PREPARATION AND CHARACTERIZATION OF HYDROXYAPATITE (HA) FROM COW BONE AND ITS COMPOSITE WITH POLY(LACTIC ACID) FOR BONE REPLACEMENT

AKINDOYO JOHN OLABODE

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Chemical Engineering.

__
(Supervisor’s Signature)

Full Name :
Position :
Date :

__
(Co-supervisor’s Signature)

Full Name :
Position :
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : AKINDOYO JOHN OLABODE
ID Number : PKC15012
Date : 15th July 2018
PREPARATION AND CHARACTRIZATION OF HYDROXYAPATITE (HA) FROM COW BONE AND ITS COMPOSITE WITH POLY(LACTIC ACID) FOR BONE REPLACEMENT

AKINDOYO JOHN OLABODE

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical & Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

JULY 2018
ACKNOWLEDGEMENTS

I would like to use this opportunity to appreciate the Almighty God for the sound health and breathe of life He grants me, which made the period of my doctoral study a great success. My profound gratitude also goes to my amiable supervisors Professor Dr. Mohammad Dalour Hossen Beg and Dr. Suriati Binti Ghazali for their ceaseless tutelage all through the period of this study. Noteworthy also is the positive influence I gathered from the entire lecturers in the faculty of Chemical and Natural Resources Engineering (UMP) especially Professor Abdurahman Hamid Nour and host of others. I also acknowledge the members of staff at the Institute of Material Engineering, University of Kassel, Germany especially Dr. Maik Feldmann and Professor Hans P. Heim for the opportunity they granted me to carry out a reasonable part of my research work in their institute.

I thank God on behalf of my parents as well for their support in cash, kind and spiritually during the course of my doctoral study here in UMP. I also want to appreciate my siblings Dr. Edward Akindoyo, Oluwatosinloba Akindoyo and others for their faith in me, their encouragement as well as their best wishes which had culminated to bring out the best in me. I do appreciate the effort of my dear friend, Nitthiyah Jeyaratnam whose support and encouragement positively influenced the successful completion of this study. The Kuboyes are also highly appreciated for their support of every kind especially Femi.

The efforts of the JPs in FKKSA laboratory, UMP, members of the technician staff, FIST, UMP, and the research officers at the central laboratory, UMP, all laboratory staff at the Institute of Material Engineering, University of Kassel, Germany are all acknowledged. The assistance from my senior colleagues, Dr Remanul, Dr Moshiul Alam and others cannot be forgotten so easily as well. Thanks also to Mr Jason Lim and Kelly Lim for their various support both in cash and kind.

May I conclude this section by saying a big thank you to the friends I met during the course of my doctoral study here in UMP, whom space will not permit me to mention. I also specifically thank Mr Thom, Miss Elly, Arash, Christian Kahl and other colleagues at the Institute of Material Engineering, University of Kassel, Germany for making my stay in Germany a stress free and productive one. You are all highly esteemed and I say thank you all a million time for your individual contributions. God bless you all real good.

Lastly I appreciate University Malaysia Pahang for granting me the financial support for my doctoral study through UMP Doctoral Scholarship (DSS) and UMP PGRS (PGRS170364).

