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Abstract 

Desalination based on membrane technology is one of the approaches which has 

been extensively explored to tackle the challenge of increasing demand of clean 

water. Although reverse osmosis (RO) process has been applied for a long time, 

the promising forward osmosis (FO) membrane desalination is viewed as a 

potentially viable energy efficient performance technology. But, the main 

problem in FO process is the lack of suitable draw solutes that can be efficiently 

regenerated. A distinct advantage using thermo-responsive ionic liquids (ILs) is 

the efficient in regenerating the draw solute via thermally stimulation. These 

draw solutes achieved high water flux 1-butyl-3-methylimidazolium 

tetrafluoroborate ([Bmim][BF4]) (0.71 LMH) and tetrabutylphosphonium 

trifluoroacetate ([P4444][CF3COO]) (0.44 LMH) compared to NaCl (0.33 LMH). 

In this research, the phase separation via thermally stimulated liquid-liquid phase 

separation is achievable.  

Keywords: Desalination, Draw solution, Forward Osmosis, Ionic liquid, Water 

flux. 
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1.  Introduction 

River are the main source of water supply in Malaysia, contributing about 97% of 

total usage, with groundwater making up the balance. Together with an average 

annual rainfall of 3,000 mm, the country is rich in water resources and estimated of 

566 billion m3 of water runs off into the river systems each year [1].  

However, the demand for clean water is increasing rapidly due to the growth of 

population, expansion in urbanization, industrialization and agricultural irrigation. 

Lee et al. [1] reported that there are a few cities with high density of population 

such as Lembah Klang, Pulang Pinang and Johor Bahru, which required higher 

demands on water [1]. 

Besides that, the Malaysia’s natural climate variability is heavily influenced 

by the Southeast Asia Maritime monsoon. During heavy rainy season, floods 

affect the lives of many people and cause great damage, destruction of property 

and water quality problems. Although many rivers are still in good condition, 

some are severely polluted by mud, sewage and solid waste [2]. Therefore, 

seawater desalination offers a reliable source of water supply that is not climate 

dependent [3, 4]. 

Based on studies by Greelee et al. [5], desalination processes fall into two main 

categories, thermal processes and membrane processes. The common processes for 

thermal process are Multi-Effect Distillation (MED) and Multi-Stage Flash (MSF). 

Many membrane-based modern technologies have been developed for seawater 

desalination and water reclamation. RO is a well-known process but is considerably 

expensive and not environmental friendly [6]. RO uses an average of prime electric 

energy 4 kW which shown in Table 1 below to produce one cubic meter of product 

water, whereby results in emission of 1.8 kg CO2 per cubic meter of product water. 

In addition, fouling is inevitable in RO systems, thereby requiring the use of 

chemical cleaning agents and increasing the cost of water production by RO 

technology [7]. 

On the other hand, FO has been considered as an emerging membrane 

technology for water reuse and desalination of seawater. This spontaneous process 

demonstrates great potential to achieve energy efficient separations [10]. 

Furthermore, the major advantages of FO over RO are whether it operates at low 

or no hydraulic pressure at all, it can achieve high water recovery, and a lower 

tendency for membrane fouling. Generally, FO desalination processes involve two 

steps: osmotic dilution of the draw solution and fresh water generation from the 

diluted draw solution [11]. 

A careful analysis identified a low water flux, high reverse salt flux, and toxic by-

products as the main drawbacks of using draw solutions. Therefore, a novel and 

appropriate draw solute that can overcome these limitations is essential. The ideal 

draw solutes for osmosis driven desalination that must have a high osmotic pressure 

in characteristics, zero toxicity, easy recovery and low cost. Many studies have been 

done to discover suitable draw solutes [12]. Akther et al. [13] explained that FO 

hybrid systems use thermos-responsive draw solutions, consume less total energy for 

desalting high-salinity waters and can be economically more feasible than other 

desalination technologies. 
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Many compounds have been proposed as thermally responsive draw solutes as 

listed in Table 2, including magnetic nanoparticles [14, 15], polymers [16], 

hydrogels [17], and ionic liquids [18, 19]. These draw solutes can be regenerated 

by various approaches, and they have certain advantages; however, they also 

involve significant drawbacks [20]. Therefore, there is a need to identify potential 

candidate of draw solution for FO system.  

