DEVELOPING AN INTEGRATED CATCHMENT MANAGEMENT THROUGH WATER QUALITY ASSESSMENT, LANDUSE CHANGES ANALYSIS, SOIL EROSION STUDY & COMMUNITY ENGAGEMENT IN BERTAM RIVER CATCHMENT, CAMERON HIGHLANDS, MALAYSIA

MD. GOLAM RASUL

Doctor of Philosophy
(ENVIRONMENTAL MANAGEMENT)

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Environmental Management

(Supervisor’s Signature)

Full Name : Dr. Mir Sujaul Islam
Position : Senior Lecturer
Date :

(Co-supervisor’s Signature)

Full Name : Professor Dato’ Ts. Dr. Rosli Bin Mohd Yunus
Position : Professor
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : MD. GOLAM RASUL
ID Number : PAC 13001
Date :
DEVELOPING AN INTEGRATED CATCHMENT MANAGEMENT THROUGH WATER QUALITY ASSESSMENT, LANDUSE CHANGES ANALYSIS, SOIL EROSION STUDY & COMMUNITY ENGAGEMENT IN BERTAM RIVER CATCHMENT, CAMERON HIGHLANDS, MALAYSIA

MD. GOLAM RASUL

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Environmental Management)

Faculty of Civil Engineering & Earth Resources
UNIVERSITI MALAYSIA PAHANG

JULY 2018
ACKNOWLEDGEMENTS

All praise upon Allah s.w.t, the Almighty and Merciful, for His will this dissertation be successfully completed. I am grateful and would like to express my sincere gratitude to my supervisor Dr. Mir Sujaul Islam, Senior Lecturer, Faculty of Civil Engineering and Earth Resource, UMP for his germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible. I appreciate his consistent support from the first day I applied to graduate program till these concluding moments. I would like to extend my gratitude to Professor Dato’ Dr. Mazlin Bin Mokhtar, Professor and Principal Fellow, Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM) and Dato’ Dr. Rosli Bin Mohd Yunus, Professor, Faculty of Chemical Engineering and Natural Resources, UMP as my co-supervisors for their crucial advices and valuable suggestions and motivations in the entire research period.

I would like to thank Mrs Norazimah Binti Abdul Aziz and Quari, penolong pegawal latihan vokasional, Makmal Alam Sekitar, FKASA for their co-operation and help during sampling and laboratory work. I would also like to thank to all of my community members and my friends who helped me, support me, guided me with their positive thoughts, suggestions and advices.

During the study, my family members totally missed me. I would like to express my gratitude and obeisance to my father who always pray for me to complete the degree successfully. My heartiest thanks and endearment goes to my wife Mrs Soheli Golam, who managed everything of my family in my absence. My affections and caress to my dearest daughter Anika Raisa and my lovely son Shabab Rasul, who missed me for a long time and sacrifices their lots of dearest moments.

Thanks and gratitude goes to the IPS UMP for sanctioning GRS in favour of me; without which my study could not be precede. Finally, I would like to express my gratitude to the Chairman, BAEC and Secretary, MOST for approving the permission to obtain the degree in abroad.
ABSTRAK