The Author.
ABSTRACT

The wide application of hydroxyapatite (HA) for medical applications such as bone tissue replacement sometimes constitutes environmental challenges as the conventional HA synthesis routes require the use of organic solvents. On the other hand, the current trend of research is to incorporate biomaterials such as HA into polymer matrices for some medical applications such as bone replacements. However, this often produces composites with inferior properties. This is due to poor HA dispersion within the composites as well as compatibility issues. In this study, natural HA was produced from cow bone through ultrasound and calcination processes at various temperatures. Composites then were produced from poly (lactic acid) (PLA) and hydroxyapatite (HA) through extrusion and injection molding. In order to foster good interaction between PLA and HA, and to impart antimicrobial properties onto the HA, surface of the HA was modified. On the other hand, impact properties of the PLA-HA composite was improved through the incorporation of impact modifier. Characterization of the produced HA was carried out through thermogravimetric (TGA) and field emission scanning electron microscope (FESEM) analysis. Spectrum obtained for the HA through Fourier Transform Infrared Spectroscopy was also compared with standard HA. Likewise, X-ray diffraction analysis of the HA in comparison with International Centre for Diffraction Data (ICDD) index for standard HA was conducted. On the other hand, Ca/P ratio of the produced HA was verified through Energy Dispersive X-ray analysis for elemental analysis. Likewise, different characterization techniques were used to characterize the composite produced. These include Fourier transforms infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), tensile, flexural and impact analysis. Also microbial properties of the produced HA and its composite with PLA were assessed. In addition, in vitro biocompatibility study was used to assess the cell attachment and cell proliferation properties of the composites. Results showed that modification of HA led to increased HA dispersion within the PLA matrix, which resulted into significantly higher mechanical, thermal and dynamic mechanical properties of the resulting composite. Similarly, impact properties of the PLA-HA composite was remarkably improved after incorporation of biostrong impact modifier. In addition, in vitro study revealed that the PLA-HA composite exhibits good biocompatibility properties. In general, the results from this study shows that combination of the salient properties of HA with the good mechanical properties of PLA holds great potential for production of bone replacement composite materials with good load bearing ability. The composite produced herein can help to overcome the secondary operation procedures often associated with the conventional bone replacement procedures.
ABSTRAK

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xvii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 3

1.3 Objective 4

1.4 Scope of Study 5

1.4.1 Scope for first objective 5

1.4.2 Scope for second objective 5

1.4.3 Scope for third objective 5

1.4.4 Scope for fourth objective 6

1.5 Significance of Study 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Research Background 8

2.2 Hydroxyapatite 12
2.2.1 Compositional structure 14
2.2.2 Bioactivity 14
2.2.3 Mechanical properties 15
2.3 Poly(lactic acid) 16
2.4 Regenerative Engineering 19
 2.4.1 Bone anatomy 19
 2.4.2 Bone mineral 21
 2.4.3 Bone tissue engineering 23
2.5 Requirements of Orthopaedic Biomaterials 24
2.6 Poly(lactic acid) Based Orthopaedic Biomaterials 26
2.7 Evolution of Poly(lactic acid)/Hydroxyapatite Biomaterials 27
 2.7.1 Modification of poly(lactic acid) based biomaterials 31
 2.7.2 In vivo degradation and acidic environment of poly(lactic acid) implant 32
 2.7.3 Biocompatibility and toxicity of polymeric orthopaedic materials 33
2.8 Processing of Poly(lactic acid) Based Biomaterials for Orthopaedic Applications 35
 2.8.1 Fiber spinning 35
 2.8.2 Rapid prototyping 36
 2.8.3 Nanofabrication 37
 2.8.4 Extrusion and injection molding 38
2.9 Conclusion of Literature Review 39

CHAPTER 3 METHODOLOGY 40

3.1 Introduction 40
3.2 Materials 40
3.3 Methods 41
3.3.1 Bone preparation and ultrasound treatment
3.3.2 Production of hydroxyapatite
3.3.3 Modification of hydroxyapatite

3.4 Characterization of Hydroxyapatite
3.4.1 Thermogravimetric analysis
3.4.2 X-ray diffraction analysis
3.4.3 Fourier transform infrared (FTIR) spectroscopy
3.4.4 Field emission scanning electron microscopy
3.4.5 Energy dispersive X-ray analysis
3.4.6 X-ray fluorescence
3.4.7 X-ray photoelectron spectroscopy (XPS) analysis
3.4.8 Antimicrobial analysis of hydroxyapatite

3.5 Production of Composites
3.5.1 Mixing and compounding
3.5.2 Density measurement
3.5.3 Modification of composite
3.5.4 Scanning electron microscopy
3.5.5 Fourier transform infrared spectroscopy (FTIR) of composite
3.5.6 Tensile Test
3.5.7 Flexural Test
3.5.8 Charpy Impact Test
3.5.9 Differential scanning calorimetry (DSC) analysis
3.5.10 Thermogravimetric analysis (TGA)
3.5.11 Dynamic mechanical analysis (DMA)
3.5.12 Contact angle analysis
3.5.13 Degradation studies
3.6 Antimicrobial Analysis

