INVESTIGATIONS OF NANOCOOLANT BASED Al_2O_3 FOR IMPROVING COOLING PERFORMANCE IN HOT PRESS FORMING

LIM SYH KAI

MASTER OF SCIENCES

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science in Manufacturing Engineering.

__
(Supervisor’s Signature)

Full Name : IR. DR. AHMAD RAZLAN BIN YUSOFF
Position : ASSOCIATE PROFESSOR
Date : 23 MAY 2018
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : LIM SYH KAI
ID Number : MMF15007
Date : 23 MAY 2018
INVESTIGATIONS OF NANOCOOLANT BASED Al₂O₃ FOR IMPROVING COOLING PERFORMANCE IN HOT PRESS FORMING

LIM SYH KAI

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science

Faculty of Manufacturing Engineering
UNIVERSITI MALAYSIA PAHANG

MAY 2018
ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to all those who provided me the possibility to complete this master degree research. This project would not have been possible without the generous assistance, cooperation and support of a number of people.

A special gratitude goes to my supervisor, Assoc. Prof. Ir. Dr. Ahmad Razlan bin Yusoff, who contributed significantly stimulating suggestions, continuous encouragement, valuable guidance and advice. His professional supervision and support truly help the progression and smoothness of my project in which his cooperation is highly appreciated.

My sincere appreciation goes to my lab mates, Ms. Norlida binti Jamil, Mr. Mohd Fawzi bin Zamri and Ms. Nik Nurul Husna binti Muhmed Razali for their continuous support. Besides, a million thanks to Assoc. Prof. Dr. Abdul Aziz bin Jaafar, Dr. Zamzuri bin Hamedon and Ms. Law Hoon Chit in sharing knowledge and ideas generously and giving me helping hands to resolve my doubts in research jobs. Also, I would like to convey my gratefulness to laboratory assistants, Mr. Aidil Shafiza bin Safiee, Mr. Shahandzir bin Baharom and Mr. Mohd Nursyazwan bin MD Talip for the guidance in using the testing equipment.

