoming phone call and
screen rotation. Several techniques for analysis of Android
intent objects are available [45]–[47]. Our static analysis
comprises of an intent analysis which is derived from [48].
The intent analysis is combined with the tracking of calls
to launch window and the modeling of window termination
calls. The system events are generated through the intent
analysis. The analysis is represented in the form a Windows
Transition Graph (WTG).

TheWTG is a graph with nodes corresponding to windows
and edges representing windows transitions. Each edge is
assigned a label indicating the sequence of execution. The
events tracking algorithm in Algorithm 1 is applied on the
WTG to traverse the graph and create a set of events that
can be used to explore an application dynamically. Here,
the events sequence is crucial because the availability of
some states defends the existence of other states. Unlike
other approaches, the events tracking algorithm in AMOGA
generates the events set based on their sequence of execution.
This feature represents an excellent addition to the current
state of the art with these tools. For example, the sequence of
events is not considered in the exploration of the ORBIT tool.

Algorithm 1 describes the steps of the events tracking. The
algorithm starts with the WTG as input. First, we initialize
a priority queue (PQ) and begin by adding the initial node
(a node with no incoming edges) to the PQ. The priority
is computed using the level (weight) on the edges of the
graph. The edges with lower sequence number are given high

priority and are executed before those with a higher sequence
number. The algorithm continues the traversal by removing
an element with theminimum value (lower sequence number)
from the PQ (Line 5). By using a priority queue to guide the
traversal, it is possible to control the traversal of the paths
base on their sequence in the PQ. The algorithm proceeds
to find all neighbors, n of the current node and add them to
the PQ with their sequence S until all neighbors are explored
(Lines 7-8). Then, the algorithm generates the eventSet from
the visited set based on their sequence (Line 9). For each
extracted event, e, the algorithm locates the source UI (node)
of the event and the trigger methods (Lines 10-12). Finally,
the algorithm slice back to get the widgets that are registered
to the trigger methods with the view ids and extract them
(Lines 13-16).

B. CRAWLING ALGORITHM
Automated model exploration tools use a ripper or crawler
that typically require information of the set of application’s
UI widgets supporting events, such as clicks, and what events
are supported explicitly by each widget [32]. This informa-
tion is used to create a task list that can be used in triggering
events to explore application’s interfaces at run-time. The
exploration is usually implemented with crawlers that are
guided by the Depth First Search (DFS) algorithm. A DFS
needs to back-track several times to make sure all paths
(edges) in a graph are covered. However, when the graph
to be explored is large, redundancy becomes more prevalent
causing an increase in computational time. Breadth First
Search (BFS) algorithm can provide an improvement over
DFS. Nonetheless, both the classical DFS and BFS are based
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Algorithm 2 App Crawling
Input: A: app under test, eS: event set
Output: M: generated model
1. Initialize M ← ∅; eS ← getEventsSet , vS : visited HashSet
2. currentState sc← pushInitialUI
3. while eS 6= empty
4. e← getEventFrom eS
5. pick the UI widget to fire
6. fireAction on e
7. analyseNextState
8. if = newState then
9. addToModel
10. updateVisitedStates, vS
11. endif
12. en← getNextEventToExplore
13. if en 6= currUI
14. BACKTRACKPROCEDURE

15. backtrackToPreviousUI
16. analyzeCurrUI
17. if en is reachable from curr UI then
18. fireAction on e
19. updateModel //add newState to model
20. else
21. goto next UI
22. updateModel
23. end
24. end
25. end

on stack data structure and they are not suitable for a weighted
graph as in our case. ORBIT tool minimized this issue with
their ‘‘forwardCrawlfromState’’, a modified DFS algorithm
which visits the nodes and identifies a state with open action
and continues crawling until it reaches a state with no open
action. It will then backtrack until it reaches another open
state. However, DFS does not account for weighted (the event
sequence) edges as we have in our case. This is essential
in selecting which event to fire next during the exploration.
To efficiently crawl an application UI, our crawler imple-
ments Dijkstra’s algorithmwhich is an enhanced form of BFS
for search optimization [49]. The main aim of the algorithm
is to find the shortest path to explore the UI. It generates
the shortest sequence of events based on the received eS
from the static analyzer to crawl a given application. Algo-
rithm 2 provides a detailed description of the application
crawling.