3.6.1 Germination of stock culture and inoculum

3.6.2 Adhesion test

3.7 Biocompatibility Studies

3.7.1 Cell culture

3.7.2 Routine feeding and cell maintenance

3.7.3 Cell subculture

3.7.4 Cell proliferation test

3.7.5 Cell viability assay

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Properties of the Produced Hydroxyapatite (HA)

4.2.1 General appearance of HA at different calcination temperature

4.2.2 Thermo gravimetric analysis (TGA)

4.2.3 X-ray diffraction analysis

4.2.4 Field emission scanning electron microscopy

4.2.5 Fourier transforms infrared (FTIR) spectroscopy analysis

4.2.6 Elemental analysis

4.3 Modification of HA Surface

4.3.1 Fourier transforms infrared spectroscopy (FTIR)

4.3.2 X-ray fluorescence

4.3.3 X-ray photoelectron spectroscopy

4.3.4 Antimicrobial properties

4.4 Effects of HA Content on Properties of PLA-HA Composites

4.4.1 Mechanical properties
4.4.2 Morphological properties 80
4.4.3 Density 82
4.4.4 Fourier transforms infrared spectroscopy 83
4.4.5 Thermal properties 84
4.4.6 Differential scanning calorimetry 86
4.4.7 Dynamic mechanical properties 89

4.5 Effects of HA Modification on Properties of PLA-HA Composites 92
4.5.1 Morphological properties 92
4.5.2 Mechanical properties 95
4.5.3 Fourier transforms infrared spectroscopy of composites 98
4.5.4 Thermogravimetric properties 100
4.5.5 Differential scanning calorimetric properties 102
4.5.6 Dynamic mechanical properties 105

4.6 Effects of Impact Modification on Properties of PLA-HA Composites 110
4.6.1 Mechanical properties 110
4.6.2 Morphological properties 114
4.6.3 Fourier transforms infrared (FTIR) spectroscopy 116
4.6.4 Thermal properties 119
4.6.5 Differential scanning calorimetry (DSC) analysis 122
4.6.6 Dynamic mechanical properties 126
4.6.7 Wettability of PLA-HA composites 129

4.7 Antimicrobial Properties of PLA-HA Composites 132

4.8 In vitro Biocompatibility Study 136
4.8.1 Composite degradation pH 136
4.8.2 Effect of aging on tensile and flexural properties of PLA-HA composites 137
LIST OF TABLES

Table 2.1 Notable calcium phosphates and their selected properties 13
Table 2.2 Mechanical properties of HA and bone 16
Table 2.3 Properties of some FDA approved biodegradable polymers 17
Table 2.4 Biochemical constituent of bone 20
Table 2.5 Structural parameter of inorganic phase and elemental composition of calcified adult human tissues 22
Table 2.6 Selected major and minor bone mineral and the roles of their respective ions in the body 23
Table 2.7 Commonly combined properties of organic and inorganic phases in polymeric biocomposites 29
Table 3.1 List of chemicals used for the study 41
Table 3.2 Components of PLA-HA composites and their code names 47
Table 3.3 Components of PLA-HA composites and their code names 47
Table 3.4 Code names and composition of the composite categories 48
Table 3.5 Parameters of extrusion and injection moulding processes 49
Table 4.1 Colour of obtained HA after calcination of cow bone powder at different temperature 57
Table 4.2 Weight loss of raw cow bone powder (RAW) and apatites produced at different calcination temperature 59
Table 4.3 XRD parameters for standard HA, raw cow bone powder (RAW), and samples calcined at 650 °C, 750 °C, 850 °C and 950 °C 61
Table 4.4 Lattice parameters of raw bone powder (RAW) and HA obtained at different temperatures 62
Table 4.5 Crystallite size and crystallinity of raw bone powder (RAW) and HA obtained at different temperatures 62
Table 4.6 Composition and Ca/P value of major elements present in the HA, as obtained through EDX and XPS 68
Table 4.7 Binding energies of major elements present in the produced HA 69
Table 4.8 Elemental composition of the produced HA, as obtained through XRF and CHNS 70
Table 4.9 Elemental composition of the modified HA, as obtained through XRF and CHNS 73
Table 4.10 Challenge organisms and the zone of inhibition diameter formed with respect to modified and unmodified HA 77
Table 4.11 Thermal properties of PLA and PLA-HA composites containing different wt% HA 86
Table 4.12 DSC parameters of PLA and PLA-HA composites containing different wt% HA

