BIOHYDROGEN PRODUCTION FROM PALM OIL MILL EFFLUENT VIA SEQUENTIAL DARK-PHOTO FERMENTATION

PURANJAN MISHRA

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor’s Signature)

Full Name : PROFESSOR DATO’ DR. ZULARISAM AB WAHID
Position : PROFESSOR
Date : 16/07/2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : PURANJAN MISHRA
ID Number : PPT14018
Date : JULY 2018
BIOHYDROGEN PRODUCTION FROM PALM OIL MILL EFFLUENT VIA SEQUENTIAL DARK-PHOTO FERMENTATION

PURANJAN MISHRA

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Engineering & Technology
UNIVERSITI MALAYSIA PAHANG

JULY 2018
“Specially dedicated to my beloved grandfather Late Shri Gangadhar Mishra, my parents and my lovable sisters Priyanka and Monika Mishra, who constantly encouraged supported me all the way since the beginning of the studies”.
ACKNOWLEDGEMENTS

My humble thanks to Almighty to pursue the study period with good health, concentration and dedication resulting in the research completion and thesis writing. I am grateful and would like to express my sincere gratitude to my supervisor, Professor Dato’ Dr. Zularisam bin Ab. Wahid for his germinal ideas, invaluable guidance, continuous encouragement and constant support to execute my research plan in proper direction. He has always impressed me with his outstanding professional conduct, his strong conviction for engineering, technology and science. I appreciate his consistent support from the first day I applied to graduate program till these concluding moments. I am truly grateful for his progressive vision during my training, his tolerance of my naïve mistake, and his commitment to my future career. I also sincerely thanks for the time spent proofreading and correcting my many mistakes. I am very lucky to have him as my supervisor and believe that he is the best motivational supervisor in the world, indeed.

I would like to express my sincere thanks, gratitude and loyalty from the very bottom of my heart to Dr. Lakhveer Singh Thakur and Dr. Svetta Thakur. From the very beginning of my research they have guided me in proper channel by providing their valuable ideas, suggestions, and advices during my tough times. Feeling very lucky and thankful to God to have such a wonderful co-supervision. I am feeling blissfulness to acknowledge the guidance, valuable suggestions constructive criticism provided by Dr. Ayodele Bamidele Victor, Dr. Nurul Islam, Dr. Santha Krishnan, Bincy Lathakumary Vijayan and Mr. Amirul Islam. Their scientific excitement inspired me in various important moments of making right decisions, had significantly contributed to this thesis. Thank you for trusting me.

I acknowledge my sincere indebtedness and gratitude to my research lab mates and colleague Dr. Rini jaryal, Dr Ravinder Verma, Ms. Supriyanka Rana, Ms. Ain, Ms. Maria, Postgrad roommates, staff members of Faculty of Engineering Technology, UMP, all the members of Indian community in UMP. Finally my sincere gratitude to staff members of Institute of Postgraduate Studies (IPS) and International Office (IO), they are really genuine and very cooperative in nature which made me to stay at UMP pleasant and unforgettable. Thank you UMP!!!!!!!!! Thank you Malaysia!!!!!!! “Satu Malaysia”.