Ionic liquid (IL) are non-volatile, designable and a green solvent with wide liquid 

temperature range, excellent chemical and thermal stability [21-23]. All these unique 

characteristics are suitable for excellent draw solution. The comprehensive study in 

responsive IL as draw solutes focusing more on molecular structure design may attain 

better balance between hydrophilicity and hydrophobicity. There are two 

classification of thermo-responsive IL which are Upper Critical Solution 

Temperature (UCST) and Lower Critical Solution Temperature (LCST) behavior 

types [24].  

The phase separations for UCST-type IL occur during cooling. Contrary to the 

UCST-type IL, the LCST-type IL phase separation occurs during heating. 

Interestingly, based on the mechanism of the LCST-type IL behaviour, more 

hydrophobic molecules facilitate easier regeneration and are perhaps more suitable 

for colder climate because both FO and regeneration are done at respective low 

temperatures. Otherwise, more hydrophilic (UCST-type IL) could be designed for 

use in the warmer climate [19]. 

Table 1. Comparison of estimated energy 

requirement for desalination technologies. 

Desalination 

technique 

Equivalent energy 

requirement (kWh/m3) 
Reference 

FO 3-8 Moon and Lee [8] 

RO 4-6 Moon and Lee [8] 

MED  15-58 Semiat [9] 

MSF 21-58 Semiat [9] 

Table 2. Summary of several types of thermo-responsive draw solutes. 

Types Name Findings Reference 
Magnetic nano-

particles 

(PSSS-PNIPAM), 

(PNVCL), 
(POEGMA) 

High water flux but poor 

regeneration and enhance 
membrane fouling. 

Zhao et al. [14], Ling et al. [15] and 

Yildiz and Yildiz [25] 

Polymer (PPG), (PEI), OPT Low osmotic pressure, low water 

flux and poor regeneration. 

Kim et al. [16] and Chai and Hu [20] 

Hydrogel (PNIPAM) 

(PNIPAM-co-PSA) 

Low water flux, and weak 

mechanical toughness. 

Li et al. [17] Wei et al. [26] and 

Razmjou et al. [27] 

Ionic liquids (P4444DMBS), 
(P4444TMBS) 

(P4448Br), 

([Hbet][NTf2]) 

High osmotic pressure and can be 
directly reused as draw solution 

without further treatment. 

Cai et al. [18], Zhong et al. [19] and 
Cai and Hu [20], Hu et al. [28] 

2.  Methodology  

2.1. Material 

1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) (98%), 

tetrabutylphosphonium hydroxide (40 wt. %), trifluoracetic acid for Synthesis and 

sodium chloride were purchased from Sigma Aldrich. The commercial FO 
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semipermeable membrane cellulose triacetate (CTA) flat sheet was purchased from 

Hydration Technologies Inc. (HTI, USA). 

2.2. Ionic liquid synthesis 

Tetrabutylphosphonium trifluoroacetate ([P4444][CF3COO]) was synthesized by 

neutralization process. Equal molar amount of tetrabutylphosphonium hydroxide and 

trifluoroacetic acid were added to a three-necked round bottom flask equipped with 

reflux condenser, a magnetic stirrer, and N2 gas inlet and outlet. After 24 h of stirring, 

the solution was added to a dichloromethane (CH2Cl2)/water biphasic system in 

separatory funnel for extraction process as shown in Fig. 1. The dichloromethane layer 

was washed several times with distilled water. Then, the solution was evaporated using 

rotary evaporator as the dichloromethane layer was vaporised easily at its boiling point 

of 39.6 °C. After evaporation, the left solution is then dried in vacuum at 70 °C for at 

least 24 hours before stored in centrifuge tube [29]. Lastly, ([P4444][CF3COO]) have 

been characterized using FTIR spectroscopic techniques to confirm the IL structure. 

  

(a) Neutralization process. (b) CH2Cl2/water biphasic system. 

Fig. 1. Synthesis of ionic liquid experiment set up. 

2.3. Determination of water flux 

FO experiments were conducted through a lab-scale circulating set-up with the feed 

solution of 0.04 M NaCl and the draw solution of 0.087 M NaCl as a reference and 

is illustrated in Fig. 2. The same concentration of 0.087 M (Bmim) (BF4)(UCST-

type IL) and ([P4444][CF3COO]) (LCST-type IL) were prepared as draw solution. 

The amount of 300 mL feed solution and draw solution were used to carry out the 

FO process at room temperature. The peristaltic pump drive the draw and feed 

solutions to flow in a loop at each side of membrane cell with co-currently flow 

rate of 60.36 mL/ min [30].  

