Contents

Muhammad Muzakkir Ahmad Roslan, Herdawati Abdul Kadir, Khalid Isa, Radzi Ambar, Mohd Rizal Arshad, Maziyah Mat Noh and Mohd Helmy Wahab

Development of an Autonomous Underwater Vehicle for Target Acquisition 65
Leong Wai Lunn Alexander, Khalid Isa, Herdawati Abdul Kadir and Radzi Ambar

Robust Controller Design for Autonomous Underwater Glider Using Backstepping Super Twisting Sliding Mode Control Algorithm 79
Maziyah Mat Noh, M. R. Arshad, Rosmiwati Mohd-Mokhtar, Zainah Md Zain, Qudrat Khan and Herdawati Abdul Kadir

PSpHIT-II: A Water Strider-Like Robot with Cylindrical Footpad 99
Vi Vi Gan, Addie Irawan, Niirmel Ranjanendran and Siti Noor Zuliana

An Accurate Characterization of Different Water Properties Using Resonant Method for Underwater Communication Activity 113
Salwa Awang Akbar, Ahmad Syahiman Mohd Shah, Ainul Sharizli Abdullah, Nurhafizah Abu Talip Yusof, Sabina Khatun, Syamimi Mardiah Shaharum and Mohamad Shaiful Abdul Karim

Statistical Relationship Between Multibeam Backscatter, Sediment Grain Size and Bottom Currents 121
Mohd Azhafiz Abdullah, Razak Zakariya and Rozaimi Che Hasan

Part II Control, Instrumentation and Artificial Intelligent Systems

Stabilization of Two-wheeled Wheelchair with Movable Payload Based Interval Type-2 Fuzzy Logic Controller 137
N. F. Jamin, N. M. A. Ghani, Z. Ibrahim, M. F. Masrom and N. A. A. Razali

Stabilization Control of a Two-Wheeled Triple Link Inverted Pendulum System with Disturbance Rejection 151
M. F. Masrom, N. M. Ghani, N. F. Jamin and N. A. A. Razali

Integration of PI-Anti-windup and Fuzzy Logic Control with External Derivative Solution for Leg’s Robot Angular Joint Precision 161
Wan Mohd Nafis Wan Lezaini, Addie Irawan and Ahmad Nor Kasruddin Nasir
Stabilization control of a two-wheeled triple links inverted pendulum system with disturbance rejection

M. F. Masrom, N. M. Ghani, N. F. Jamin and N. A. A. Razali

Dept. of Electrical & Electronics Engineering, Universiti Malaysia Pahang, Malaysia
firdausmasrom@gmail.com

Abstract. This paper focuses on the robust controller for triple Links inverted pendulum on two-wheeled system. The development of triple Link inverted pendulum on two-wheeled model using CAD based software, SimWise 4D is proposed. Interval Type-2 Fuzzy Logic Control (IT2FLC) used as control algorithm for the system. This system is multi input and multi output system which means each motor in this system is controlled by one controller to achieve stability or upright position for these three links. The robustness of the controller is tested by applying disturbance to the model to observe the response from the model to handle the uncertainties. The performance of IT2FLC is compared with Type-1 Fuzzy Logic Control (T1FLC) to demonstrate best controller for the system. The experiment results concerning the angular position for each three Links and the maximum value of disturbance rejection for both controllers are obtained by using heuristic tuning for input and output gain control.

Keywords: Triple links inverted pendulum on two-wheeled, Type-1 Fuzzy Logic Control, Interval Type-2 Fuzzy Logic Control.

1 Introduction

Self-balancing inverted pendulum system have evoked a lot of interest among education both in theory and application for decades. Inverted pendulum system varies from rotary, on cart, and on wheels system. Inverted pendulum system is capable to maintain its upright position even after facing disturbance or any uncertainties. There are also several works done on inverted pendulum which could maintain at any desired angle. The robustness of the inverted pendulum controllers is evaluated on how fast the system can achieve its stability, the closeness of the system to 0 degree, and the capability of the system in handling disturbance or uncertainties.

There are several works done exits for stabilization of inverted pendulum on two-wheeled system [1-4]. Single link mobile inverted pendulum system has been proposed using fuzzy logic based PID controller as stabilizing control to stabilize the model. In this system, 2 loops of controllers are used in order to control the angle and the position of the model independently [1].