Last but not least, I acknowledge my sincere indebtedness and gratitude to my lovely family for their continuous support, encouragement and sacrifice throughout my life. A special thanks to my parents who consistently encouraged me to pursue my studies to a higher education level as well as with their mental and physical support, their tolerance of my ignorance and naïve mistakes.
Pembentukan kepingan keluli panas (HPF) untuk membangunkan UHSS boron keluli untuk panel badan dalam kenderaan menawarkan penggunaan bahan api yang efisien untuk mengurangkan pelepasan gas karbon dioksida oleh pengurangan berat badan dan meningkatkan keselamatan penumpang kerana sifat mekanikal yang tinggi. Boron keluli dipanaskan sehingga suhu austenitik dan kemudian disejutkan dengan cepat dalam sebuah acuan dalam masa pelindapkejutan tertentu untuk mempamerkan sifat transformasi martensit. Pada masa ini, air digunakan sebagai cecair penyejuk dalam proses HPF untuk menghilangkan keluli boron dalam sebuah acuan tertutup dengan saluran bendalir penyejukan. Walau bagaimanapun, untuk meningkatkan prestasi acuan HPF dan meningkatkan sifat mekanikal boron keluli ditekan panas, bendalir dengan sifat termal yang lebih baik akan digunakan dan bukannya air biasa. Semasa operasi pelindapkejutan, kadar cecair penyejukan optimum dan pengagihan suhu homogen pada kekosongan panas ke arah pencapaian transformasi mikrostruktur martensitic serta sifat mekanikal yang tinggi. Kajian ini menyebarkan nanopartikel Al\textsubscript{2}O\textsubscript{3} dari kepekatan isipadu sebanyak 0.2 hingga 1.0% dengan purata diameter 13 nm ke dalam tiga peratusan air ke etilena glikol seperti 60%:40%, 50%:50%, dan 40%:60% dengan menggunakan kaedah penyediaan dua langkah. Kedua-dua parameter utama dalam prestasi kadar cecair peny ejukan adalah kekonduksian terma dan kelikatan dinamik. Pengedaran pemindahan haba pekali panas dengan nanocoolant dan air sejuk disimulasikan untuk analisis haba sementara dalam simulasi unsur terhingga ANSYS untuk menilai peningkatan pemindahan haba konveksi dan menentukan kadar cecair penyejukan optimum bendalir peny ejukan sistem dalam acuan HPF. Data simulasi kemudian dibandingkan dengan penemu eksperimen untuk tujuan pengesahan. Telah didapati bahawa peningkatan kekonduksian terma tertinggi adalah 10% lebih tinggi daripada bendalir asas untuk kepekatan volum 1.0% Al\textsubscript{2}O\textsubscript{3} pada 55 °C dalam 60%:40% (W/EG). Walau bagaimanapun, peningkatan kelikatan dinamik yang paling tinggi diukur sebanyak 39% untuk kepekatan volum 1.0% Al\textsubscript{2}O\textsubscript{3} dalam 40%-60% (W/EG) pada 25 °C. Koeffisien pemindahan haba konveksi kepekatan 1.0% dalam 60%:40% (W/EG) pada 25 °C ditingkatkan dengan 25.4% lebih baik daripada 50%:50% dan 40%-60% (W/EG) cecair. Oleh itu, kajian ini memperakukan penggunaan Al\textsubscript{2}O\textsubscript{3} dalam campuran 60%-40% (W/EG) dengan kepekatan volum Al\textsubscript{2}O\textsubscript{3} kurang daripada 1.0% untuk aplikasi dalam saluran bendalir peny ejukan acuan HPF. Itu juga terbukti bahawa corak pengedaran suhu model analisis unsur terhingga bersesuaian dengan hasil eksperimen. Kekuatan tegangan dan nilai kekerasan Vickers bahagian yang ditekan panas dinilai masing-masing kira-kira 1,550 MPa dan 588 HV. Sebagai kesimpulan, nanocoolant sebagai cecair penyejuk dengan pemindahan haba konveksi yang lebih tinggi berbanding dengan air sejuk boleh mengurangkan masa pelindapkejutan dalam proses HPF.
ABSTRACT

Hot press forming (HPF) to develop UHSS of boron sheet metals for vehicle inner body panels offers efficient fuel consumption in order to reduce carbon dioxide gas emissions by weight reduction and improves passenger safety because of its high mechanical properties. The sheet metal is heated up to austenitic temperature and then rapidly quenched in an enclosure dies in a certain quenching time to exhibit martensitic transformation phase. Currently, water is used as coolant in the HPF process to quench boron steels in a closed die with a cooling channel. However, to enhance the performance of HPF dies and increase the mechanical properties of hot pressed boron steel, the fluid with better thermal properties will be used instead of normal water. During the quenching operation, an optimum cooling rate and homogeneous temperature distribution on hot blanks towards the achievement of the martensitic microstructure transformation as well as high mechanical properties. This study dispersed Al$_2$O$_3$ nanoparticles from the range of 0.2 to 1.0% volume concentration with an average diameter of 13 nm into three volume percentages of water to ethylene glycol such as 60%:40%, 50%:50%, and 40%:60% by using the two-step preparation method. The two main parameters in cooling rate performance are thermal conductivity and dynamic viscosity. The heat transfer distribution of the hot blanks with nanocoolant and chilled water are simulated for transient thermal analysis in finite element simulation via ANSYS to evaluate the enhancement of convection heat transfer coefficient and determine the optimum cooling rate of cooling system in HPF tool. The simulation data were then compared with experimental findings for validation purpose. It was found that the highest enhancement of thermal conductivity was observed to be 10% higher than base fluid for 1.0% volume concentration of Al$_2$O$_3$ at 55 °C in 60%:40% (W/EG). However, the highest enhancement of dynamic viscosity was measured to be 39% for 1.0% volume concentration of Al$_2$O$_3$ in 40%:60% (W/EG) at 25 °C. The convective heat transfer coefficient of 1.0% concentration in 60%:40% (W/EG) at 25 °C is enhanced by 25.4% better than that of 50%:50% and 40%:60% (W/EG) base fluid. Therefore, this study recommends the use of Al$_2$O$_3$ in 60%:40% (W/EG) mixture with volume concentration of Al$_2$O$_3$ less than 1.0% for application in cooling channel of HPF dies. It was also evident that the pattern of the temperature distribution of the finite element analysis model was in agreement with the experimental results. The tensile strength and Vickers hardness values of the hot pressed parts were evaluated to be approximately 1,550 MPa and 588 HV, respectively. In conclusion, nanocoolant as cooling fluid with higher convection heat transfer coefficient compared to the chilled water can reduce the quenching time of HPF process.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 4