ABSTRACT

The rapid boost in construction and agro-tourism activities has significantly threatened the water quality within Bertam River Catchment, Cameron Highlands (BRCC) in Malaysia during the last two decades. The scenario has drawn the attention to investigate the relationship between land use and water quality for the sustainable development of BRCC. Hence, the current research aims at developing an effective model for the sustainable management of BRCC using integrated assessment of scientific findings with quantitative social information. Scientific assessment was carried out to determine the spatio-temporal variations of water quality, to assess the landuse changes and their impacts on water quality, as well as to estimate the spatial distribution of soil erosion under different landuses. To investigate water quality, samples were collected six times from January 2014 to February 2015 from twelve preselected stations. A total of fourteen water quality parameters were analyzed. For landuse study, four-time series landuse maps (1984, 1997, 2004 and 2010) were used to analyze the land pattern changes by change detection technique using GIS approach. The revised universal soil loss equation (RUSLE) model was applied to estimate the soil erosion rate. A community based survey was also conducted using a well-structured questionnaire. The results of water quality assessment showed significant temporal and spatial differences ($p<0.05$) in most of the water quality parameters across the catchment. The average concentrations of total suspended solids, turbidity, biochemical oxygen demand, ammonical-nitrogen, and phosphate-phosphorous exceeded the Malaysian National Water Quality Standards (NWQS) level for IIB. Nutrients, organic matter, and suspended sediments were determined as the major pollutants. The overall water quality status of the BRCC is classified as “Slightly Polluted” and falls under class III category according to the DOE-WQI. The landuse study revealed that landuse changes were mainly characterized by the expansion of agricultural (16.37 km2) and urban (4.15 km2) land types, reducing the forest (22.85 km2). A noticeable change in the agricultural activities was observed along the higher slope ranges (>20°) with the passage of time. The urban and agricultural landuses are mainly related to water quality deterioration, where the forest is associated with better water quality within BRCC. The results of soil erosion assessment indicated that the annual average soil loss rate of the catchment was predicted to be 123.23 ton/ ha/ year. Individually, the average rate for Upper, Middle and Lower sub-catchment was 27.60, 31.80 and 63.83 ton/ ha/ year respectively. Agricultural activities were the main contributor to higher soil erosion in different sub-catchments. The topography of the catchment also played a major role in controlling soil movement. Community-based survey findings showed that the people have good knowledge and perception of the catchment environment. Therefore, significant associations were observed between the scientific findings and communities’ observations. Considering all the social and scientific findings, the proposed integrated model for BRCC management suggest that the authorities should provide the scientific information through internet and organizing workshops to motivate and create awareness. Similarly, whenever they take any initiative for management program within BRCC considering the scientific findings, they should focus more on the aged, higher educated and older residents for their higher level of awareness and positive willingness for participation. Overall, the findings of this study suggest that the effective implementation of socio-scientific integrated approach by the authorities can be an innovative initiative towards the development of sustainable catchment management.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES xiii

LIST OF FIGURES xvi

LIST OF SYMBOLS xxii

LIST OF ABBREVIATIONS xxii

CHAPTER 1 INTRODUCTION 1

1.1 Background Study 1
1.2 Problem Statement 3
1.3 Research Aim and Objectives 4
1.4 The Scope of the Research 5
1.5 Organization of the Thesis 6

CHAPTER 2 LITERATURE REVIEWS 8

2.1 Introduction 8
2.2 Water Quality Assessment 9
 2.2.1 Physical Parameters 9
 2.2.2 Chemical Parameters 14
3.2.5 Hydrology and Water Resources
3.2.6 Climate
3.2.7 Agriculture
3.2.8 Agro-tourism
3.2.9 Bertam River Catchment, the Study Area

3.3 Water Quality Assessment
3.3.1 Sampling Site Selection
3.3.2 Seasonal Sampling Program
3.3.3 Parameters Measurement
3.3.4 Data Presentation
3.3.5 Water Quality Index Calculation
3.3.6 Spatial Mapping of Water Contaminant

3.4 Landuse Classification
3.4.1 Data Acquisition and Pre-processing
3.4.2 Georeferencing
3.4.3 Digital Elevation Model and Catchment Boundary
3.4.4 Clipping of Landuse Maps
3.4.5 Digitization of Landuse Maps
3.4.6 Superimposition of Landuse Maps
3.4.7 Change Detection of Landuse Maps
3.4.8 Slope Map and Shaded Map
3.4.9 The Proportion of Landuse Types

3.5 Soil Erosion Estimation
3.5.1 Soil Erosion by RUSLE Model
3.5.2 Cover Management and Conservation Factor (CP)

3.6 Community-based Social Survey
3.6.1 Questionnaire Preparation 114
3.6.2 Data Collection 115

3.7 Statistical Analysis 115
3.7.1 Descriptive Analysis 116
3.7.2 Non-parametric Test 116
3.7.3 Correlation Coefficient 117
3.7.4 Association and Correlation Coefficient 117
3.7.5 Multivariate Statistical Analysis 118
3.7.6 Logistic Regression Model 119