The crawling algorithm performs four main decisions
repeatedly until all events in the eS are explored. The first
step is selecting the next event to explore and fire action
on the widget (Line 5). Then it checks if the next UI is a
new state (Line 8). If it is a new state, it will be added to
the model and the crawling continue. Then, the algorithm
checks whether the next event to explore can be reached from
the current UI (Line 13). If the next event is unreachable
from the current UI, the backtrack mechanism is called to

backtrack to the previous UI until the next event is reached.
Finally, the algorithm will fire the action if the next event e is
reachable from the currentUI (Line 18). Themodel is updated
and the function to get the next event from the eS is used to
continue crawling.

We modeled the UI behavior of a mobile app as an
FSM. The model consists of nodes representing UI states
and edges representing events and interactions. Each input
event may trigger an abstract state transition in the machine.
The state machine can be used to generate test cases for
testing an application. The FSM maps events and related
conditions to a list of UI actions references. Figure 3
shows an example of the state model generated for the
Tomdroid app.

AMOGA reduces the model crawling time by utilizing
an enhanced search algorithm, the Dijkstra’s algorithm. The
algorithm enables AMOGA to quickly crawl the shortest UI-
path to explore apps states and continue the crawling process
from the lastly discovered app state to discover and explore
new undiscovered app’s state. In comparison to other tools
(SwiftHand, MCrawlT, MobiGUITAR) which have a time
complexity of O(sn), wheres is the number of subsequent
paths originating from a particular appUI, AMOGA achieved
the lowest crawling time. Its time complexity is O(n) in the
worst-case, and it is linear to the number of an app UIs (n) on
the path leading to a target app UI (the depth).
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FIGURE 3. Example of model generated for Tomdroid app.

TABLE 1. Characteristics of the applications used in the experimental evaluation.

C. TEST CASE GENERATION
There are several examples of model-based test generation
tools for Android where aUImodel is a vital requirement [6],
[36], [50], [51]. AMOGA generates a UI state model in which
edges in the model correspond to a test case. To demonstrate
the use of the generated model, we have implemented a test
generation tool to generate test cases. The tool traverses paths
through the model and creates test cases. A test case includes
a whole path of edges from an initial to a final state or a
sub-path including one origin and one target state. The test
cases were implemented using the JUnit format that can be
executed with the Robotium testing framework. This is a
typical example. For all edge e = e1, e2,. . . , the event id e(ei)
is translated to corresponding Robotium API calls that can
trigger the event.

D. TOOL IMPLEMENTATION
This section provides details of the implementation of the
proposed hybrid approach in a tool called Automated Model
Generator for Android (AMOGA). AMOGA was imple-
mented using the Java programming language. It comprises a
static analyzer that statically extracts mobile app’s supported
events which can be supplied as input to the UI crawler.

The following paragraphs describe the static analyzer and the
UI crawler in details.

a: STATIC ANALYZER
To identify the set of events supported by a mobile app,
the static analyzer performs callback control flow analysis
to generate the WTG [30] of the application. The static
analyzer performs the analysis and builds the graph with
the help of GATOR [30], [52], a Program Analysis Toolkit
For Android that we customized to track the events. First,
the static analyzer decompiles the apk to extract the bytecode
and then starts the analysis. Second, it performs the control
flow analysis to generate the CFG andWTG. Last, we applied
our events tracking algorithm described in IV-A on the WTG
to generate a list of events that includes the UI and system
events.

b: UI CRAWLER
The UI crawler implements the mobile app’s UI explo-
ration using the crawling algorithm described in IV-B. It is
built on top of the Robotium framework1 and utilizes its
capabilities of extracting the UI widgets (e.g., checkboxes,

1https://github.com/robotiumtech/robotium/wiki
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buttons, spinners) and fire the actions on their event handlers.
We observed that during the crawling process, the number
of states might be huge depending on the size of the AUT,
with some states appearing more than one. To avoid the
state exploration problem, the crawler analyzes a new state
in (line 8) of the algorithm IV-B to verify whether the state
is visited using the visitedSet vS list that is used to store all
visited states. This enables the crawler to differentiate a newly
discovered state with other explored states before adding to
the model and the vS will be updated accordingly.