The water flux, Jw (LMH) in FO process was measured by the weight of feed 

solution monitored through balance that linked with a computer which able to 
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export the data automatically at a 5 minutes interval until the process accomplished, 

and calculated by Eq. (1) [31] where:  

tA

V
J

m

w





.
                                             (1) 

The ΔV (L) is the volume change of the feed solution over a time Δt (H) and Am 

(m2) is the effective membrane surface area. 

 

Fig. 2. Schematic diagram of FO setup. 

2.4. Draw solution phase separation 

Once FO process was completed, thermally stimulated phase separation was 

employed to separate water from the diluted IL draw solution. For UCST-type  IL, 

the diluted draw solution was cooling down below the critical temperature to 

undergo liquid-liquid phase separation. Unlike UCST-type IL, the diluted LCST-

type IL need to be heated up above the critical temperature to undergo liquid-liquid 

phase separation.  

The diluted IL draw solution was poured into the rotary flask and evaporated 

using rotatory evaporator to reduce the amount of water present in the diluted IL 

draw solution. The remaining small amount of diluted IL draw solution was 

transferred into the specimen vial and placed in ice bath (UCST-type IL) or hot 

water bath (LCST-type IL).  

2.5. Detecting IL traceable using UV-Vis spectroscopy  

The traceable of both thermo-responsive IL draw solutions after phase separation 

was measured by using UV-Vis spectroscopy. The selection of this technique is 

because of the feature of ILs, visible and ultraviolet spectroscopy which is a good 

method  in detecting the concentration of IL [32].  

Sample solutions were prepared simply by taking the water phase of the draw 

solution. The optical transmittance spectra were measured using an UV-Vis-near 

infrared transmittance spectrometer at room temperature. The data of the water 

phase were collected at 190-400 nm. The light passed through the mixtures in a 

quartz cell with path length of 1 cm. 
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3.  Results and Discussion 

3.1. Infrared (IR) spectra of ([P4444][CF3COO]) ionic liquid 

Infrared (IR) spectrum obtained for ([P4444][CF3COO]) is shown in Fig. 3. It was 

compared with the IR spectra of trifluoroacetic acid and tetrabutylphosphonium 

bromide as shown in Figs. A-1. and A-2 (Appendix A) to determine the present of 

functional groups. 

In ([P4444][CF3COO]), carboxyl group was presented by the peaks at the 

frequencies of 2959.27, 2932.68 and 2872.48 cm−1, indicated the stretching of 

O−H. Another peak can be seen at the frequency of 1409.39 cm−1. This band 

indicated the bending of O−H which also belonged to carboxyl group. There were 

peaks appeared between the frequencies of 1000-1400 cm−1 and indicated the 

stretching of C-F.  

Fluoro compound was presented and belonged to the halogen group. Besides 

that, the peaks appeared between the frequencies of 950-1250 cm−1 shows that the 

bending of P-H and the phosphonium cation was presented. Therefore, based on 

the functional groups presented, it was confirmed that ([P4444][CF3COO]) was 

successfully synthesised. 

 

Fig. 3. Infrared spectrum of ([P4444][CF3COO]). 

3.2. Draw solution performance 

The water flux was obtained with concentration of feed solution 0.040 M NaCl and 

0.087 M of draw solution. NaCl draw solution was compared with two different 

types of thermo-responsive draw solution consist of LCST-type IL 

([P4444][CF3COO]) and UCST-type IL ([Bmim][BF4]).  

Figure 4 shows that 0.087 M ([Bmim][BF4]) attained the highest water flux of 

0.71 LMH compare to ([P4444][CF3COO]) (0.44 LMH) and NaCl (0.33 LMH) with 

the same concentration of feed solution. 

The water fluxes for the NaCl and ([P4444][CF3COO]) draw solutes were 

relatively low compared to ([Bmim][BF4]) because there were more water 

molecules drawn and diffused through the membrane by ([Bmim][BF4]) draw 

solution side.  
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As studied for FO process, the difference in osmotic pressure across the 

membrane, the occurrence of extracranial or intracranial pressure, and the 

membrane performance will affect the water flux as well.  

It was demonstrated that (Bmim)(BF4] (UCST-type IL) have the highest draw 

ability as it is higher than ([P4444][CF3COO]) (LCST-type IL) and NaCl solution. 

 

Fig. 4. Comparison of water flux at different draw solution. 