CHAPTER 4 WATER QUALITY ASSESSMENT 121

4.1 Introduction 121
4.2 Hydrological Status 122
 4.2.1 Seasonal Variation in Rainfall 123
 4.2.2 Seasonal Variation in Streamflow 123
4.3 Results and Discussions of Water Quality Parameters 125
 4.3.1 Descriptive Analysis 125
 4.3.2 Nonparametric Test 125
 4.3.3 Correlation Matrix 128
 4.3.4 Water Quality Status 130
 4.3.5 Spatio-temporal Variation of Physical Parameters 130
 4.3.6 Spatio-temporal Variation of Chemical Parameters 143
 4.3.7 Pollution Zones and Sources Identification 160
 4.3.8 Water Quality Classification based on DOE-WQI 165
 4.3.9 Summary 172
CHAPTER 5 LANDUSE CLASSIFICATION AND IMPACTS ON WATER QUALITY

5.1 Introduction
5.2 Landuse Types Distribution
 5.2.1 Forest
 5.2.2 Market Gardening
 5.2.3 Urban
 5.2.4 Floriculture
 5.2.5 Tea
 5.2.6 Scrub
 5.2.7 Horticulture, Orchard, Open Land and Water Body
5.3 Pattern Change of Land Area
5.4 Change Detection in Land Type Area
 5.4.1 Changing Trend During 1984-1997
 5.4.2 Changing Trend During 1997-2004
 5.4.3 Changing Trend During 2004-2010
5.5 Landuse Types Distribution by Slope Classes over Time
5.6 Composition (%) of Landuse Types
 5.6.1 Land Type Wise Distribution
 5.6.2 Sub-catchment Wise Distribution
5.7 Impact of Landuse Types on Water Quality
 5.7.1 Dry Season
 5.7.2 Rainy Season
 5.7.3 Seasonal Impact
5.8 Summary
CHAPTER 6 SOIL EROSION ESTIMATION UNDER DIFFERENT LANDUSE

6.1 Introduction

6.2 Topographic Impact on Soil Erosion

6.3 Management Factor Impact on Soil Erosion

6.4 Soil Erosion Map in Bertam Catchment
 6.4.1 Soil Erosion Map of Sub-catchment
 6.4.2 Soil Erosion at Upper Bertam Sub-catchment
 6.4.3 Soil Erosion at Middle Bertam Sub-catchment
 6.4.4 Soil Erosion at Lower Bertam Sub-catchment
 6.4.5 Spatial Pattern of Soil Erosion Risk Zones

6.5 Average Annual Soil Loss in Bertam Catchment for 2010

6.6 Landuse types at Each Sub-catchment of Bertam Catchment

6.7 Impact of Landuse Type on Soil Erosion Rate

6.8 Summary

CHAPTER 7 SOCIAL SURVEY AND INTEGRATED ASSESSMENT FOR SUSTAINABLE MANAGEMENT

7.1 Introduction

7.2 Demographic Characteristics

7.3 Communities’ Knowledge of Environment

7.4 Impact of Age and Level of Education on Observation of Change
 7.4.1 Age Groups Vs Observation of Water Quality Change
 7.4.2 Age Groups Vs Observation of Land Type Change
 7.4.3 Age Groups Vs Observation of Soil Erosion
 7.4.4 Level of Education Vs Observation of Water Quality Change
7.4.5 Level of Education Level vs Observation of Land Type Change 222
7.4.6 Level of Education Vs Observation of Soil Erosion 223

7.5 Communities’ Perception of Causes and Consequences of Water Quality Change, Land Type Change, and Soil Erosion 224
7.5.1 Communities’ Perception of Causes and Limitations of Water Quality Change 224
7.5.2 Communities’ Perception of Causes and Consequences of Land Type Change 226
7.5.3 Communities’ Perception of Sources and Consequences of Soil Erosion 227