V. EVALUATION
This section reports two experimental evaluation that involves
code coverage and mutation testing. The first set of the
experiment described in subsection V-A evaluates the model
generation capability of our approach and compares it with
the state-of-the-art approaches. Specifically, the experiment
evaluates the quality of the generated model by measuring
the code coverage achieved and the model exploration time
for a set of popular apps. The tools selected for the com-
parison are Monkey [35], AndroidGUITAR [24], SwiftHand
[53], ORBIT [6], MCrawlT [13] and MobiGUITAR [43].
The AndroidGUITAR and ORBIT are not available freely
to download. Therefore, their results are taken from the
published papers directly without implementation in our
environment. The second set of the experiment described in
subsection V-B, involves the application of mutation testing
to evaluate the fault detection ability of our approach. Muta-
tion testing is a well-known fault-based testing approach in
which numerous form of faults can be induced into the code
of an app. A given test suite is applied to test the app to
identify the faults induced. Other start-of-the-art approaches
performed faults detection by studying the bugs report of an
app to identify faults that were previously observed in the
app. They introduced these faults into the app and evaluates
whether the test suite can detect them. Therefore, we do not
intend to make a comparison of the second set of experiments
with other approaches/tools.

The experiments were conducted on Linux machine with
64-bit Ubuntu on an i7 Intel processor 2 cores, with 8GB
memory and HDD.We used an emulator configured based on
x86_64 configuration with the Lollipop version (API Level
21) of Android. The experiments intend to answer the fol-
lowing research questions (RQ):

• RQ1.Does our approach produces an informativemodel
that have high coverage of application’s behavior?

• RQ2. What is the fault detection capability of the tests
generated by the approach?

A. STUDY 1: MEASURING CODE COVERAGE (RQ1)
Code coverage has been very useful in accessing the effec-
tiveness of testing approach by many researchers in the lit-
erature such as [17] and [43]. The more the code coverage,
the better the potential of a testing approach. A problem
that may lead to incorrect behavior due to programming

errors may occur in an application. When part of the code
is not covered during the testing, such a problem may not
be detected. Hence, it is essential to ensure that a test can
cover a significant amount of the source code. We used
EMMA2 tool to generate the code coverage. It is an open-
source tool that measures and reports Java code coverage for
Java applications which is now included in the Android SDK.
Emma provides coverage reports (in percentage) at the class,
method, basic block, and statement/line levels. We used the
statement coverage metric in our experiments for the evalua-
tion of the code coverage results. The statement coverage is
used to measure the number of executed statements in source
code.

To demonstrate the effectiveness of AMOGA, we con-
ducted experiments on 15 selected mobile apps to measure
the achieved code coverage and the model crawling time and
compared it with the selected tools for the automated model
generation. These apps were used for many experiments in
the literature and they are used to evaluate the selected tools.
Table 1 presents the characteristics of the selected apps. The
table gives a description of the apps in column 2, the source
line of code (SLOC) in column 3, the number of Activities
in column 4, the category of mobile apps in column 5, and
the number of downloads based on Google Play analytic as
of February 2018 in the last column. The selection covers
a range of real-world open source mobile apps and falls
across different categories such as productivity, education,
and finance.

1) EXPERIMENTAL RESULTS
Figure 4 reports the percentage code coverage obtained by all
the selected tools on the applications used for the study. The
coverage results show that AMOGA achieved a minimum
coverage of 68% on Aagtl app and a maximum of 95% on
the contactManager app. As we can see from the results,
MCrawlT with 88% and ORBIT with 91% have a maximum
coverage that is close to that of AMOGA, followed by Mobi-
GUITAR with a maximum coverage of 79% and SwiftHand
with 74%. AndroidGUITAR and Monkey with 71% each are
inferior to other approaches.

2) COMPARISON WITH STATE-OF-THE-ART APPROACHES
We statistically compared the coverage results of AMOGA
with the state-of-the-art approaches (tools). It is observed that
the monkey tool was used as a reference for evaluation in
most of the Android testing tools. It can be considered as a
baseline because it comes with the Android SDK and it is
popular among developers. In the selection, we considered
tools whose main goal is to produce a model of an application
as an artifact for model-based testing as shown in Table 4.
A2T2 and A3E are not considered in the comparison, because
A2T2 is not available and the coverage result is not published
in the literature, while A3E does not produce a model but

2http://emma.sourceforge.net/downloads.html
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FIGURE 4. Code coverage of tools.

systematically explore an app to measure the Activity and
method coverage respectively.