1.3 Objectives 6

1.4 Scope of Study 6

1.5 Hypothesis 8

1.6 Thesis Organisation 8

CHAPTER 2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Background of Nanofluids as Coolant 12

2.3 Properties of Water-Ethylene Glycol Based Nanocoolants 13
3.5.3 Boundary conditions and constraint parameters 69
3.5.4 Meshing 70
3.5.5 Numerical simulation 72
3.6 Experimental Approach of Hot Press Forming 74
 3.6.1 Sample preparation 76
 3.6.2 Location of thermocouples 77
 3.6.3 Hot press forming of boron steel sheet metal 78
 3.6.4 Experimental study of heat transfer distribution 80
 3.6.5 Tensile test measurements 83
 3.6.6 Micro-hardness measurements 85
 3.6.7 Metallographic observation study 86
3.7 Summary 88

CHAPTER 4 RESULTS AND DISCUSSION 89

4.1 Introduction 89
4.2 Thermal Physical Properties 90
 4.2.1 Thermal conductivity of nanocoolant 90
 4.2.2 Dynamic viscosity of nanocoolant 94
 4.2.3 Heat transfer coefficient of nanocoolant 98
4.3 Thermal Analysis Results and Validation with Hat-Shaped Tools 101
 4.3.1 Comparison of nanocoolant with chilled water in simulation 104
 4.3.2 Temperature validation of hot press forming with thermal analysis 106
4.4 Experimental Analysis of Hot Pressed Boron Steel 107
 4.4.1 Microstructural transformation analysis 107
 4.4.2 Tensile strength analysis 111
4.4.3 Hardness analysis of hot formed boron steel

4.5 Summary

CHAPTER 5 CONCLUSION

5.1 Conclusion

5.2 Contributions to Knowledge

5.3 Future Works

REFERENCES

APPENDIX A G-code for cutting tensile test specimen from hat-shaped part

APPENDIX B Heat transfer coefficient values of nanocoolant

APPENDIX B1 Sample of cooling rate for heated sheet metal blank

APPENDIX C Sedimentation observation of aluminium oxide/water-EG mixture after a month of preparation

APPENDIX D Sample of tensile strength and hardness measurement

List of publication
LIST OF TABLES

Table 2.1
Thermo-physical property of different types of metal and liquid
13

Table 2.2
Various types of nanoparticles and micrograph images
17

Table 2.3
Types of nanoparticles dispersed in nanofluids
20

Table 2.4
Dynamic viscosity investigations for different types of nanocoollants
24

Table 2.5
Thermal conductivity study for diverse types of nanofluids
26

Table 2.6
Chemical compositions of boron steel weight percentage and mechanical properties before and after quenching operation
28