7.6 Association between People Observations and Scientific Findings of Water Quality, Land Type Change, and Soil Erosion 228
7.6.1 Association Between People Observations and Scientific Findings of Water Quality 229
7.6.2 Association Between People Observations and Scientific Findings of Land type Change 230
7.6.3 Association Between People Observations and Scientific Findings of Soil Erosion 230

7.7 The Frequency of Awareness Programs in the Locality 231
7.7.1 Sources of Information in the Community About Catchment Environment 233
7.7.2 Easy Access to Media 233
7.7.3 Correlation Between Awareness Score and Years of Living in the Community 234
7.7.4 Levels of Awareness in the Community 235
7.7.5 The relationship Between Level of Education, Age Groups, Access to Any Type of Media and Level of Awareness 236

7.8 People Willingness for Management Projects for Catchment Protection 238
7.9 A Predictive Model for Communities’ Willingness for Collaboration Projects for Catchment Management 239
7.10 Integration of Socio-scientific Assessment for Sustainable Management Model 244
7.11 Summary 249

CHAPTER 8 CONCLUSION 252
8.1 Conclusions 252
8.2 Recommendations 256

REFERENCES 257

APPENDIX A 285
APPENDIX B 287
APPENDIX C 291
APPENDIX D 293
APPENDIX E 308
APPENDIX F 316
LIST OF TABLES

Table 2.1 Main pollutants, their sources and effects 24
Table 2.2 Source of point and nonpoint chemical inputs to lakes, rivers, and oceans 25
Table 2.3 Recent studies conducted on water quality assessment 30
Table 2.4 The percentage of the polluted river based on water quality index (DOE) 33
Table 2.5 Categories of major water pollutants from agriculture and the relative contribution from agriculture production systems 43
Table 3.1 Description of sampling locations in Bertam Catchment area 84
Table 3.2 List of in-situ parameters and instruments use for measurements 86
Table 3.3 List of hydrological variables and instrument used for measurement 87
Table 3.4 List of chemical parameters and method/instrument used for measurement 89
Table 3.5 List of climatic variable data and their source 89
Table 3.6 Types of data for landuse evaluation and their sources 94
Table 3.7 Rainfall Erosivity (R) Factor Calculation 105
Table 3.8 m value for LS factor 107
Table 3.9 Land use in the Bertam Catchment with C and P-factor values 110
Table 3.10 Soil Loss Tolerance rates from erosion risk map of Malaysia 113
Table 3.11 Structure of Questionnaire 114
Table 3.12 Spatial distribution of the questionnaire 115
Table 3.13 Guiding rules for interpretation if the KMO test results 119
Table 4.1 Statistical Summary of Physical Parameters for Surface Water Samples in the Bertam Catchment Area 126
Table 4.2 Statistical Summary of Chemical Parameters for Surface Water Samples in the Bertam Catchment Area 127
Table 4.3 Result of Kruskal-Wallis Test 128
Table 4.4 Spearman’s Correlation Coefficient for Water Quality Parameter in the Bertam Catchment Area" 129
Table 4.5 KMO and Bartlett's Test for water quality parameters 163
Table 4.6 Factor loadings of the 15 variables on VARIMAX rotation in the Bertam Catchment 164
Table 4.7 Rotated Component Matrix of sixteen variables 165
Table 4.8 List of significant latent pollution sources in the catchment 165
Table 7.10	Association between communities’ perception and scientific findings of land type change	231
Table 7.11	Pearson’s Correlation Coefficient for Communities’ Awareness in the Bertam Catchment Area	235
Table 7.12	Relationship between Age groups and level of awareness	236
Table 7.13	Relationship between Level of education and level of awareness	237
Table 7.14	Relationship between access to any type of media and level of awareness	237
Table 7.15	Omnibus Tests of Model Coefficients	240
Table 7.16	Model summary and Hosmer and Lameshow test	240
Table 7.17	Classification Table for the ability to predict the model	241
Table 7.18	Data from final logistic regression equation	241
