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Abstract 
 

Glycemic control in intensive care patients is complex in terms of patients’ response to 

care and treatment. The variability and the search for improved insulin therapy outcomes 

have led to the use of human physiology model based on per-patient metabolic 

condition to provide personalized automated recommendations. One of the most 

promising solutions for this is the STAR protocol, which is based on a clinically validated 

insulin-nutrition-glucose physiological model. However, this approach does not consider 

demographical background such as age, weight, height, and ethnicity. This article 

presents the extension to intensive care personalized solution by integrating per-patient 

demographical, and upon admission information to intensive care conditions to 

automate decision support for clinical staff. In this context, a virtual study was conducted 

on 210 retrospectives intensive care patients’ data. To provide a ground, the integration 

concept is presented roughly, but the details are given in terms of a proof of concept 

using Bayesian Network, linking the admission background and performance of the STAR 

control. The proof of concept shows 71.43% and 73.90% overall inference precision, and 

reliability, respectively, on the test dataset. With more data, improved Bayesian Network is 

believed to be reproduced. These results, nevertheless, points at the feasibility of the 

network to act as an effective classifier using intensive care units data, and glycemic 

control performance to be the basis of a probabilistic, personalized, and automated 

decision support in the intensive care units.  

 

Keywords: Personalized Medicine Approach, Glycemic Control, Intensive Care Unit, 

Decision Support, Bayesian Network 
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Abstrak 
 

Kawalan glisemik dalam pesakit kritikal di unit rawatan rapi adalah rumit dari segi tindak 

balas pesakit terhadap penjagaan dan rawatan. Sifat keberubahan individu dan 

pencarian hasil terapi insulin yang lebih baik telah membawa kepada penggunaan 

model matematik fisiologi manusia berdasarkan keadaan metabolik pesakit untuk 

memberikan cadangan rawatan secara individu. Salah satu penyelesaian yang paling 

menjanjikan harapan adalah protokol STAR yang berdasarkan kepada model fisiologi 

insulin-nutrisi-glukosa yang telah disahkan secara klinikal. Namun pendekatan ini tidak 

mengambil kira latar belakang demografi seperti umur, berat, ketinggian dan etnik. 

Artikel ini membentangkan lanjutan kepada penyelesaian rawatan secara peribadi 

mereka dengan mengintegrasikan informasi demografi pesakit dan keadaan mereka 

semasa dimasukkan ke dalam unit rawatan rapi untuk mengautomasikan sokongan 

keputusan untuk kakitangan unit. Dalam konteks ini, satu kajian ‘virtual’ dilakukan pada 

data 210 pesaki. Sebagai kajian kes, konsep integrasi dibentangkan secara kasar, tetapi 

butiran diberikan dari segi bukti konsep yang menggunakan Rangkaian Bayesian, 

menghubungkan latar belakang kemasukan ke unit dan prestasi kawalan STAR. Bukti 

kajian kes menunjukkan 71.43% dan 73.90% ketepatan dan kebolehlaksanaan unjuran 

masing-masing dengan dataset ujian. Dengan lebih banyak data, rangkaian Bayesian 

yang lebih baik dipercayai boleh dihasilkan. Walaubagaimanapun, keputusan ini 

menunjukkan kemungkinan rangkaian ini bertindak sebagai pengelas yang berkesan 

dengan menggunakan data dari unit rawatan rapi dan prestasi kawalan glisemik untuk 

menjadi asas sokongan keputusan bersifat probabilistik, peribadi dan automatic dalam 

unit rawatan rapi.  

 

Kata kunci: Pendekatan Perubatan Peribadi, Kawalan Glisemik, Unit Rawatan Rapi, 

Dokongan Keputusan, Rangkaian Bayesia 

 

© 2019 Penerbit UTM Press. All rights reserved 

  

 

 

1.0  INTRODUCTION 
 

Since the birth of intensive care medicine, 

researchers tend to study the cause and effect 

results of patients with similar signs and symptoms 

together under diagnoses, such as “sepsis”, 

“diabetic”, and “acute renal failure”. They ignore a 

considerable non-uniformity within these groups in 

terms of individual characteristics; such as age, 

comorbidities condition, genetic predisposition, and 

individual variations in response to treatment. As 

technology and awareness of improved intensive 

care medicine has progressed, increasingly the 

personalized medicinal approach where patients 

must be treated as individuals, and not only with 

medical complications are entering the intensive 

care units (ICUs) [1-3]. However, it is only the 

beginning of glycemic control management, and 

despite the availabilities of automated 

recommendations for treatment, final judgements 

are practically left to the  opinion of experts.  