Figure 5 presents the results of the comparison of AMOGA
with the selected tools. The horizontal axis shows the tools
used in the comparison. The vertical axis shows the per-
centage coverage. The boxes give the minimum, average
and maximum coverage achieved by the tools. The coverage
range achieved by AMOGA for most of the applications
is between 73% and 95% while MobiGUITAR achieved
between 63% and 73%,MCrawlT achieved between 56% and
76%, ORBIT achieved between 67% and 80%, SwiftHand
achieved between 59% and 69%, AndroidGUITAR achieved
between 54% and 66%, and Monkey achieved 46% and 60%.
On average, AMOGA achieved 80% coverage while ORBIT
has 74%, MobiGUITAR has 69%, MCrawlT has 68%, Swift-
Hand has 65%, AndroidGUITAR has 61% and Monkey has
achieved 51% coverage. The results show that the average
coverage of ORBIT is close to that of AMOGA. However,
based on the range of their coverage, we observed that the
lowest coverage obtained by AMOGA which is for Aagtl
is higher than the lowest coverage of ORBIT which is on
Aarddict. Based on the experimental results in Figures 4 and 5
AMOGA achieved higher coverage than other state-of-the-
art tools. In comparison to all the tools, AMOGA stands out
as the tool with the highest coverage. This shows that the
Static-Dynamic hybridization can enable the generation of
more comprehensive models that reflect the behavior of the
application.

The efficiency of an approach depends on how fast it can
explore an application. Figure 6 reports the exploration time
of tools on the 15 applications. AMOGA have the lowest
exploration time of 61s for Netcounter app and the maxi-
mum is 270s for OpenManager app. The maximum time for
Monkey is 221s, AndroidGUITAR have 322s, MobiGUITAR
760s, ORBIT 480s, and MCrawlT have 920s. In addition,
the results collected in Figure 7 presents a statistical com-
parison of the exploration time of AMOGA with other tools.

FIGURE 5. Comparison of coverage of AMOGA with other tools.

FIGURE 6. Exploration time of tools.

FIGURE 7. Comparison of exploration time of AMOGA with other tools
(in seconds).

When the results are compared with other tools, Monkey
tool explored the applications in an average time of 95s
while AMOGA explored the applications in an average time
of 127 seconds, ORBIT has 212 seconds, MobiGUITAR is
235 seconds, AndroidGUITAR is 254 seconds and MCrawlT
351 seconds. SwiftHand was designed to run for 3 hours after
which it will terminate. This setting enables SwiftHand to
run all the applications used in the experiments. When we
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TABLE 2. Mutants generated for the apps.

perform a side by side comparison of AMOGA with other
tools, it was observed that the monkey is faster on almost all
the applications due to its random nature of the exploration.
However, the achieved code coverage is low. Whereas, our
strategy performance degrades due to its in-depth exploration
process. Nonetheless, AMOGA is almost 2x faster than its
hybrid counterpart ORBIT.

B. STUDY 2: MUTATION TESTING (RQ2)
Recently, several researchers and practitioners argued about
using code coverage alone to validate the quality of a testing
tool. It is conceded by many researchers in the literature that,
simply testing statements coverage is insufficient to assure
an application’s quality (to make sure it functions correctly)
[54], [55]. Mutation testing represents a complement to the
process by ensuring that the apps function as expected and are
released without faults. The primary goal of mutation testing
is to determine the fault detection ability of a give tool/test
suite. Any test that kills the generated mutants is expected
to expose many faults in an app [54]. The effectiveness of
mutation testing is evaluated bymeasuring the mutation score
(MS) achieved. Amutation score ofMS = 1.000 indicates that
all the mutants in an app are killed.

Here, we used mutation testing to evaluate the fault detec-
tion capability of our approach to answer RQ2. The study
involves the generation of mutants for the 15 selected appli-
cations in study 1 to test them and measure the mutation
score (MS). Several mutants generation methods/operators
were defined and developed for mutation testing such as
muJava [56], the technique by Nilsson and Offutt [57] that
ware designed for desktop applications. However, these tech-
niques are not suitable for mobile apps. The respective coun-
terparts of such tools for mobile apps have been proposed,
such as AndroidMutants [54] and muDroid [58] which are
based on the same principles (mutation operators that are
responsible for altering the code of an application) as for
desktop applications.

In this study, we used the available tool, muDroid [58]
to generate mutants and run tests on the selected applica-
tions. In muDroid six (6) mutation operators are defined and
implemented for the Android apps that work at Smali code (a
code created by decompiling .DEX) level. The operators are
ICR (Inline Constant Replacement), NOI (Negative Opera-
tor Inversion), LCR (Logical Connector Replacement), AOR
(Arithmetic Operator Replacement), ROR (Relational Opera-
tor Replacement) and RVR (Return Value Replacement). ICR
changes the value of a constant before it gets assigned to a
variable, NOI inverts a negation of variables, LCR replaces
the logical connectors from one to another, AOR replaces
the arithmetic operators, ROR replaces the relational operator
from one to another and RVR replace the return values to 0 or
null.