Table 7.19	Overall findings from scientific assessment of the Bertam Catchment	247
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The nitrogen cycle.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The phosphorus cycle.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow chart of methodology which involved four major studies in Bertam Catchment</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Map of Pahang State (A) and Cameron Highlands (B).</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Trends of historical rainfall (mm), temperature (°C), humidity (%) and numbers of rain days (per year).</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Location map of the Bertam River Catchment, Cameron Highland, Malaysia.</td>
<td>78</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>The major river systems in Bertam River Catchment area</td>
<td>80</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Average monthly rainfall of the study area during 1984 to 2014</td>
<td>81</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Flow diagram showing detailed assessment procedure of water quality status</td>
<td>82</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Location map and sampling stations in the study area.</td>
<td>83</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Water sampling from different stations during sampling program</td>
<td>85</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Measurement of in-situ parameters and hydrological variables during sampling program.</td>
<td>87</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Box-plot with whisper from upper to lower limit and outliers</td>
<td>90</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Flow chart of landuse data processing using GIS Approach</td>
<td>93</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Raster conversion of topographic map</td>
<td>94</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Raster conversion of landuse maps for 1984, 1997, 2004 and 2010</td>
<td>95</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Processing of Georeferencing of landuse maps</td>
<td>96</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>Digitization of boundary, elevation points, river network for the generation of DEM</td>
<td>97</td>
</tr>
<tr>
<td>Figure 3.17</td>
<td>Generation of DEM and delineation of catchment boundary</td>
<td>97</td>
</tr>
<tr>
<td>Figure 3.18</td>
<td>Clipping of landuse maps for the year 1984, 1997, 2004, 2010</td>
<td>98</td>
</tr>
<tr>
<td>Figure 3.19</td>
<td>Digitization of landuse maps for 1984, 1997, 2004 and 2010</td>
<td>99</td>
</tr>
<tr>
<td>Figure 3.20</td>
<td>Superimposed of landuse maps 1984-1997, 1997-2004, and 2004-2010</td>
<td>100</td>
</tr>
<tr>
<td>Figure 3.21</td>
<td>Change detection technique for determining the changing trends of land use patterns</td>
<td>101</td>
</tr>
<tr>
<td>Figure 3.22</td>
<td>Slope classification map of the Bertam Catchment area</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.23</td>
<td>Delineation of sub-catchment zones and calculation of land type area</td>
<td>103</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.24</td>
<td>Schematic flow chart of the methodology for soil loss estimation.</td>
<td>104</td>
</tr>
<tr>
<td>3.25</td>
<td>R factor and K factor maps using the values in ArcGIS</td>
<td>106</td>
</tr>
<tr>
<td>3.26</td>
<td>LS map generation for Bertam Catchment using RUSLE equation adapted in ArcGIS</td>
<td>109</td>
</tr>
<tr>
<td>3.27</td>
<td>Spatial distribution of cover management factor (C) and conservation factor (P) over the Bertam Catchment area</td>
<td>111</td>
</tr>
<tr>
<td>3.28</td>
<td>Generation of soil erosion map using RUSLE equation</td>
<td>112</td>
</tr>
<tr>
<td>4.1</td>
<td>Rainfall and streamflow during the time of water sampling</td>
<td>123</td>
</tr>
<tr>
<td>4.2</td>
<td>The measured average streamflow in the catchment during the sampling periods</td>