ii
Penghasilan hidrogen secara fermentasi daripada biomass (iaitu produk yang terhasil memalui fotosintesis) menjanjikan peluang ke arah penghasilan tenaga yang lestari. Konsep baru berbekaikan dua peringkat penembusan gelap dan fotografi (TSDPF) telah dicadangkan untuk meningkatkan penghasilan hydrogen (H₂) dan COD_{removal} menggunakan efluen minyak kelapa sawit (POME) dari kilang sebagai substrat bagi proses fermentasi dalam kajian ini. Objektif utama kajian ini adalah penghasilan H₂ dari POME menggunakan sistem TSDPF melalui penghasilan secara berkelompok. Pada permulaan kajian, pengasingan bakteria dari POME telah dilakukan bagi memperoleh bakteria penghasil H₂ yang dinamakan ‘Bacillus strain PUNAJAN1’. Melalu beberapa data analysis parameter fiziko-kimia yang dicadangkan dalam kajian ini, parameter optimum yang diperoleh adalah pada suhu 35°C, pH 6.5, 1.2 g L⁻¹ NH₄Cl (sebagai sumber nitrogen) dan 10 g L⁻¹ mannose (sebagai sumber karbon) untuk pengeluaran bio-H₂ maksimum sebanyak 2.42 mol H₂ / mol heksosa. Disamping itu, bacteria PUNAJANI juga menunjukkan penghasilan H₂ yang berkesan pada 0.23 L-H₂/g-CODremoved apabila POME digunakan sebagai sumber karbon. Selain itu, nanopartikel nikel dan kobalt oksida yang dihasilkan secara ‘hidrothermal’ telah ditambah kepada POME dengan jutil 0.25 hingga 3.0 mg L⁻¹ POME. Keputusan menunjukkan bahawa POME dengan penambahan 1.5 mg L⁻¹ NiO NPs dan 1.0 mg L⁻¹ CoO NPs mempunyai ciri-ciri sebagai pemangkin dan ianya dapat meningkatkan hasil H₂ sebanyak 1.51 dan 1.67 kali ganda, jika dibandingkan dengan kawalan. Tambahan pula, kajian parameter terhadap pengoptimuman foto-fermentasi H₂ dari POME gelap (DPOME) telah dijalankan menggunakan metodologi statistic pengeluaran Box-Behnken. Hasil eksperimen tindak balas Box-Behnken terhadap permukaan telah menunjukkan kesan positif diantara pencairan DPOME, pH awal dan rejim agitasi) terhadap pengeluaran foto-H₂. Hasil maksimum H₂ yang diperoleh adalah pada keadaan optimum 40% pencairan DPOME, pH awal 6.0 dan kadar pengadukan sebanyak 140 rev/min. Melalui penggunaan strategi pengoptimuman ini, peningkatan hasil H₂ yang ketara dari 0.79 hingga 3.11 telah dicapai. Peningkatan pengeluaran H₂ dari DPOME di bawah keadaan optimum telah mencapai peningkatan hampir lima kali ganda. Akhirnya, kebarangkalian sistem TSDPF telah berjaya dilaksanakan menggunakan POME sebagai substrat. Penapaian tahap pertama dilakukan dengan menggunakan PUNAJAN1 yang terisolasi mempunyai hasil H₂ maksimum 37.11 mlH₂/g-COD dan 41% COD_{removal}. Lebih 40% dicairkan DPOME dengan air paip yang disterilkan untuk kegunaan fermentasi tahap kedua (foto-penapaian). Hasil keseluruhan H₂ dari sistem TSDPF meningkat dari 37.11 sehingga ke 130.89 ml H₂/g-COD, sementara peratusan COD_{removal} secara serentak meningkat dari 41 hingga 93%. Peningkatan pengeluaran H₂ ini lebih tinggi daripada fermentasi POME gelap berperingkat tunggal. Hasil ini memberi kesimpulan terhadap keberkesanan penggunaan POME fermentasi gelap ke arah pengeluaran H₂ yang maksimum dan juga pengurangan kepekatan COD.
ABSTRACT

Fermentative hydrogen production using biomass (a product of photosynthesis) is a promising route toward the sustainable bioenergy production. A novel concept of two stage-sequential dark-photo fermentation (TSDPF) system was proposed for enhanced biohydrogen production and COD\textsubscript{removed} using palm oil mill effluent (POME) as fermentative substrate. The main objective of this study comprises the hydrogen production in batch mode from POME using TSDPF system. In the initial stage of the study, isolation of an indigenous hydrogen producing strain, ‘Bacillus strain PUNAJAN1’ was done using POME sludge. The analytical data of various physicochemical parameters indicated the maximum biohydrogen production of 2.42 mol H\textsubscript{2}/mol hexose at optimal temperature of 35°C, pH 6.5, 1.2 g L-1 of NH\textsubscript{4}Cl (as a nitrogen source) and 10 g L-1 of mannose (as carbon source). Besides, the strain PUNAJAN1 has also shown the efficient hydrogen production ability of 0.23 L-H\textsubscript{2}/g-COD\textsubscript{removed}, when POME was subjected as a carbon source. Further, hydrothermally prepared nickel (NiO NPs) and cobalt oxide nanoparticles (CoO NPs) were added to POME with the range of 0.25 to 3.0 mg L-1 POME. Results demonstrated 1.51 and 1.67 folds of noticeable enhancement in biohydrogen production from POME supplemented with 1.5 mg L-1 NiO NPs and 1.0 mg L-1 CoO NPs respectively, in comparison to the control. Furthermore, a statistical approach to optimize the production of photo-fermentative H\textsubscript{2} from dark fermented POME using Box–Behnken response surface methodology. Experimental data has shown a positive correlation between interdependence among various parameters (such as dilution of DPOME, initial pH and agitation regime) with improved photo-H\textsubscript{2} production, as significant enhancement of hydrogen yield from 0.79 to 3.11 mol-H\textsubscript{2}/mol-acetate was observed under the optimal condition of 40% of dilution of DPOME; pH 6.0; and agitation rate of 140 rev/min. The observed enhancement in photohydrogen production from DPOME under optimized conditions was almost fivefold. Finally, feasibility of TSDPF system in enhancing photo-H\textsubscript{2} production using POME has been successfully validated, where first stage fermentation was carried out using PUNAJAN1 strain (resulted 41% of COD\textsubscript{removed} along with hydrogen yield of 37.11 ml H\textsubscript{2}/g-COD) followed by second stage fermentation using 40% diluted DPOME with sterilized tap water (photo-fermentation). Applicability of using TSDPF system in increasing hydrogen yield (from 37.11 to 130.89 ml H\textsubscript{2}/g-COD) and COD\textsubscript{removed} rate (from 41 to 93%) has been implicated in this study which is reportedly far superior to single stage dark fermentation of POME. So, these results confirmed an effectual utilization of sequential dark-photo fermentation using dark POME can result in substantial hydrogen production and COD\textsubscript{removed}.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS

