Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018

NUSYS'18

Editors: Md Zain, Z., Ahmad, H., PEBRIANTI, D., Mustafa, M., Abdullah, N.R.H., Samad, R., Mat Noh, M. (Eds.)

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
https://doi.org/10.1007/978-3-030-00979-3

Library of Congress Control Number: 2018955576

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Contents

Development and Control of Biped Walking Robot
Using PI Control .. 299
K. H. Tan, N. S. M. Nor and M. Z. Md Zain

Improved Generalized Cross Correlation Phase Transform
Algorithm for Time Difference of Arrival Estimation 315
Chee Sheng Tan, Rosmiwati Mohd-Mokhtar and Mohd Rizal Arshad

Performance Evaluation of PID Controller Parameters Gain
Optimization for Wheel Mobile Robot Based on Bat Algorithm
and Particle Swarm Optimization 323
Nur Aisyah Syafinaz Suarin, Dwi Pebianti, Nurajmin Qasrina Ann,
Luhur Bayuaji, Muhammad Syafrullah and Indra Riyanto

Restoration of Kids Leg Function Using Exoskeleton Robotic
Leg (ExRoLEG) Device 335
Mohd Azrul Hisham Mohd Adib, Szeto Yang Han, Prashant Raj Ramani,
Low Jian You, Law Ming Yan, Idris Mat Sahat
and Nur Hazreen Mohd Hasni

Simulated Kalman Filter Algorithm with Improved Accuracy 343
Mohd Falfazli Mat Jusof, Ahmad Azwan Abd Razak,
Shuhairie Mohammed, Ahmad Nor Kasruddin Nasir,
Mohd Helmi Suid, Mohd Ashraf Ahmad and Zuwairie Ibrahim

Initial Study of Multiple Excitation Source for Electrical
Resistance Tomography in Steel Pipe Application 353
Yasmin Abdul Wahab, Syazwani Amatina Syakyean, Zainah Md. Zain,
Normaniha Abd Ghani and Maziyah Mat Noh

Simultaneous Perturbation Stochastic Approximation Optimization
for Energy Management Strategy of HEV 361
Muhammad Fadhlan Afif Nazri
and Muhammad Ikram Mohd Rashid

Part III Applied Electronics and Computer Engineering

Image Processing-Based Flood Detection 371
Performance Evaluation of PID Controller Parameters Gain Optimization for Wheel Mobile Robot Based on Bat Algorithm and Particle Swarm Optimization

Nur Aisyah Syafinaz Suarin, Dwi Pebrianti, Nurnajmin Qasrina Ann, Luhur Bayuaji, Muhammad Syafrullah and Indra Riyanto

Abstract Tuning Proportional Integral Differential (PID) controller to the best value of gains is essential to develop a reliable controller for wheel mobile robot (WMR). WMR is a nonlinear system that falls into category of underactuated system where the inputs number is less than output number. The selection of PID gains for such system is highly difficult. Optimization of PID controller using Bat Algorithm (BA) is presented in this paper. BA as a nature inspired algorithm is used to search the optimum PID gains for wheel mobile robot i.e. an off-the-shelf mobile robot called mBot so that the system will have good performance in term of steady state error and time response. Kinematic model of mBot robot is used to develop a simulation model to simulate the system. The result of tuning and optimizing PID gains using BA is compared with Particle Swarm Optimization (PSO). The tuning result by using BA outperformed PSO methods with faster processing time and best values of gain Kp and Kd to be applied in the WMR. The PID gain values obtained from the BA and PSO are then applied on the WMR model. The performance of BA shows better result compared to PSO. Settling time for BA is 10.62 s compared with PSO 11.1 s, rise time for BA is 3.24 s while PSO 2.68 s, percentage overshoot of BA 28.2% compared with PSO 28.4%. Thus, the result proven that BA is able to optimize gain of PID controller better than PSO.

N. A. S. Suarin • D. Pebrianti • N. Q. Ann
Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Pekan, Malaysia
e-mail: MEG18002@stdmmp.ump.edu.my; dwipebrianti@ump.edu.my

N. A. S. Suarin
e-mail: syahfinaz01@gmail.com

L. Bayuaji
Faculty of Computer Science and Software Engineering, Universiti Malaysia Pahang, Pekan, Malaysia

D. Pebrianti • L. Bayuaji • M. Syafrullah
Magister of Computer Science, Universitas Budi Luhur, Jakarta 12260, Indonesia

I. Riyanto
Faculty of Engineering, Universitas Budi Luhur, Jakarta 12260, Indonesia

© Springer Nature Singapore Pte Ltd. 2019