<td>124</td>
</tr>
<tr>
<td>4.3</td>
<td>Average streamflow distribution at different sampling stations during the dry and rainy periods along the Bertam Catchment</td>
<td>124</td>
</tr>
<tr>
<td>4.4</td>
<td>Spatial distribution of temperature among the sampling stations</td>
<td>131</td>
</tr>
<tr>
<td>4.5</td>
<td>Temporal distribution of temperature within the sampling periods</td>
<td>131</td>
</tr>
<tr>
<td>4.6</td>
<td>Seasonal distribution of temperature among the sampling stations</td>
<td>132</td>
</tr>
<tr>
<td>4.7</td>
<td>Spatial distribution of pH among the sampling stations</td>
<td>133</td>
</tr>
<tr>
<td>4.8</td>
<td>Temporal distribution of temperature within the sampling periods</td>
<td>133</td>
</tr>
<tr>
<td>4.9</td>
<td>Seasonal distribution of pH among the sampling stations</td>
<td>134</td>
</tr>
<tr>
<td>4.10</td>
<td>Spatial distribution of EC among the sampling stations</td>
<td>135</td>
</tr>
<tr>
<td>4.11</td>
<td>Temporal distribution of conductivity among the sampling stations</td>
<td>136</td>
</tr>
<tr>
<td>4.12</td>
<td>Seasonal distribution of EC within the sampling stations</td>
<td>136</td>
</tr>
<tr>
<td>4.13</td>
<td>Spatial distribution of TDS among the sampling stations</td>
<td>137</td>
</tr>
<tr>
<td>4.14</td>
<td>Temporal distribution of TDS among the sampling periods</td>
<td>138</td>
</tr>
<tr>
<td>4.15</td>
<td>Seasonal distribution of TDS among the sampling stations</td>
<td>138</td>
</tr>
<tr>
<td>4.16</td>
<td>Spatial distribution of turbidity among the sampling stations</td>
<td>139</td>
</tr>
<tr>
<td>4.17</td>
<td>Temporal distribution of turbidity among the sampling periods</td>
<td>140</td>
</tr>
<tr>
<td>4.18</td>
<td>Seasonal distribution of turbidity among the sampling stations</td>
<td>140</td>
</tr>
<tr>
<td>4.19</td>
<td>Spatial distribution of TSS among the sampling stations</td>
<td>141</td>
</tr>
<tr>
<td>4.20</td>
<td>Temporal distribution of TSS among the sampling periods</td>
<td>142</td>
</tr>
<tr>
<td>4.21</td>
<td>Seasonal distribution of TSS among the sampling stations</td>
<td>142</td>
</tr>
<tr>
<td>4.22</td>
<td>Trend of EC and TDS (A) and TSS and turbidity in the study area (B)</td>
<td>143</td>
</tr>
</tbody>
</table>
Figure 4.23 Spatial distribution of DO among the sampling stations 144
Figure 4.24 Temporal distribution of DO among the sampling periods 144
Figure 4.25 Seasonal distribution of DO among the sampling stations 145
Figure 4.26 Spatial distribution of BOD among the sampling stations 146
Figure 4.27 Temporal distribution of BOD among the sampling periods 146
Figure 4.28 Seasonal distribution of BOD among the sampling stations 147
Figure 4.29 Spatial distribution of COD among the sampling stations 148
Figure 4.30 Temporal distribution of COD among the sampling periods 148
Figure 4.31 Seasonal distribution of COD among the sampling stations 149
Figure 4.32 Spatial distribution of NO₃-N among the sampling stations 150
Figure 4.33 Temporal distribution NO₃-N among the sampling periods 151
Figure 4.34 Seasonal distribution of NO₃-N among the sampling stations 151
Figure 4.35 Spatial distribution of NH₃-N among the sampling stations 152
Figure 4.36 Temporal distribution of NH₃-N among the sampling periods 153
Figure 4.37 Seasonal distribution of NH₃-N among the sampling stations 154
Figure 4.38 Spatial distribution of TN among the sampling stations 155
Figure 4.39 Temporal distribution of TN among the sampling periods 155
Figure 4.40 Seasonal distribution of TN among the sampling stations 156
Figure 4.41 Spatial distribution of PO₄-P among the sampling stations 157
Figure 4.42 Temporal distribution of PO₄-P among the sampling periods 158
Figure 4.43 Seasonal distribution of PO₄-P among the sampling stations 158
Figure 4.44 Spatial distribution of total TP among the sampling stations 159
Figure 4.45 Temporal distribution of TP among the sampling periods 160
Figure 4.46 Seasonal distribution of TP among the sampling stations 160