Table 2.7
Thermal-physical properties of boron steel
29

Table 2.8
Stamping process in hot temperature conditions
39

Table 2.9
Results of contact pressure and standard deviation of HTC
42

Table 3.1
Properties of nanoparticles used in experiment
57

Table 3.2
Properties of Ethylene Glycol solution
58

Table 3.3
Thermal conductivity models for nanocoollant
62

Table 3.4
Dynamic viscosity models for nanocoollant
64

Table 3.5
Material properties of SKD 61 and 22MnB5 at room and hot temperature
67

Table 3.6
Boundary condition for thermal analysis simulation
69

Table 3.7
Results of three different meshing sizes for hat-shaped tool
72

Table 3.8
The features of mechanical press machine model OCP 80
79

Table 3.9
The features of hydraulic press machine
80

Table 3.10
Specifications of Universal Tensile Machine
84

Table 3.11
Specifications of Wilson Vickers 402 MVD machine
86

Table 3.12
Specification of LOM, Olympus BX51M machine
87

Table 4.1
Temperature distribution for HPF tools and heated blank
104

Table 4.2
Micrographs of boron steel blank with several quenching time periods
108

Table 4.3
Tensile strength value for several specimens of hot formed boron steel
111

Table 4.4
Hardness value for several specimens of hat-shaped boron steel
114
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Tensile strength between UHSS and typical sheet metal</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Mechanical properties of boron steel before and after hot forming process</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Thesis organisation</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Freezing point and boiling point of water-EG mixture</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>One-step method technique</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Two-step method technique</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Graph of velocity pattern versus velocity</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Temperature, time and transformation diagram of boron steel at various cooling rates</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Direct hot forming process</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Indirect hot press forming</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Hat-shape profile bending operation</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Various types of heating system (a) Roller hearth furnace, (b) Induction heating and (c) Electrical resistance heating</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Induction heating operation (a) Schematics diagram of the customized induction furnace and (b) Variation of temperature curve as function of time for several feeding speed</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>Localize heating (a) Positioning two rectangular electrodes on the blank and the temperature distribution diagram; and (b) Result of punching load for different heating temperatures in shearing region</td>
<td>35</td>
</tr>
<tr>
<td>2.12</td>
<td>Forming Limit Diagram of B-pillar</td>
<td>36</td>
</tr>
<tr>
<td>2.13</td>
<td>Simulation of B-pillar in hot press forming process</td>
<td>37</td>
</tr>
<tr>
<td>2.14</td>
<td>Geometries of tools and steel sheet for hat-shape and V-shape</td>
<td>37</td>
</tr>
<tr>
<td>2.15</td>
<td>Degree of springback after V-shape bending with the relationship of temperature in (a) Bending region; and (b) Flange region</td>
<td>38</td>
</tr>
<tr>
<td>2.16</td>
<td>Hot forming process of UHSS sheet metal by using resistance heating</td>
<td>39</td>
</tr>
<tr>
<td>2.17</td>
<td>Relationship between the maximum stamping load and heating temperature of UHSS sheet metal</td>
<td>40</td>
</tr>
<tr>
<td>2.18</td>
<td>Experimental setup and instrument for heat transfer coefficient testing</td>
<td>42</td>
</tr>
<tr>
<td>2.19</td>
<td>Relation between HTC as function of contact pressure for different tool temperatures</td>