With the increasing amount of data generated 

from patients, in insulin to control blood glucose (BG) 

treatment strategies, as across all other ICU therapies, 

more and more control models are now being 

computerized [4]. With the objective of obtaining 

better (less hyperglycemia), and safer (less 

hypoglycemia) control, a growing number of ICUs 

are starting to use validated computer algorithms 

with a beneficial effect on a beneficial effect on 

glycemic control such as EndoTool, LOGIC and STAR 

[5-7]. These controls are based on improved clinical 

guidelines as well as improved physiological models, 

but none explicitly consider per-patient 

demographical background, and upon admission 

condition such as comorbidities.  

STAR (Stochastic TARgeted) is a computerized 

glycemic control protocol that is based on insulin 

sensitivity to characterize and forecast changes in 

per-patient metabolic state, and is designed to be 

used in real-time bedside care. Its prediction is based 

on a stochastic model over the 1-3 hours subsequent 

potential variation in per-patient insulin sensitivity [8-

10]. STAR has shown promising results in the ICU, and 

is currently being used in ICUs in Christchurch, New 

Zealand, and Gyula, Hungary. Since December 2016, 

it has been used in an ICU in Malaysia [11]. An 

unpublished study by a Malaysian research team has 

shown that the generalized performance of STAR [12] 

cannot be reproduced on Malaysian patients, and 

this raises the question of demographical impact on 

the population-based prediction algorithm which 

was validated using only Christchurch, New Zealand 

patients.   

The adaptability of STAR includes BG level target 

range, measurement frequency, patient safety within 

a predefined desired risk, and local nutrition 

practices [13-14]. Given the notable differences in 

patient background and clinical environments, 

clinical staff are faced with a complex tradeoff in 

setting these limits: for example to  either set a wider 

range of BG level target to optimize resources, at the 

expense of higher mortality rate [15], or set a narrow 

range which requires higher nurses intervention to 
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ensure insulin treatment, at the expense of 

considerable patients discomfort, additional cost, or 

higher rate of hypoglycemia [16-17]. 

The objective of the study was to look into the 

feasibility of intergrating decision support on STAR 

protocol to decide on STAR options based on 

individual patient background upon ICU admission. 

As a result, the most appropriate patient treatment 

can be selected. Probabilistic Bayesian network [18] 

approach was used to interpret the possible 

relationship between the demographical, and 

admission data with STAR control performance 

variables for its capability to exploit correlation as 

well as causal relationship using intensive care 

patients data [19-21]. A proof of concept on static 

Bayesian inference was provided to prove the said 

feasibility.  

 

 

2.0  METHODOLOGY 
 

2.1  Virtual Simulation Framework 

 

The method used to simulate the respond to 

demographical, and admission data towards any 

glycemic control is a physiological model-based 

virtual trial framework [22-23]. The framework is 

illustrated in Figure 1. Data such as nutrition and 

insulin are required, while record of patient specific 

conditions such as weight, height, and diabetic 

status can be recorded for expert intervention. The 

framework is divided into two stages, (i) Data fitting 

to generate per-patient insulin sensitivity (SI) profiles 

that acted as virtual patients, and (ii) simulation of 

outcomes using generated SI profiles. Glycemic level 

outcomes are a function of insulin sensitivity (SI), its 

variability, and the chosen control. In this study, the 

clinically validated ICING (Intensive Control Insulin-

Nutrition-Glucose) physiological model [9] was used 

to fit any patient data and the chosen control was 

the STAR control. Part of the simulation results 

consisting of mean blood glucose (BG), total hours of 

treatment, and the number of BG measurements 

were incorporated in our decision support model’s 

proof of concept.  

 

2.2  Bayesian Network 

 

Probabilistic Bayesian Network (BN) is a method that 

has various advantages over the stochastic method. 

It offers the flexibility to infer any variable in its model 

with certain confidence instead of fixing input and 

output variables, and has the ability to explain 

inferences using causal relationship in uncertain 

environments [24]. This was used to explore the 

feasibility to build the decision support. Building basic 

BN involves (i) learning process, and (ii) using it for 

inference test. Learning a BN consists of creating the 

qualitative part of the network which is the causal 

structure between variables, commonly known as 

Directed acyclic Graph (DAG), as well as the 

quantitative part of computing the set of conditional 

probability distribution (CPD) of variables. Resulting 

network is used as a classifier to perform probabilistic 

inference from multiple variables, such as calculating 

the value of P (number of BG measurements | 

presence of diabetic). 

 

 

 
Figure 1 The STAR-ICING virtual trial framework used to simulate glycemic control outcomes [16]  
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The primordial step to create BN was to identify the 

variables that define the description (causes), and 

optionally to set a target node. For each type of 

variable, a definition of values is equally important. In 

the ICU, most data comes in continuous form, but BN is 

most efficient when it is created using discrete values. 