Table 4.13 Thermal properties of PLA and its composite with unmodified and modified HA

Table 4.14 DSC parameters of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Table 4.15 Effectiveness coefficient C, Adhesion factor A, and tan δ parameters of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Table 4.16 Percentage decrease or increase in TS, TM, FS, FM and IS of PLA with respect to HA and BS addition

Table 4.17 Thermal properties of PLA and the different composite categories

Table 4.18 DSC properties of thermograms of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Table 4.19 DMA properties of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Table 4.20 Contact angle parameters of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5)

Table 4.21 Effect of aging on TS and TM of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) samples conditioned at 40 °C for 1, 3 and 5 weeks

Table 4.22 Effect of aging on FS and FM of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) samples conditioned at 40 °C for 1, 3 and 5 weeks

Table 4.23 Effect of aging on TS and TM of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) samples conditioned at 65 °C for 1, 3 and 5 weeks

Table 4.24 Effect of aging on FS and FM of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) samples conditioned at 65 °C for 1, 3 and 5 weeks
LIST OF FIGURES

Figure 3.1 Flow chart of methodology for production, modification and characterization of HA 41
Figure 3.2 Flow diagram of methodology for (a) production and characterization and (b) modification and characterization of PLA-HA composite 42
Figure 3.3 Pictorial illustration of extruder configuration during compounding of PLA, HA and BS 48
Figure 4.1 Variation in colour of produced HA after calcination of cow bone powder at (a) 650 °C (b) 750 °C, (c) 850 °C and (d) 950 °C 57
Figure 4.2 TGA spectra for raw cow bone powder (RAW) and HA obtained after calcination at 650 °C, 750 °C, 850 °C and 950 °C 59
Figure 4.3 XRD diffractograms for standard HA (ICDD), raw cow bone powder (RAW), and samples calcined at 650 °C, 750 °C, 850 °C and 950 °C 60
Figure 4.4 FESEM images for (a) raw cow bone powder (RAW), and samples calcined at (b) 650 °C, (c) 750 °C, (d) 850 °C and (e) 950 °C 64
Figure 4.5 FTIR spectra for raw cow bone powder (RAW) and HA obtained at 950 °C 66
Figure 4.6 EDX profile of the HA produced at calcination temperature of 950 °C 67
Figure 4.7 XPS spectrum of the HA 68
Figure 4.8 XPS spectrum of narrow scan of the elements (a) C, (b) Ca, (c) O, and (d) P, present in the HA 69
Figure 4.9 FTIR spectra of the produced HA, phosphate based surface modifier, and the modified HA 72
Figure 4.10 Schematic representation of hydroxyapatite surface before and after modification 72
Figure 4.11 XPS spectrum of modified HA 74
Figure 4.12 Inhibitory of (a) Escherichia coli by (i) unmodified HA, (ii) modified HA, (b) Pseudomonas auruginosa by (i) unmodified HA, (ii) modified HA, (c) Staphylococcus aureus by (i) unmodified HA, (ii) modified HA, (d) Salmonella enterica by (i) unmodified HA, (ii) modified HA 76
Figure 4.13 TS and TM of PLA-HA composites, containing different wt% HA content 78
Figure 4.14 FS and FM of PLA-HA composites, containing different wt% HA content 79
Figure 4.15 IS of PLA-HA composites, containing different wt% HA content 80
Figure 4.16 SEM images of fractures surface of (a) PLA and PLA-HA composites containing (b) 5% HA (c) 10% HA (d) 15% HA and (e) 20% HA

Figure 4.17 Density of PLA and PLA-HA composites containing different wt% HA content

Figure 4.18 FTIR spectra of PLA and PLA-HA composites containing different wt% HA