<td>43</td>
</tr>
<tr>
<td>2.20</td>
<td>Thermal contact resistance (a) Ideal thermal contact; (b) Actual thermal contact</td>
<td>43</td>
</tr>
</tbody>
</table>
Figure 2.21 Schematic diagram of hot press forming tool design
Figure 2.22 Schematic diagram of the quenching tool integrated with hot forming operation
Figure 2.23 Interactions between the effects of heat transfer, microstructural evolution and deformation
Figure 2.24 Temperature changes in heat transfer analysis
Figure 2.25 Tool cooling performance between SKD 61 and HTCS 150 tool materials with same cooling channel parameter
Figure 2.26 Heat transfer distributions on the dies during quenching step took completely 20 s
Figure 2.27 Hot stamping with several holding times in dies
Figure 3.1 Flow chart of introducing nanocoolant as cooling medium for HPF process
Figure 3.2 FESEM result of dry Al₂O₃ nanoparticles at X300,000 magnification
Figure 3.3 Al₂O₃ nanocoolant immersed in ultrasonic bath heater
Figure 3.4 Nanocoolant samples of Al₂O₃/water-EG mixtures after a month of preparation
Figure 3.5 (a) Schematic diagram of thermal conductivity measurement; (b) Experiment setup for thermal conductivity measurement.
Figure 3.6 (a) Schematic diagram of dynamic viscosity measurement; (b) Experiment setup for dynamic viscosity measurement
Figure 3.7 Flow chart of thermal finite element analysis on HPF
Figure 3.8 Simulation starts from the steady-state and ends with the transient thermal analysis
Figure 3.9 Geometric modelling in ANSYS simulation software
Figure 3.10 Hat-shaped tool imported into ANSYS simulation software
Figure 3.11 Surface contact between sheet metal blank and dies
Figure 3.12 The grid distribution of Hat-shaped tool and blank
Figure 3.13 Temperature distribution of hot pressed blank by using nanocoolant from ANSYS simulation
Figure 3.14 The process sequences of HPF experimental analysis
Figure 3.15 Pre-forming process of hat-shaped samples
Figure 3.16 Thermocouples location in HPF tool (a) Schematic diagram (b) Three thermocouples in upper tool
Figure 3.17 Fabrication of hat-shape sample by using mechanical press machine, OCP 80
Figure 3.18 Hydraulic press machine used in hot forming operation
Figure 3.19 The experimental equipment setup for hot press forming tool
| Figure 3.20 | Hot press forming process flow of hat-shaped blank | 82 |
| Figure 3.21 | Location of hot formed samples for tensile specimen, hardness test and microstructure analysis | 84 |
| Figure 3.22 | Specimen for tensile strength test | 84 |
| Figure 3.23 | Tensile strength measurement with Universal Tensile Machine | 85 |
| Figure 3.24 | Hardness measurement with Vickers Micro-hardness Machine, Wilson Vickers 402 MVD | 86 |
| Figure 3.25 | Microstructural analysis by using light optical microscopy machine | 87 |
| Figure 4.1 | Variation of thermal conductivity enhancement as function of nanoparticles volume concentrations in W/EG mixture at 25 °C | 91 |
| Figure 4.2 | Thermal conductivity of different nanoparticle concentrations for three different mixture of W/EG base fluids | 94 |
| Figure 4.3 | Variation of viscosity ratio as fraction of nanoparticle volume concentrations in W/EG mixture at 25 °C | 95 |
| Figure 4.4 | Viscosity of different nanoparticle concentrations for three different mixture of water-EG base fluids | 98 |
| Figure 4.5 | Relationship between thermal conductivity as function of nanoparticles volume concentration for three different mixture base fluids | 99 |
| Figure 4.6 | Distribution of heat transfer coefficient of 60%:40% water-EG mixture based Al₂O₃ nanocoolant | 101 |
| Figure 4.7 | Thermal analysis at steady state condition for HPF simulation | 102 |
| Figure 4.8 | Transient thermal analysis for HPF simulation by introducing nanocoolant | 103 |
| Figure 4.9 | Transient thermal analysis for HPF simulation by introducing chilled water | 103 |