By default, muDroid generates hundreds of mutants for an
application, but it employs a selection criterion for selecting
the mutants to reduce the total number of mutants to be used
in the testing step. The selection criterion tries to find a small
set of mutation operators with which no significant loss of
test effectiveness will be observed by selecting representa-
tive mutants across the different mutation operators. Table 2
shows the results of mutants generation. Column 2 gives
the number of total mutants generated. Column 3 gives the
number of mutants generated for each operator.

Table 3 presents the results of the mutation testing. Col-
umn 2 shows the number of mutants selected and killed. Col-
umn 3 shows the mutation score obtained for each operator.
Column 4 presents the total MS obtained for each application.
Based on the results presented in Table 3, an MS= 1.000 is
obtained for all the applications except MultiSMS, meaning
that all mutants injected in the applications have been killed.
MultiSMS has the lower MS= 0.866 which means that some
of the mutants injected in the application were not killed.
Out of the 10578 mutants selected for the mutation testing,
45 were not killed which are from theMultiSMS app. For this
viewpoint, we can conclude that our approach, AMOGA has
yielded high mutant coverage for all the applications except
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TABLE 3. Results of mutation testing.

MultiSMS. Therefore it can reveal many faults in mobile
apps.

C. DISCUSSION
The results in Figure 4 indicated that AMOGA achieved a
maximum coverage of 95%. This is attributed to our static
analysis that generates events to support the exploration and
the crawling algorithm for the model exploration. Although
ORBIT can achieve a reasonable coverage on some applica-
tions with an average close to that of AMOGA, its coverage
is low for some other applications due to its inability to
analyze other events such as systems events (e.g., lifecycle
events). Other tools that dynamically analyze an application
to generate inputs for the crawler that is responsible for
exploring the events have other limitations. Those tools are
not able to explore many events because the availability of
some events depends on the existence of other events (as
discussed in section II). In our proposed approach, the input
events to explore an application are acquired statically from
the bytecode. To efficiently explore an app UI taking into
account the order of event sequence, AMOGA implements
Dijkstra’s search algorithm which is an improved form of
BFS that uses a priority queue to select the next item to
explore.

From Figure 4, we can see that AMOGA achieved the
lowest coverage of 68%, and 79% for Aagtl and AnyMemo
apps respectively. We manually examine and inspect the
applications and we found that Aagtl requires user input
for some events to run to completion. AMOGA does not
generate concrete user inputs. Hence, the execution paths
that require user input may never be covered. AnyMemo is a
complex app that allows a user to access many repositories to
download dictionaries and wordlists. It relies on the dynamic
manipulation of network connectivity which causes difficulty
in reaching parts of the application.

Similarly, for the AardDict, Aagtl, multiSMS that pro-
cess both UI and system events such as life-cycle event
due to interrupt and Android broadcast messages, ORBIT,

MCrawlT, and MobiGUITAR obtains low coverage, because
they do not have support for system events. Monkey offers
support for system events; however, it supports a limited num-
ber of system events. In contrast, AMOGA supports these
events. Hence, it offers better coverage of these applications.
AMOGA stands out as the tool with the highest coverage.

Based on the results in Figures 5 and 7, we can observe
that, on average, AMOGA achieves higher code coverage
within a shorter time compared to other tools. On average,
AMOGA achieves 80% coverage within an average time
of 127 seconds, whereas ORBIT, MobiGUITAR, MCrawlT,
and AndroidGUITAR achieve 74%, 68%, 64%, and 59%
respectively, within an average time 212 seconds, 235 sec-
onds, 351 seconds and 254 seconds. When we compare the
time taken by every application involved in our experiment,
we can see that the minimum time is 59 seconds for the
MultiSMS app and the maximum time is 270 seconds for the
OpenManager app. OpenManager takes longer time due to
its large number of Activities that have complex UI. Thus,
the time along with the coverage obtained indicates that
AMOGA is better than the other tools in both coverage and
execution time.

The result of the mutation testing in Table 3 shows that
45 mutants in MultiSMS app were not killed. After inspect-
ing the mutants generated for the app, we detected that the
mutants are equivalent mutants, i.e., semantically equivalent
to the original code.