Figure 4.19 TGA curves of PLA and PLA-HA composites containing different wt% HA

Figure 4.20 DTG curves of PLA and PLA-HA composites containing different wt% HA

Figure 4.21 DSC thermograms of PLA and PLA-HA composites containing different wt% HA

Figure 4.22 Storage modulus curves of PLA and PLA-HA composites containing different wt% HA

Figure 4.23 Loss modulus curves of PLA and PLA-HA composites containing different wt% HA

Figure 4.24 Tan delta curves of PLA and PLA-HA composites containing different wt% HA

Figure 4.25 SEM images of PLA-HA composites containing 10 wt% (a) unmodified HA and (b) modified HA

Figure 4.26 Possible sites for bonding between PLA and hydroxyl groups of hydroxyapatite

Figure 4.27 TS and TM of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.28 FS and FM of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.29 IS of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.30 FTIR spectra of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.31 TGA curves and of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.32 DTG curves of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.33 DSC spectra of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.34 Storage modulus curves of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.35 Loss modulus curves of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)
Figure 4.36
Tan delta curves of PLA, PLA-unmodified HA composite (PUHA), and PLA-modified HA composite (PMHA)

Figure 4.37
Tensile strength (TS) and tensile modulus (TM) of PLA, PLA-modified HA composite (PHA), and PLA-modified HA composites containing 5 wt% (PHAB5), 10 wt% (PHAB10), and 15 wt% (PHAB15) HA content

Figure 4.38
Flexural strength (FS) and flexural modulus (FM) of PLA, PLA-modified HA composite (PHA), and PLA-modified HA composites containing 5 wt% (PHAB5), 10 wt% (PHAB10), and 15 wt% (PHAB15) HA content

Figure 4.39
Impact strength (IS) of PLA, PLA-modified HA composite (PHA), and PLA-modified HA composites containing 5 wt% (PHAB5), 10 wt% (PHAB10), and 15 wt% (PHAB15) HA content

Figure 4.40
SEM images of fractured surfaces of (a) PLA, (b) PLA-modified HA composite (PHA), PLA-modified HA composites containing (c) 5 wt% HA (PHAB5), (d) 10 wt% HA (PHAB10), and (e) 15 wt% HA (PHAB15)

Figure 4.41
FTIR spectra of PLA, hydroxyapatite, and biostrong

Figure 4.42
FTIR spectra of PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Figure 4.43
TGA thermograms of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Figure 4.44
DTG thermograms of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Figure 4.45
Possible reaction between PLA and BS during blending

Figure 4.46
DSC thermograms during first heating scan of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Figure 4.47
DSC thermograms during the second heating scan of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Figure 4.48
Storage modulus, E', curves of of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)

Figure 4.49
Tan delta curves of PLA, PLA-modified HA composite (PHA), PLA-modified HA composites containing 5 wt% HA (PHAB5), 10 wt% HA (PHAB10), and 15 wt% HA (PHAB15)
Figure 4.50 Contact angle values of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) 130

Figure 4.51 Images of water droplet on (a) PLA (b) PLA-unmodified HA composite (PUHA) (c) PLA-modified HA composite (PMHA), and (d) PLA-modified HA composites containing 5 wt% HA (PHAB5) 131

Figure 4.52 Inhibition effect of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) on Escherichia coli 134

Figure 4.53 Inhibition effect of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) on Staphylococcus aureus 135

Figure 4.54 The effect of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) on pH of complete osteoblast cell media 136

Figure 4.55 Growth of osteoblast cells on the surface of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) cultured for different number of days 140

Figure 4.56 Viability of osteoblast cells on the surface of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) cultured for different number of days 141

Figure 4.57 Viability of osteoblast cells on the surface of PLA, PLA-unmodified HA composite (PUHA), PLA-modified HA composite (PMHA), PLA-modified HA composites containing 5 wt% HA (PHAB5) after 7 days culture period 142
LIST OF ABBREVIATIONS