3.3. Phase separation analysis  

After conducting the FO process, the diluted IL draw solution underwent thermally 

stimulated phase separation experiment by heating above the critical temperature 

in water bath for LCST-type IL. The critical temperature of ([P4444][CF3COO]) 

starting from 29 °C [24]. This temperature stimulated phase change behavior which 

is reversible and fast; by means ([P4444][CF3COO]) formed homogenous mixtures 

with water at temperature below than 29 °C. Upon gentle heating, it was observed 

that the clear diluted IL draw solution turned to turbid and phase separation started. 

When the draw solution was heated above it critical temperature, a clear liquid- 

liquid phase separation appeared which formed an IL rich sediment phase and water 

rich supernatant phase as shown in Fig. 5. 

Differing with LCST-type IL, ([Bmim][BF4]) was cooling below the critical 

temperature about 6 °C in ice bath. The time taken for phase separation 

([Bmim][BF4]) as shown in Fig. 6 was about 20 minutes at temperature 3 °C 

compare to ([P4444][CF3COO]) that take for an hour at temperature of 50 °C. 

However, when heating temperature increased, the time taken to complete phase 

separation decreased due to hydrogen bonding effect between LCST-type IL and 

water as shown in Fig. 7. This allowed the IL to be efficiently regenerated and 

reused. The phase separation temperature of the IL/water mixtures strongly 

depends on the hydrophobicity of the component ions as well as mixing ratio [29]. 
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(a) Before heating. (b) After heating. 

Fig. 5. Thermally stimulated phase separation process of LCST-type IL. 

 
 

(a) Before cooling. (b) After cooling. 

Fig. 6. Thermally stimulated phase separation process of UCST-type IL. 

 

Fig. 7. Time for phase separation of ([P4444][CF3COO]) 

-water mixture at different heating temperature. 

3.4. Detecting of IL in water phase 

By introducing the UV−Vis absorption spectra to detect traceable of IL in water 

phase, the result shown in Fig. 8 for thermo-responsive IL. The maximum 

IL phase 

IL phase 
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absorption wavelength (λ Max) were around 283 nm for ([Bmim][BF4]) and 196 

nm for ([P4444][CF3COO]).  

In short wavelength region as shown in Fig. 8, pure ([Bmim][BF4]) and 

([P4444][CF3COO]) have typical absorption peaks at that point. Since pure H2O has 

three typical weak peaks at 740, 765, 785 nm [33], the concentration of draw 

solution after phase separation can be detected quickly by a UV-Vis spectrometer. 

 

Fig. 8. UV-Vis absorption spectra. 

4.  Conclusions 

Both LCST and UCST-type IL as draw solutions were successfully synthesized and 

performance evaluation was conducted in reflective water flux. ([Bmim][BF4]) has 

high potential that can be use as draw solution due to high water flux 0.71 LMH 

compare to ([P4444][CF3COO]) 0.44 LMH and both ILs achievable regeneration with 

thermally stimulate. Both IL traceable can be simply detected using UV-Vis 

spectrometer where λ Max was found around 283 nm for ([Bmim][BF4]) and 196 

nm for ([P4444][CF3COO]). 

Nomenclatures 
 

Am Effective membrane surface area, m2 

Jw Water flux, Lm-2h-1 

LMH Water flux unit, Lm-2h-1 

 

Greek Symbols 
Δt Time change, h 

ΔV Volume change, L 

λ Wavelength, nm  
 

Abbreviations 

[Hbet][NTf2] Betaine bis (trifluoromethyl sulfonyl) imide 

OPT Oligomeric poly (tetrabutylphosphonium styrene sulfonate) 

P4444DMBS Tetrabutylphosphonium 2,4- dimethylbenzene sulfonate 

P4444TMBS Tetrabutylphosphonium mesitylene sulfonate 

P4448Br Tributyloctyl-phosphonium bromide 

PEI N-acrylatepolyethylenimine 

PNIPAM Poly(N-isopropylacrylamide) 
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PNIPAM-co-

PSA 

Poly(N-isopropylacrylamide)-co-poly (sodium acrylate) 

PNVCL Poly (N-vinyl caprolactam) 

POEGMA Poly (oligo (ethylene glycol)-methacrylate) 

PPG Polypropylene glycol 

PSSS-

PNIPAM 

Poly (sodium styrene-4-sulfonate)-co-poly(N-

isopropylacrylamide) 
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Appendix A 

Representation and Figures of Design Charts 

 

Fig. A-1. Infrared spectrum of trifluoroacetic acid [34]. 

 

Fig. A-2. Infrared spectrum of tetrabutylphosphonium bromide [34]. 