The intent objects that are used to specify the target activity
have two primary forms; the explicit intent which is used
for intra-app interactions, i.e., when the target component
is inside the same app and the implicit intent that is used
for inter-app communication. The current implementation of
AMOGA handles only intra-app events which are processed
via the explicit intents.

D. THREATS TO VALIDITY
The section discusses the threats to the validity of the study
related to the evaluation reported in two studies. The study
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presents threats that are discussed as follows. First, in respect
to the generated test, some of the events may need additional
input from the tester to run. An example is an options window
that may require a tester to select an item from the options.
To ensure they run as expected, we implemented an auto-
mated user input generation system that generates input ran-
domly. Second, is the selection of subjects (mobile apps) used
to run the experiments which may affect the results. As with
most software engineering research, it is difficult to ensure the
representativeness of the selected subjects. We have selected
mobile apps of different sizes, from a different category, that
were used to validate several tools by previous researchers.
This can provide consistency across multiple studies.

Finally, we have considered six state-of-the-art tools (e.g.,
Monkey, AndroidGUITAR, SwiftHand, ORBIT, MCrawlT,
and MobiGUITAR) using a set of common case studies with
the same code coverage reports to indicate the performance
of AMOGA. Although may be relevant to our work, we have
not considered applying the common case studies using A3E
owing to differences in the coverage reports (i.e., based on
method and activity). For this reason, a fair comparison of
AMOGA with A3E may be difficult (e.g., method coverage
does not imply statement coverage and vice versa). To do
so, we may need to enhance A3E to incorporate similar code
coverage, which is a difficult endeavor.

VI. RELATED WORK
We summarized the relatedworks on theMBTofMobile apps
based on two categories: the dynamic approaches and hybrid
approaches. Due to the weaknesses of dynamic approaches,
the hybrid approaches have drawn much attraction from
researchers in recent years.

A. DYNAMIC APPROACHES
One of the earliest techniques is the GUI ripping by Memon
et al. [37] that was implemented as part of GUITAR tool
to automate GUI exploration for desktop applications [17].
GUITAR consists of a ripper that generate event-flow graph
(EFG)model by automatically interacting with an application
during execution to extract all relevant information about its
GUI which is later converted into test cases. An extension of
the tool has been proposed for the Android platform known as
AndroidGUITAR [17], [24]. While the tool provides suitable
exploration strategies for GUI applications with traditional
GUI design for desktop applications, some factors pose dif-
ficulties when using it to explore touch-based smartphone
applications. Smartphone apps consist of a rich set of user
input features such as gestures (e.g., swipes, pinches) that
are not firmly confined to a particular GUI object (e.g., text
box or button). Furthermore, the UI state can be changed
by another application’s component in Android app or by
a service running in the background. This can be handled
through the system-wide callback by creating a list of action
sequences that can be executed by a user on a UI. In view of
this, only a subset of the UI states can be explored because
the behavior of the callback requests can certainly modify

UI states [7]. Hence, this approach is not able to capture the
rich set of user inputs associated with a mobile app. In addi-
tion, it is difficult to explore the infeasible paths because
the visibility of some elements depends on other elements
in the UI. For example, some modal UI (dialog box) can
sometimes be visible or invisible. Toggling their visibility can
expose or hide some events. The static analysis employed in
the proposed approach has dealt with this issue.

Android Automatic Testing Tool (A2T2) by
Amalfitano et al. [12] is based on the dynamic analysis of
an application at the run-time. It uses a crawler that simulates
real events of the user on the UI to generate test cases that
can be automatically executed on an application for crash
testing and regression testing. It generates a GUI tree, a model
that can be used for driving test cases automatically. The
current implementation of A2T2 focused on the user events
triggered through the GUI only but does not consider other
types of events supported by a mobile app such as inter-
component communication within the application, external
events invoked by the hardware sensors or network. There-
fore, it does not have support for the rich set of inputs
associated with Android apps.

AndroidRipper [22] dynamically analyzes an application
using a ripper that systematically rips the application’s UI
to generate test cases for stress-testing that can reveal unex-
pected faults in the code. The goal of the AndroidRipper
is to generate and execute tests automatically but does not
develop a reusable model of an application. Amalfitano et al.
proposedMobiGUITAR [43], an extension of AndroidRipper
that implements an algorithm based on breadth-first traversal
to dynamically traverse an application to create a tasks list
consisting of sequences of events. The tasks list is used to fire
events on the UI to generate a state model of the application
that can be used for test case generation.