Having the variables and their values, BN structure and 

CPD can be learned using different algorithms; from 

supervised, semi-supervised to unsupervised methods 

[25].  To choose the best structure and CPD, the 80:20 

10-fold cross validation test [26] using number of 

measurements as target node was proposed. This 

means that the validation algorithm iteratively selects 10 

different learning and test sets, and based on those, 

learn the network, and test their performance. 

Performances were measured using the overall 

reliability, and precision metrics. Precision is the ratio of 

predictive positive cases to total number of actual 

cases, while reliability is the ratio of predicted positive 

cases to total number of predicted cases.  

 

2.3  Materials 

 

To provide the proof of concept, this case study 

involved 210 retrospective anonymous patient data 

from Hospital Tengku Ampuan Afzan (HTAA), Kuantan. 

Approval NMR-13-1592 was granted for this study by the 

medical research and ethics committee of the Hospital, 

and Ministry of Health, Malaysia. The data was selected 

randomly with skewed distribution on the patients’ age 

and initial blood glucose level. Patients were originally 

treated with sliding scale glycemic control that dosed 

insulin based on patients’ BG level, and previous insulin 

dose. The control was started when patients reached 

BG level superior to 10 mmol/L, and continued to be 

greater than that within 1 hour. To maintain the BG level 

in targeted BG level range, the patient was initially 

monitored hourly until BG level was within the goal for 2 

hours, then every 4 hours. More details are provided in 

[27].  
These patient data was then injected into the STAR-

ICING virtual trial framework to generate not only virtual 

patients, but also simulating their response to STAR 

control which flexibly offers 1-3 hourly treatment. For the 

purpose of this study, the default choice was the l 

longest intervention recommendation (between 3 

hourly, 2 hourly and 1 hourly). BG level target range for 

STAR was set to 6.0 – 10.0 mmol/L following the same 

target range using sliding scale method. Safety 

hypoglycemia risk was set to be less than 5%.  

Once the outcomes were simulated, the 210 patient 

dataset comprising the per-patient demographic, and 

admission input variables were aligned with their STAR 

control simulated performance results. The complete 

dataset were then injected into BayesiaLab 7.0 software 

to discretize the continuous data, to learn the structure 

and CPD, and to test the target node inference 

reliability and precision. The results not only provided 

proof of concept on the feasibility to use this approach 

as STAR control decision support in the ICU, but also the 

perspective for needed improvement. 

 

3.0  RESULTS AND DISCUSSION 
 

The identification of variables and their values from the 

data is the trickiest task. They require expert opinions, 

are obtained through data analysis, or are the union of 

both. The process of identifying the best discrete values 

and the number of values from the variables is a 

precursor towards building the BN. In this proof of 

concept, 10 demographic, and admission background 

variables were chosen to be added to the 3 control 

performance variables. Continuous data was 

discretized using the k-means method [28], limiting the 

discretization to 3 values. A decision was made after 

test results comparison between networks with 2 and 4 

values. 8 out of the 13 proposed variables were 

discretized using this approach. The number of BG 

measurement was chosen as the target node to assess 

the feasibility of predicting the number of nurses’ 

intervention, and the total length of stay, in an effort to 

reduce resources, and discomfort while assuring BG 

level performance is within target range. Table 1 shows 

the variables used in the provision of proof of concept 

as well as their values.  

 
Table 1 Description of variables for proof of concept dataset 

 

No. Variables Values 

1 Number of BG 

measurements 

<69/69-100/>100 

2 Total hours on 

treatment (hours) 

<110.2/110.2-150.4/>150.4 

3 BG Mean (Geometric) 

(mmol/L) 

>10/8-10/6-8 

4 Initial BG values 

(mmol/L) 

>18/14-18/10-18/<10 

5 Diabetic Yes (1)/No (0) 

6 Hypertension Yes (1)/No (0) 

7 Other morbidity Yes/None  

8 Category of admission Surgical/Medical/Others 

9 Gender Female/Male 

10 Age (Years) <43.1/43.1-61.9/>61.9 

11 Height (cm) <128.3/128.3-159.2/>159.2 

12 Weight (kg) <65/65-84.6/>84.6 

13 Ethnicity Malay/Indian/Chinese/Ot

hers 

 

 

The resulting structure of the BN is presented in Figure 

2. The green, red, blue and yellow coloured nodes 

represent the demographic background, admission 

condition, initial BG upon control start up, and the 

simulated outcomes from STAR control variables, 

respectively. “Number of measurements” as target 

node is highlighted in spiraled node. This structure was 

obtained using the Maximum Spanning Tree 

unsupervised learning strategy [295]. It advocates that 

“Diabetes Mellitus” status is central to the control results. 