| Figure 4.10 | Heat transfer distribution between nanocoolant and chilled water for hat-shaped tool | 105 |
| Figure 4.11 | Comparison of heat transfer distribution between FEA and experiments for hat-shaped tool | 107 |
| Figure 4.12 | Ultimate tensile strength of blank samples at several cooling conditions | 112 |
| Figure 4.13 | Vickers hardness reading HV1 with diamond shaped indent 50 µm | 114 |
| Figure 4.14 | Hardness value of hot pressed samples at several cooling conditions | 115 |
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Heat transfer area</td>
</tr>
<tr>
<td>B</td>
<td>Bending length</td>
</tr>
<tr>
<td>C_{bf}</td>
<td>Specific heat of base fluid</td>
</tr>
<tr>
<td>C_{nf}</td>
<td>Specific heat of nanocoolant</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat of particle</td>
</tr>
<tr>
<td>D</td>
<td>Pipe length</td>
</tr>
<tr>
<td>dT</td>
<td>Temperature difference</td>
</tr>
<tr>
<td>dX</td>
<td>Differential length</td>
</tr>
<tr>
<td>E</td>
<td>Modulus elasticity</td>
</tr>
<tr>
<td>h</td>
<td>Heat transfer coefficient</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>k_{bf}</td>
<td>Thermal conductivity of base fluid</td>
</tr>
<tr>
<td>k_{nf}</td>
<td>Thermal conductivity of nanocoolant</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>P</td>
<td>Loading force</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number of nanocoolant</td>
</tr>
<tr>
<td>q</td>
<td>Heat transfer</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>t</td>
<td>Thickness</td>
</tr>
<tr>
<td>T_1</td>
<td>Inlet temperature</td>
</tr>
<tr>
<td>T_2</td>
<td>Outlet temperature</td>
</tr>
<tr>
<td>T_b</td>
<td>Bulk temperature</td>
</tr>
<tr>
<td>T_f</td>
<td>Surrounding fluid temperature</td>
</tr>
<tr>
<td>T_s</td>
<td>Surface temperature</td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>μ_{bf}</td>
<td>Dynamic viscosity of base fluid</td>
</tr>
<tr>
<td>μ_{nf}</td>
<td>Dynamic viscosity of nanocoolant</td>
</tr>
<tr>
<td>ω</td>
<td>Weight concentration</td>
</tr>
<tr>
<td>ϕ</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>ρ_{bf}</td>
<td>Density of base fluid</td>
</tr>
<tr>
<td>ρ_{nf}</td>
<td>Density of nanocoolant</td>
</tr>
<tr>
<td>ρ_p</td>
<td>Density of particle</td>
</tr>
<tr>
<td>ϕ</td>
<td>Volume concentration</td>
</tr>
<tr>
<td>ϕ_i</td>
<td>Initial volume concentration</td>
</tr>
<tr>
<td>ϕ_f</td>
<td>Final volume concentration</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSS</td>
<td>Advanced High Strength Steel</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminium Oxide</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials International</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating and Air Conditioning Engineers</td>
</tr>
<tr>
<td>BR</td>
<td>Base Ratio</td>
</tr>
<tr>
<td>CuO</td>
<td>Copper Oxide</td>
</tr>
<tr>
<td>EG</td>
<td>Ethylene Glycol</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>FLD</td>
<td>Forming Limit Diagram</td>
</tr>
<tr>
<td>FCNT</td>
<td>Functionalised Carbon Nanotube</td>
</tr>
<tr>
<td>DIN EN ISO</td>
<td>German Institute European Standard</td>
</tr>
<tr>
<td>HTC</td>
<td>Heat Transfer Coefficient</td>
</tr>
<tr>
<td>HSS</td>
<td>High Strength Steel</td>
</tr>
<tr>
<td>HTCS</td>
<td>High Thermal Conductivity Tool Steel</td>
</tr>
<tr>
<td>HPF</td>
<td>Hot Press Forming</td>
</tr>
<tr>
<td>SKD</td>
<td>Hot Work Tool Steel</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>LOM</td>
<td>Light Optical Microscopy</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Multi-walled Carbon Nanotube</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon Carbide</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon Oxide</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>UHSS</td>
<td>Ultra-High Strength Steel</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Tensile Machine</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
</tr>
</tbody>
</table>
REFERENCES