ABSTRAK

ABSTRACT

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1 Background of the Study

1.1.1 Hydrogen and its Production from Renewable and Sustainable Sources

1.1.2 Malaysian Palm Oil Industry and POME Wastewater

1.1.3 Biological Hydrogen Production

1.1.4 Integrated Dark and Photo-fermentation Approach for H₂ Production

1.2 Problem Statement

1.3 Objective of the Study

1.4 Specific Objectives

1.5 Scope of the Research

1.6 Significance of Research
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 10
2.2 Global Scenario of Malaysian Palm Oil Industry 10
2.3 Environmental Impact of Palm Plantation and POME Discharges 12
2.4 Biogas Production from POME 13
 2.4.1 Biohydrogen 13
2.5 Microbial Mechanism of Hydrogen Evolution 14
 2.5.1 Light Driven Hydrogen Production 15
 2.5.2 Hydrogen Evolution through Water Photolysis 15
 2.5.3 Photosynthetic Hydrogen Evolution 16
 2.5.4 Light Independent Fermentative Conversion of Organic Substrates to Hydrogen 18
2.6 Factors Effecting Biohydrogen Production 20
 2.6.1 Inoculum 21
 2.6.2 Substrate 24
 2.6.3 Nanoparticles of Trace Element in Biogas Production 24
 2.6.4 Temperature 26
 2.6.5 pH 27
 2.6.6 Light Intensity 27
 2.6.7 Agitation Regimes 28
 2.6.8 Dilution of Fermented Effluents 29
2.7 Continuous Stirring Tank Reactors 29
2.8 Two Stage Sequential Dark and Photo-Fermentative System 32
2.9 Design of Experiment 33
 2.9.1 Response Surface Methodology 34
2.9.2 Optimization using Box-Behken Design 36
2.9.3 Regression Analysis 36
2.9.4 Comparison between BBD, CCD and Doehlert Matrix (DM) 37
2.9.5 Data Analysis 38
2.10 Summary 39

CHAPTER 3 METHODOLOGY 41

3.1 Introduction 41
3.2 Isolation of the Hydrogen Producing Strain from Anaerobically Digested POME Sludge 45
 3.2.1 Identification and Phylogenetic analysis of Hydrogen Producing Bacterial Isolate 46
 3.2.2 Batch Dark-Fermentative Hydrogen Production from Standard Substrate 47
 3.2.3 Preliminary Study of Physico-chemical Parameters on Dark-H2 Production using OFAT 48
 3.2.4 Experimental Set-up for Hydrogen Production in Batch using POME as Substrate 50
3.3 Preparation and Characterization of Nickel and Cobalt Oxide Nanoparticles 50
 3.3.1 Preparation and Characterization of Ni and Co Oxide NPs 50
 3.3.2 Average Particle Size Calculation of Nanoparticles 51
 3.3.3 Experimental Set-up for Hydrogen Production in Batch using POME as Substrate 53
 3.3.4 Microbial Viability Test 53
3.4 Photobiological Hydrogen Production by Rhodopseudomanas palustris from DPOME 54
 3.4.1 Inoculum Preparation and Fermentative Substrate 54
 3.4.2 Experimental Set-up for Photobiological Hydrogen Production 54
3.4.3 Preliminary Study of Physico-chemical Parameter on Photo-H2 Production using OFAT Method 56
3.4.4 Experimental Designing of Optimization Process using RSM 57