Figure 4.47 Dendrogram showing spatial cluster analysis of sampling stations 162
Figure 4.48 Dendrogram showing temporal clustering of sampling periods 163
Figure 4.49 Water quality mapping showing the spatio-temporal variations of WQI parameters. 171
Figure 4.50 WQI map showing spatio-temporal variations of WQI values along the Bertam Catchment. 172
Figure 5.1 Land use maps of the study area (Bertam Catchment) in 1984, 1997, 2004 and 2010 180
Figure 5.2 Land usage practice change along time within the catchment area 182
Figure 5.3 Changing trend of land patterns in the catchment area during 1984-2010 183
Figure 5.4 Change differences between the different categories of land types within the catchment area.
Figure 5.5 Land use change detection maps of the study area during 1984-1997, 1997-2004, 2004-2010
Figure 5.6 Land use types distribution by slope classes in Bertam Catchment over time.
Figure 5.7 Landuse composition (%) in the Bertam Sub-catchment area
Figure 6.1 Spatial correlation between soil erosion map and LS factor map in the Bertam Catchment
Figure 6.2 C and P factor maps of the studied catchment
Figure 6.3 Soil erosion map of the Bertam Catchment area
Figure 6.4 Soil erosion maps of sub-catchments based on soil potential categories.
Figure 6.5 Soil erosion map of the Upper Bertam sub-catchment area
Figure 6.6 Soil erosion map of the Middle Bertam sub-catchment area
Figure 6.7 Soil erosion map of the Middle Bertam sub-catchment area
Figure 6.8 Spatial variation of soil erosion among the sub-catchment of Bertam Catchment
Figure 6.9 Annual average soil loss rates for the sub-catchments of Bertam Catchment
Figure 6.10 Percentage of land type areas within different sub-catchments under Bertam Catchment.
Figure 7.1 Demographic characteristics of respondents within Bertam Catchment.
Figure 7.2 Communities’ observation on water quality change within the catchment
Figure 7.3 Communities’ observation on land type change within the catchment
Figure 7.4 Communities’ observation on soil erosion within the Bertam Catchment
Figure 7.5 Perception of communities about Causes of Water Pollution
Figure 7.6 Perception of communities about limitations to protect water pollution
Figure 7.7 Perception of People about causes of land type change
Figure 7.8 Perception of communities’ about consequences of land type change
Figure 7.9 Perception of People about Sources of Soil Erosion
Figure 7.10 Perception of respondents about consequences of soil erosion
Figure 7.11 Frequency of awareness program to protect water quality within Bertam Catchment
Figure 7.12 Frequency of awareness program regarding precaution to environmental consequences within Bertam Catchment 232
Figure 7.13 Sources of information for awareness about protection of catchment environment (water quality/land change/soil erosion) 233
Figure 7.14 Communities response to easy access to media 234
Figure 7.15 Level of awareness regarding Bertam Catchment environmental protection 236
Figure 7.16 Diagram showing relationship between awareness and background variables 238
Figure 7.17 Communities willingness to engage collaborative project for catchment management 239
Figure 7.18 Diagram of factors for communities’ awareness to participate in Bertam Catchment Management program 243
Figure 7.19 Model for willing to participate in Integrated Bertam Catchment Management program 244
Figure 7.20 Overall Socio-scientific findings and Process flow for Sustainable Management 248
Figure 7.21 Proposed Model for sustainable development of catchment management program 249
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Centigrade</td>
</tr>
<tr>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>C</td>
<td>Cover Management</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>ENE</td>
<td>East-North-East</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>K</td>
<td>Soil Erodibility Factor</td>
</tr>
<tr>