Swifthand [53] tool dynamically analyzes a given applica-
tion to generate sequences of test inputs for Android apps.
It implemented an algorithm that is based on machine learn-
ing to learn an approximate model of the application dur-
ing testing. The learned model is used to generate event
sequences that can visit the unexplored states and execute the
generated sequences on the application to refine the model.
The authors do not focus on the quality of the generated
model but rather to guide the test execution. MCrawlT [13]
learns a model of the navigational paths of mobile apps at
run-time. It implemented an algorithm which dynamically
analyzes an application to create a tasks list corresponding
to the UI of the application. The tasks list is executed on
the application using the Robotium framework to explore the
UI and infers a model of the application that captures the
supported events. The tool only generates default touching
and scrolling events from the UI which can be supported by
Robotium but does not consider system events.

Baek and Bae [19] proposed an automated testing frame-
work for Android apps utilizing dynamic analysis. They
implemented a set of multi-level GUI Comparison Criteria
(GUICC) that provides the selection of multiple abstraction
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TABLE 4. Comparison of features of testing tools.

levels to improve GUI model generation. QUANTUM [59] is
a framework that receives a model of a mobile app and used
it as input for test suite generation that includes oracles for
testing the user-interaction features of the application. All the
reviewed tools utilized the dynamic analysis approach for the
model reverse engineering. Although they have struggled to
improve the effectiveness of the UI model, they still suffer
from the limitations of dynamic analysis as discussed in II.

Other state-of-the-art tools [60], [61] are designed to test
an application using the dynamic analysis automatically but
they do not generate a re-usable model of the application.
Dynodroid [60] is based on a random exploration similar
to Monkey with more improvement to generate the UI and
system events and checks which ones are relevant to the appli-
cation. Similarly, PUMA [61] is a framework that includes
a generic UI automator that provides a random exploration
of mobile apps using the basic monkey exploration strategy.
GVT [62] is an automated approach for verifying the UI of a
mobile app against the intended design specifications.

B. HYBRID APPROACHES
Considering the hybrid approach, ORBIT tool [6] integrated
both static and dynamic analysis to generate a state model
from Android apps. It leverages the static analysis in WALA
framework [63] to analyze the source code of an application
to generate a call graph that is used to generate a set of user
actions that are supported by an application. It performs a
backward slice on the listener objects to track the view ids
of the UIs associated with the listeners. A dynamic crawler
(built on top of Robotium) is used to fire actions on the
UI objects to explore the application. This generates a state
model that can be used for generating the test cases. Although
the tool employs this approach, its static analysismissed some
vital information because it does not account for the life-
cycle events triggered by the life-cycle callback methods.
For example, the onCreate method that manages the Activity
life-cycle. The Life-cycle callbacks for activities, dialog, and
menus can outline major changes to the visible state and
behavior of an application.

Azim and Neamtiu [29] proposed A3E (Automatic
Android App Explorer) tool that is also based on hybrid

static and dynamic analysis to automatically explore a mobile
app running on a real phone or an emulator. A3E uses the
static analysis in ScanDroid [45], [64] to perform data flow
analysis (taint tracking) on the bytecode of an application to
construct static activity transition graph (SATG) with nodes
representing activities and edges showing the possible transi-
tions between the activities. The SATG is then used as input
for the systematic exploration of the application to be tested.
The automatic explorer rips an application using Troyd tool
[65] (which is based on Robotium) to extract GUI elements
that are used to fire events on an application. However, as the
analysis focuses on applications’ Activities, this graph rep-
resentation does not capture the menus/dialog and does not
account for the general UI effects of event handlers such as
window-close and the triggered callbacks. Hence, it is less
comprehensive as it does not cover some highly-required
information.

C. COMPARISON OF FEATURES OF TOOLS
Table 4 reports the comparison of the features of the testing
tools. Column 2 shows the type of approach used by a tool.
Most of the tools are based on a dynamic approach that
analyzes an app at run-time (Black-box). However, ORBIT
and A3E used a static-dynamic approach (Gray-box) which
require the source code or bytecode in the case of A3E.
Column 3 indicates the types of events supported by the
tool. All the tools support only UI events except Monkey
and Dynodroid that provide support for a limited number
of system events as they utilized the Random technique
that is part of the Android framework. Column 4 shows
whether the tool produces an artifact or not. Monkey pro-
duces only logcat reports, Dynodroid produces logcat reports
and EMMA coverage reports and A3E produces Activity
coverage and method coverage reports. A2T2 produces GUI
Tree, AndroidGUITAR produces Event Flow Graph (EFG)
model, MCrawlT produces Parameterized Labeled Transition
System (PLTS) model, while MobiGUITAR, SwinftHand,
and ORBIT generates Finite State Machine (FSM).