3.5 Biohydrogen Production Form Using Two Stage Sequential Dark-Photo Fermentative System 60
3.5.1 Substrate for Sequential Fermentation 60
3.5.2 Bacterial Strain and Medium for Dark-fermentative H₂ Production 60
3.5.3 Bacterial Strain and Medium for Photo-H₂ Production 60
3.5.4 Operation of Bioreactor 61
3.5.5 Analytical 62

CHAPTER 4 RESULTS AND DISCUSSION 68
4.1 Introduction 68
4.2 Isolation and Identification of POME Indigenous Hydrogen Producer 68
4.2.1 Isolation and Identification of Hydrogen Producer 68
4.2.2 Hydrogen Production Characteristics of Strain PUNAJAN1 70
4.2.3 Hydrogen Production from POME using Newly Isolated Bacterium Strain PUNAJAN 1 76
4.2.4 Concluding Remarks 79
4.3 Impacts of Metal-oxide NPs on Dark- Fermentative Hydrogen Production from Palm Oil Mill Effluent 80
4.3.1 Preparation and Characterization of NPs 80
4.3.2 Impacts of NPs on Fermentation Hydrogen Production 81
4.3.3 Concluding Remarks 93
4.4 Statistical Optimization of Biological Photohydrogen Production 94
4.4.1 Preliminary Study of Physico-chemical Parameter on Photobiological Hydrogen Production using OFAT Method 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2</td>
<td>Statistical Optimization of Operational Conditions for Photohydrogen Production from DPOME</td>
<td>96</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Concluding Remarks</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>Two-Stage Sequential Dark-Photo Fermentative Hydrogen Production from POME</td>
<td>104</td>
</tr>
<tr>
<td>4.5.1</td>
<td>First-Stage Hydrogen Production Performance from POME</td>
<td>104</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Bacterial Growth and Soluble Metabolites during the First Stage Operation</td>
<td>105</td>
</tr>
<tr>
<td>4.5.3</td>
<td>CODremoval during First Stage Operation</td>
<td>107</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Second-Stage Hydrogen Production Performance from DPOME</td>
<td>108</td>
</tr>
<tr>
<td>4.5.5</td>
<td>COD Removal during Second Stage Operation</td>
<td>109</td>
</tr>
<tr>
<td>4.5.6</td>
<td>CODremoval during Second Stage Fermentation</td>
<td>110</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Bacterial Growth and Soluble Metabolites during the Second Stage Operation</td>
<td>111</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Hydrogen Productivity using Sequential Dark-Photo Fermentation from POME</td>
<td>112</td>
</tr>
<tr>
<td>4.5.9</td>
<td>Concluding Remarks</td>
<td>114</td>
</tr>
</tbody>
</table>

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 115
5.2 Conclusions 115
5.3 Future Recommendations 118

REFERENCES 119

Appendix-A 138
Appendix-B 142
Appendix-C 143
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Hydrogen production using mix culture/sludge</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Fermentative Hydrogen Production from Various Carbon Sources</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of efficiency of central composite design (CCD), Box-Behnken design (BBD) and Doehlert design (DM).</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>List of Chemicals and Instruments</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Physico-chemical characteristics of palm oil mill effluent</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Variations of DPOME dilution during photobiological H2 production from DPOME at constant other factors</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Variations of initial pH during photobiological H2 production from DPOME with constant other factors</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Variations of agitation speed during photobiological H2 production from DPOME with constant other factors</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Experimental range and level of the independent variables</td>
<td>58</td>
</tr>
<tr>
<td>3.7</td>
<td>Box–Behnken experimental design matrix with three independent variables</td>
<td>58</td>
</tr>
<tr>
<td>3.8</td>
<td>Determination method of different characteristic of POME</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Hydrogen production using pure cultures as inoculum</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Characteristics of palm oil mill effluent before and after treatment.</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Variation in acetate and butyrate concentration in POME after treatment at different concentration of NiO and CoO NPs.</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Hydrogen production in the presence of different nanoparticle in fermentative system</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Bacterial growth in modified basal agar medium petriplates with the additive to NiO and CoO NPs at different concentrations (0.25- 3.0 mg/L NP</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Box–Behnken design matrix for evaluating factors influencing hydrogen yield using DPOME as substrate.</td>
<td>97</td>
</tr>
<tr>
<td>4.7</td>
<td>Regression statics for hydrogen yield at equilibrium</td>
<td>97</td>
</tr>
<tr>
<td>4.8</td>
<td>Analysis of variance and lack of fit test for hydrogen yield using DPOME</td>
<td>98</td>
</tr>
<tr>
<td>4.9</td>
<td>Model validation of operational conditions of hydrogen production</td>
<td>103</td>
</tr>
<tr>
<td>4.10</td>
<td>Different characteristic of palm oil mill effluent after single-stage fermentation</td>
<td>107</td>
</tr>
<tr>
<td>4.11</td>
<td>Characteristics of DPOME before and photo-fermentative hydrogen production</td>
<td>110</td>
</tr>
</tbody>
</table>
Table 4.12 Hydrogen productivity of sequential dark and photo fermentation from POME