<td>Km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>log</td>
<td>Logit</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>m/s</td>
<td>Meter/second</td>
</tr>
<tr>
<td>mg/L</td>
<td>Miligram/Liter</td>
</tr>
<tr>
<td>MJ</td>
<td>Megajoule</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>NS</td>
<td>North-South</td>
</tr>
<tr>
<td>N-W</td>
<td>North-West</td>
</tr>
<tr>
<td>P</td>
<td>Conservation Factor</td>
</tr>
<tr>
<td>Q1</td>
<td>First quartile</td>
</tr>
<tr>
<td>Q3</td>
<td>Third quartile</td>
</tr>
<tr>
<td>R</td>
<td>Rainfall Erosivity Index</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit</td>
</tr>
<tr>
<td>S</td>
<td>Slope</td>
</tr>
<tr>
<td>t</td>
<td>Ton</td>
</tr>
<tr>
<td>TB</td>
<td>Tributaries</td>
</tr>
<tr>
<td>TCr</td>
<td>Total Chromium</td>
</tr>
<tr>
<td>yr</td>
<td>Year</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>AN</td>
<td>Ammonical Nitrogen</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>CA</td>
<td>Cluster Analysis</td>
</tr>
<tr>
<td>CCA</td>
<td>Canonical Correspondence Analysis</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>DA</td>
<td>Discriminant Analysis</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DID</td>
<td>Department of Irrigation and Drainage</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>DOA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>EQA</td>
<td>Environmental Quality Act</td>
</tr>
<tr>
<td>FA</td>
<td>Factor Analysis</td>
</tr>
<tr>
<td>GCS</td>
<td>Geographic Coordinate System</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>GLM</td>
<td>General Linear Model</td>
</tr>
<tr>
<td>HCA</td>
<td>Hierarchical Cluster Analysis</td>
</tr>
<tr>
<td>ICM</td>
<td>Integrated Catchment Management</td>
</tr>
<tr>
<td>IDW</td>
<td>Inverse Distance Weighted</td>
</tr>
<tr>
<td>KAP</td>
<td>Knowledge, Attitude, and Practices</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser–Meyer–Olkin</td>
</tr>
<tr>
<td>LB</td>
<td>Lower Bertam</td>
</tr>
<tr>
<td>MJmm/ha/hr</td>
<td>Megajoule.milimeter/hectare-hour</td>
</tr>
<tr>
<td>MLD</td>
<td>Million Liters per Day</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NH₃-N</td>
<td>Ammonia nitrogen</td>
</tr>
<tr>
<td>NO₃-N</td>
<td>Nitrate nitrogen</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NWQS</td>
<td>National Water Quality Standards</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PO<sub>4</sub>-P</td>
<td>Phosphorus phosphate</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>RUSLE</td>
<td>Revised Universal Soil Loss Equation</td>
</tr>
<tr>
<td>SI</td>
<td>Sub-Index</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>SWAT</td>
<td>Soil and Water Assessment Tool</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TN</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>TP</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>UB</td>
<td>Upper Bertam</td>
</tr>
<tr>
<td>USLE</td>
<td>Universal Soil Loss Equation</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>WGS</td>
<td>World Geodetic System WGS84</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WQI</td>
<td>Water Quality Index</td>
</tr>
<tr>
<td>WQV</td>
<td>Water Quality Variable</td>
</tr>
<tr>
<td>WWAP</td>
<td>United Nations World Water Assessment Program</td>
</tr>
</tbody>
</table>
REFERENCES

Doe, W., Jones, D., & Warren, S. (1999). The soil erosion model guide for military land mangers: Analysis of erosion models for natural and cultural resources applications. *US Army Engineer Waterways Experiment Station Tech. Rept. ITL.*

Fortuin, R. (2006). Soil erosion in Cameron Highlands: An erosion rate study in a highland area. Saxion University, Deventer, the Netherlands, Regional Environmental Awareness Cameron Highlands, 1-83.

Kang, N., Sakamoto, T., Imanishi, J., Fukamachi, K., Shibata, S., & Morimoto, Y. (2013). Characterizing the historical changes in land use and landscape spatial pattern on the oguraike floodplain after the Meiji Period.