ACP Amorphous Calcium Phosphate
ATCC American Type Culture Collection
ALP Alkaline Phosphate
ASCs Adipose Derived Stem Cells
BS Biostrong
BMD Bone Mineral Density
CDHA Calcium-deficient Hydroxyapatite
CHNS Carbon, Hydrogen, Nitrogen, Sulfur
DB Database
DCPA Dicalcium Phosphate Anhydrous
DCPD Dicalcium Phosphate Dihydrate
DLPLGA D,L- Poly(lacti acid-co-glycolic acid)
DMA Dynamic Mechanical Analysis
DMEM Dulbecco’s modified Eagle’s medium
DSC Differential Scanning Calorimetry
DTG Differential Thermal Gravimetry
EDX Energy Dispersive X-ray
FA, FAp Fluorapatite
FBR Foreign Body Response
FDA Food and Drug Administration
FESEM Field Emission Scanning Electron Microscope
FM Flexural Modulus
FS Flexural Strength
FTIR Fourier Transforms Infrared Spectroscopy
FWHM Full Width at Half Maximum
HA Hydroxyapatite
HA-PLGA Hydroxyapatite, Poly(lacti acid-co-glycolic acid)
HDPE High Density Polyethylene
GP Giga Pascal
ICDD International Centre for Diffraction Data
IS Impact Strength
LB Luria Bertani
MPa Mega Pascal
MSCs Mesenchymal Stem Cells
MCPA Monocalcium Phosphate Anhydrous
MCPM Monocalcium Phosphate Monohydrate
PBS Phosphate Buffered Saline
PBS Poly(butylene succinate)
PCL Poly(caprolactone)
PDLA Poly(D- Lactide)
PEA Poly(ester amides)
PEG Poly(ethylene glycol)
PE Polyethylene
PEO Polyethylene Oxide
PET Polyethylene Terephthalate
PGA Poly(glycolic acid)
PHA Poly(lactic acid), Modified Hydroxyapatite
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAB5</td>
<td>Poly(lactic acid), Modified Hydroxyapatite, 5 wt% Biostrong</td>
</tr>
<tr>
<td>PHAB10</td>
<td>Poly(lactic acid), Modified Hydroxyapatite, 10 wt% Biostrong</td>
</tr>
<tr>
<td>PHAB15</td>
<td>Poly(lactic acid), Modified Hydroxyapatite, 15 wt% Biostrong</td>
</tr>
<tr>
<td>PHB</td>
<td>Polyhydroxybutyrate</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid)</td>
</tr>
<tr>
<td>PLA-HA</td>
<td>Poly(lactic acid), Hydroxyapatite</td>
</tr>
<tr>
<td>PLA-HA-BS</td>
<td>Poly(lactic acid), Hydroxyapatite, Biostrong</td>
</tr>
<tr>
<td>PLGA</td>
<td>Poly(lacti acid-co-glycolic acid)</td>
</tr>
<tr>
<td>PLLA</td>
<td>Poly(L-lactide)</td>
</tr>
<tr>
<td>PMHA</td>
<td>Poly(lactic acid), Modified Hydroxyapatite</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PPG</td>
<td>Poly(propylene glycol)</td>
</tr>
<tr>
<td>PUHA</td>
<td>Poly(lactic acid), Unmodified Hydroxyapatite</td>
</tr>
<tr>
<td>OA, OAp</td>
<td>Oxyapatite</td>
</tr>
<tr>
<td>OCP</td>
<td>Octacalcium Phosphate</td>
</tr>
<tr>
<td>RAW</td>
<td>Raw Hydroxyapatite</td>
</tr>
<tr>
<td>RP</td>
<td>Rapid Prototyping</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TM</td>
<td>Tensile Modulus</td>
</tr>
<tr>
<td>TS</td>
<td>Tensile Strength</td>
</tr>
<tr>
<td>TCP</td>
<td>Tetracalcium Phosphate</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal Gravimetric Analysis</td>
</tr>
<tr>
<td>α-TCP</td>
<td>α-Tricalcium Phosphate</td>
</tr>
<tr>
<td>β-TCP</td>
<td>β-Tricalcium Phosphate</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray Fluorescence</td>
</tr>
</tbody>
</table>
REFERENCES

Palacios, C. (2006). The role of nutrients in bone health, from A to Z. *Critical reviews in food science and nutrition, 46*(8), 621-628.