Table 5 gives a comparison of input generation of the test-
ing tools. Column 2 shows the input generation method used
to supply input for the exploration. All the tools dynamically
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TABLE 5. Comparison of input generation of testing tools.

TABLE 6. Comparison of the characteristics of static-dynamic analysis of tools.

rip the information and used it as an input for the exploration
except ORBIT and A3E which identify the input statically
with the help of static analysis tool. ORBIT performs the
analysis with the help of WALA framework, A3E uses Scan-
Droid while our strategy performs the analysis with the help
of GATOR. The static analysis we employed handles system
events through the analysis of callbacks. Column 3 states
the exploration strategy used to explore an application. Mon-
key and Dynodroid applied the random exploration strategy
while the other tools are based on systematic exploration
strategy. Column 4 indicates the underlying framework on
which the exploration by the tool is built. A3E uses Troyd
tool and RERANwhile ORBIT and AMOGA uses Robotium
framework.

Table 6 presents the comparison of the static-dynamic char-
acteristics of the tools in the literature. Column 2 indicates
the input required for the static analysis. ORBIT requires the
source code of an application while A3E and AMOGA uses
the bytecode of an application. Column 3 shows which appli-
cation’s component is used for the analysis. ORBIT utilizes
an action detector that targets all the entry points of an appli-
cation. A3E analyze the Activities of an application while
AMOGA uses a static analyzer that analyzes all windows
of the application (including dialog and menus). Column 4
shows the output of the static analysis. ORBIT produced a call
graph that is used to identify supported actions. A3E gener-
ates Static Activity Transition Graph (SATG) while AMOGA
generates Windows Transition Graph (WTG). In comparison
to the SATG in [29], the WTG in our approach is derived
from the analysis of the key aspects of the UI behavior
such as widgets, event handlers, callback sequences, and
window stack changes. It captures menus/dialog and model
the window stack and its state changes. Our static analysis
is more advanced because it takes care of menus/dialog and

the system events. Hence, it is more comprehensive as it
covers more important information. Column 5 shows the
crawling algorithm used by the tools that utilizes the hybrid
approach. ORBIT implemented a modified DFS for crawling
to build a model. A3E uses the standard DFS to explore an
application. To improve theweakness of theDFS algorithm as
discussed in section IV-B, AMOGA uses Dijkstra’s algorithm
for the crawling.

Given the summary of those tools and approaches in the
literature, our approach, AMOGA derived benefits of all the
features discussed here. We have included our strategy also
in the comparison in the Tables 4, 5 and 6. In fact, our
approach is different from others in many aspects such as the
static analysis used (the component target and the generated
output and the crawling approach. For example, some of the
recent tools such as MobiGUITAR and MCrawlT are based
on dynamic analysis while AMOGA uses static-dynamic
analysis. As discussed in section II, the most challenging
issue with any UI dynamic analysis technique is the way and
order in which UI events are found and fired. The scalability
issue that is associated with large the amount of data collected
at run time is also challenging, because most of the data
generated by dynamic analysis are inaccurate and may need
to be weeded out [16], [27], [32]. The static analysis we
employed analyzes the callback methods (both event handler
and life-cycle callbacks).

VII. CONCLUSION
In this paper, we presented AMOGA, a tool that is based on
a hybrid static-dynamic approach for automated UI model
generation from mobile apps. AMOGA consists of a static
analyzer that is responsible for extracting events supported
by a mobile app and a dynamic crawler that systematically
crawls and generates a model of the application. We applied
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the tool to 15 real-world mobile apps to generate a model
of the UI. Results from the experimental evaluation showed
that AMOGA can generate a comprehensive model that can
improve the code coverage of an app coverage compared to
other state-of-the-art tools. We also performed mutation test-
ing to identify the fault detection ability of our approach. The
results indicated that AMOGAachieves a highmutation score
which indicates it can reveal many faults in an app.

For future work, we intend to extend AMOGA to handle
inter-app events, to/from other applications which are pro-
cessed via the implicit intents. This will expand the num-
ber of currently supported system events which will enable
AMOGA to explore apps that support inter-app communica-
tion as well. Consequently, it will expand the range of mobile
apps that could be explored by our tool and further increase
the code coverage.
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