The outgoing arcs point to the “Number of 

Measurements” as well as “Hypertension, “Initial BG”, 

and “Height”. While the direction of arcs potentially 

indicate causal relationship, such as the one to 

“Number of Measurements”, others are examined as 
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having a strong correlation to the diabetic status, thus 

to the target node. The structure of marginal probability 

distribution is presented in Figure 3. In this patient group, 

63.67% of the patients were admitted due to medical 

complication, and among them, 64.49% were of Malay 

ethnicity. The percentage of diabetic vs. non diabetic, 

and hypertension vs. non hypertension patients are 

about the same. It is also noted that, 87 of the patients 

have both diabetes and hypertension, and this explains 

the high correlation between the two nodes.

   

 

 
 

Figure 2 The Bayesian Network structure 

  
 

 
 

Figure 3 The probabilistic distribution of data of all variables and their states 

 

 

Examples of BN inference results of individual 

patients are shown in Figures 4(a) and (b). Two 

representative patients were chosen based on their 

admission complications. Patient BSL001 is a 70 year 

old man with no diabetes, no hypertension, and no 

other morbidity who was admitted under the 

medical category. Whereas, Patient BSL025 is an 84 

year old Chinese man with diabetes Mellitus, 
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hypertension, and no other morbidity. To observe the 

results, hard evidence are posed per patient specific 

condition data (green bars), their targeted BG 

means, total hours, and number of measurements 

were correctly inferenced (highest probability, blue 

bars) by the BN. 

 

 

 

 
(a) 

 

 
(b) 

 
Figure 4 Examples with two patients’ original demographic and admission conditions; (a) Patients BSL001, and (b) BSL025 

 

 

Figures 5(a) and (b) show the inference results of 

the same patients, with a hard evidence change of 

their diabetic status. The order of probability for 

mean BG, total hours and number of measurements 

are the same, but the percentage for each value is 

different. Interestingly, the probabilities are inversed 

from the initial results between the two patients. This 

highlights the direct impact, and the important 

weightage of diabetic status in the STAR control 

performance and using this BN. Further sensitivity 

analysis on this node and this variable is required to 

obtain a conclusive observation. 
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(a) 

 

 

 
(b) 

 
Figure 5 Examples from the same two patients when their diabetic status evidence are changed; (a) Patients BSL001, and (b) 

BSL025   

 

 

The reliability and precision results on the test 

dataset (20%, are 42 patients) are presented in Table 

2. The numbers in the column represent the actual 

cases in the test dataset, while the numbers in the 

rows represent the number of BN predicted cases. 

The overall precision is 71.43%, with false negative 

rate of 28.7%, and overall reliability is 73.90%. 

Although this result is not enough to confirm good 

performance of this specific network, we argue that it 

is due to the limited size of the data that was used to 

create, and test this BN (210 patients). Learning and 

testing with a bigger dataset will ensure a more 

precise BN, thus becoming the immediate priority in 

validating this approach.  
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Table 2 The target node inference confusion matrix of test 

dataset  

 

Nb. Of 

Occurrence 
<=68.969 (12) <=100.519 (19) >100.519 (11) 

<=68.969 (9) 9 0 0 

<=100.519 (25) 3 16 6 

>100.519 (8) 0 3 5 

 

Reliability <=68.969 (12) <=100.519 (19) >100.519 (11) 

<=68.969 (9) 100.0% 0% 0% 

<=100.519 (25) 12.0% 64.0% 24.0% 

>100.519 (8) 0% 37.5% 62.5% 

 

Precision <=68.969 (12) <=100.519 (19) >100.519 (11) 

<=68.969 (9) 75.0% 0% 0% 

<=100.519 (25) 25.0% 84.2% 54.5% 

>100.519 (8) 0% 15.8% 45.5% 

 

 

4.0  CONCLUSION 
 

In the provision of proof of concept, we first acquired 

the performance of STAR control using virtual trial 

framework on 210 patient data, and then aligned 

the performance results with demographic, and 

admission information to build a Bayesian Network. 

This is the first step towards building a decision 

support system to be paired with the STAR control 

taking into account the personalized per-patient 

background. Based on the inference test, the BN that 

was developed is capable of classifying the control 

results correctly; “Number of Measurements”, “Total 

Hours” and “BG Mean”. It serves as the proof of 

concept to explore this method, and its integration in 

STAR control further. The real advantage lies in using 

these models as an inference tool for real time 

control prediction. 

Secondly, BN is a method that is capable to be 

learned by integrating opinion of experts, but in this 

study it was done exclusively with data learning. To 

ensure a more reliable and a more generalized 

network for prediction, a proposed BN model be 

brainstormed with medical experts from the intensive 

care units, and if necessary, be validated with cross-

unit experts such as the concern of comorbidities.  
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