Table 4.13 Hydrogen production from various substrates via two stage sequential dark and photo-fermentation system
LIST OF FIGURES

Figure 2.1	Worldwide production of PALM in Million tonnes per year, 2016	11
Figure 2.2	Molecular strategy for hydrogen production by cyanobacteria (PS, photosystem; fd., ferredoxin; H₂ase, hydrogenase; N₂ase, nitrogenase)	16
Figure 2.3	Mechanism of ‘Light to hydrogen conversion’ by phototrophic bacteria and cyanobacteria	19
Figure 2.4	An overview illustration of glucose metabolism during hydrogen production pathway in *Clostridium butyricum* (NAD: Nicotinamide adenine dinucleotide phosphate, TCA: Tricarboxylic acid).	20
Figure 2.5	(a) Schematic representation of the active site of Ni-Fe hydrogenase. The Ni ion is coordinated by four cysteine molecule. Two of these serves as bridging ligands between the ni and an unidentified metal ion X that is here assigned as Fe. L1-L3 are non-protein ligands of x of unknown nature; I denotes that position that a non-protein bridging ligand would occupy in order the coordination spheres of metal ions (Fontecilla-Camps, 1996). (b) The active site of corrinoids contains cobalt as core element. In the acetogenic bacterium “R” represents the p-cresolyl cobamide.	25
Figure 2.6	Schematic representation of continuous stirrer tank reactor	31
Figure 2.7	Schematic diagram of two stage sequential dark and photo fermenter	33
Figure 2.8	Coded factor levels for Box-Behnken designs for optimizations involving four and five factors.	38
Figure 3.1	Experimental Plan of Research	44
Figure 3.2	Schematic representation of experimental set-up	48
Figure 3.3	Schematic representation of X-ray diffraction pattern (Peak width ‘β’ is inversely proportional to crystallite size ‘d’).	52
Figure 3.4	Schematic diagram of photo-fermentative bioreactor	55
Figure 4.1	1% Agarose gel showing the 16S rRNA gene amplicon of *Bacillus anthracis* PUNAJAN 1 (Lanes 1, 2) Lane M – 10 kb Marker.	69
Figure 4.2	Phylogenetic tree showing the relationships between strain PUNAJAN 1 and related species based on 16S rDNA gene	70
Figure 4.3	Effect of cultivation temperature on hydrogen production by bacterial strain PUNAJAN1	71
Figure 4.4	Effect of initial pH on hydrogen production by bacterial strain PUNAJAN1	72
Figure 4.5 (a) Effect of various nitrogen sources (b) effect of NH4Cl concentrations (c) effect of various carbon sources (d) effect of mannose concentrations

Figure 4.6 Hydrogen production profile using POME as substrate (a) hydrogen production rate and biomass concentration (b) cumulative gas production and cumulative H2 production.

Figure 4.7 (a) FESEM micrograph of NiO NPs (b) FESEM micrograph of CoO NPs XRD pattern of Ni NPs

Figure 4.8 (a) XRD pattern of NiO NPs and (b) XRD patterns of CoO NPs

Figure 4.9 Performance of biohydrogen production in the presence of different concentration of NiO NPs (a) maximal hydrogen production rate (b) COD removal efficiency and observed hydrogen yield.

Figure 4.10 Performance of biohydrogen production in the presence of different concentration of CoO NPs (a) maximal hydrogen production rate (b) COD removal efficiency and observed hydrogen yield.

