Effective removal of Pb(II) by low-cost fibrous silica KCC-1 synthesized from silica-rich rice husk ash

R. Hasana, C.C. Chonga, S.N. Bukharia, R. Jusoha, H.D. Setiabudia,b,*

aFaculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
bCentre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia

ABSTRACT

Rice husk ash was utilized as a low-cost silica precursor in preparing KCC-1(RHA) for Pb(II) removal. The characterization results revealed the comparable properties of KCC-1(RHA) with the conventional KCC-1. The optimum adsorption conditions were achieved at initial concentration of 322.06 mg/L, adsorbent dosage of 2.4 g/L, and time of 117 min, with Pb(II) removal of 75%. The experimental results followed the pseudo-second-order kinetic model ($R^2_\text{0.9950}$) and Langmuir isotherm model ($R^2 = 0.9934$). The KCC-1 (RHA) showed good performance during five cycles of adsorption-desorption, thus, affirmed great potential of RHA as silica precursor in synthesizing KCC-1(RHA) for excellent Pb(II) removal.

Keywords: KCC-1 Rice husk ash Pb(II) Adsorption Optimization

DOI: https://doi.org/10.1016/j.jiec.2019.03.034
Highlights

• Rice husk ash (RHA) acts as an alternative sodium silicate for KCC-1.

• KCC-1(RHA) has comparable physicochemical properties with commercial KCC-1.

• KCC-1(RHA) has an excellent performance in the Pb(II) removal.

• Optimum conditions of Pb(II) adsorption onto KCC-1(RHA) were determined using RSM.

• Optimum conditions: \(C_o = 322.06 \text{ mg/L}, \ m = 2.4 \text{ g/L}, \ t = 117 \text{ min}; \ \text{Pb(II) removal} = 75\% \).