Figure 4.11 Schematic representation of possible microbial toxicity mechanism (NPs: Nanoparticles; M+: Metal ions)

Figure 4.12 (a) DPOME dilution’s effect on hydrogen yield (b) Effect of initial pH on hydrogen yield (c) and Effect of agitation speed on hydrogen yield

Figure 4.13 (a) The predicted and actual values, (b) Normal plot residual for the hydrogen yield

Figure 4.14 Response surfaces for hydrogen yields as a function of variation in the different factors: The response of hydrogen yield at different dilution of DPOME with DW (X1) and initial pH of DPOME (X2) at a constant agitation speed of 150 rev/min.

Figure 4.15 Response surfaces for hydrogen yields as a function of variation in the different factors: The response of hydrogen yield at different dilution of DPOME with DW (X1) and agitation speed (X3) at a constant initial pH of 6.0.

Figure 4.16 Response surfaces for hydrogen yields as a function of variation in the different factors: The response of hydrogen yield at initial pH of DPOME (X2) and agitation speed (X3) at a constant DPOME dilution of 40 %.

Figure 4.17 (a) Time course of hydrogen production rate (−●−) and COD removal (−○−), (b) Hydrogen content in produced gas (−□−) and cumulative hydrogen (−●−), during dark fermentation of POME by Strain PUNAJAN1

Figure 4.18 Concentration of soluble metabolites during dark fermentation of POME: acetic acid (−○−), butyric acid (−▲−), propionate (−●−) and ethanol (−∆−) by strain PUNAJAN1
Figure 4.19 Biomass growth pattern of during fermentation (OD₆₆₀=1= 0.5 g/L) 106

Figure 4.20 (a) Time course of hydrogen production rate and COD removal, (b) Hydrogen content and cumulative hydrogen, during photo fermentation of 50% diluted DPOME 109

Figure 4.21 Growth profile of Rhodopseudomonas palustris during photo fermentation of DPOME 110

Figure 4.22 Concentration of soluble metabolites during the photo fermentation at 4 klux of POME: acetic acid (−○−), butyric acid (−◊−), propionate (−▲−) and ethanol (−●−) by Rhodopseudomonas palustris 111
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_{(Ac)}$</td>
<td>ACETIC ACID</td>
</tr>
<tr>
<td>$H_{(Bu)}$</td>
<td>Butyric acid</td>
</tr>
<tr>
<td>$H_{(Pr)}$</td>
<td>Propionic acid</td>
</tr>
<tr>
<td>FeCl$_2$</td>
<td>Ferric chloride</td>
</tr>
<tr>
<td>MgSO$_4$</td>
<td>Magnesium sulphate</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight to volume</td>
</tr>
<tr>
<td>m3</td>
<td>Meter cube</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>g/L or gL$^{-1}$</td>
<td>Gram per litre</td>
</tr>
<tr>
<td>M</td>
<td>Moles</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>KJ</td>
<td>Kilo-joule</td>
</tr>
<tr>
<td>MJ</td>
<td>Mega joule</td>
</tr>
<tr>
<td>H$_2$</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>L-H$_2$/g-</td>
<td>Litre hydrogen per gram of cod removal</td>
</tr>
<tr>
<td>g-CODL$^{-1}$</td>
<td>Gram COD per litre</td>
</tr>
<tr>
<td>CFU/ml</td>
<td>Colony forming unit per millilitre</td>
</tr>
<tr>
<td>W/m2</td>
<td>Watt per meter square</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>COD$_{removed}$</td>
<td>COD removal from substrate</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Anaerobic Digestion</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CSTR</td>
<td>Continuous stirrer tank reactor</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPOME</td>
<td>Dark fermented palm oil mill effluent</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>DoE</td>
<td>Design of experiment</td>
</tr>
<tr>
<td>EIA</td>
<td>Energy information administration</td>
</tr>
<tr>
<td>H2</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>HPP</td>
<td>Hydrogen production potential</td>
</tr>
<tr>
<td>HPR</td>
<td>Hydrogen production rate</td>
</tr>
<tr>
<td>HY</td>
<td>Hydrogen yield</td>
</tr>
<tr>
<td>N</td>
<td>Normality</td>
</tr>
<tr>
<td>NPs</td>
<td>Nano-particles</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>POME</td>
<td>Palm oil mill effluent</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>UASB</td>
<td>Up-flow anaerobic sludge blanket</td>
</tr>
<tr>
<td>VFA</td>
<td>Volatile fatty acid</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile suspended solids</td>
</tr>
</tbody>
</table>
REFERENCES

production from organic matter. *Environmental science & technology*, 42(23), 8630-8640.

sugar beet thick juice in outdoor conditions. *international journal of hydrogen energy, 37*(2), 2044-2049.

