POTENTIAL THERMO-RESPONSIVE IONIC LIQUID AS DRAW SOLUTION IN FORWARD OSMOSIS APPLICATION

MOHD AMIRUL MUKMIN ABDULLAH*, MUHAMMAD SUHAIMI MAN, PHANG SOOK NYAN, SYED M. SAUFİ, SYAMSUL B. ABDULLAH

Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang Campus, Lebuhraya Tun Razak, 26300, Kuantan, Pahang Darul Makmur, Malaysia

*Corresponding Author: amirulmukmin731@gmail.com

Abstract

Desalination based on membrane technology is one of the approaches which has been extensively explored to tackle the challenge of increasing demand of clean water. Although reverse osmosis (RO) process has been applied for a long time, the promising forward osmosis (FO) membrane desalination is viewed as a potentially viable energy efficient performance technology. But, the main problem in FO process is the lack of suitable draw solutes that can be efficiently regenerated. A distinct advantage using thermo-responsive ionic liquids (ILs) is the efficient in regenerating the draw solute via thermally stimulation. These draw solutes achieved high water flux 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF₄]) (0.71 LMH) and tetrabutylphosphonium trifluoroacetate ([P₄4444][CF₃COO]) (0.44 LMH) compared to NaCl (0.33 LMH). In this research, the phase separation via thermally stimulated liquid-liquid phase separation is achievable.

Keywords: Desalination, Draw solution, Forward Osmosis, Ionic liquid, Water flux.
1. Introduction

River are the main source of water supply in Malaysia, contributing about 97% of total usage, with groundwater making up the balance. Together with an average annual rainfall of 3,000 mm, the country is rich in water resources and estimated of 566 billion m3 of water runs off into the river systems each year [1].

However, the demand for clean water is increasing rapidly due to the growth of population, expansion in urbanization, industrialization and agricultural irrigation. Lee et al. [1] reported that there are a few cities with high density of population such as Lembah Klang, Pulang Pinang and Johor Bahru, which required higher demands on water [1].

Besides that, the Malaysia’s natural climate variability is heavily influenced by the Southeast Asia Maritime monsoon. During heavy rainy season, floods affect the lives of many people and cause great damage, destruction of property and water quality problems. Although many rivers are still in good condition, some are severely polluted by mud, sewage and solid waste [2]. Therefore, seawater desalination offers a reliable source of water supply that is not climate dependent [3, 4].

Based on studies by Greelee et al. [5], desalination processes fall into two main categories, thermal processes and membrane processes. The common processes for thermal process are Multi-Effect Distillation (MED) and Multi-Stage Flash (MSF). Many membrane-based modern technologies have been developed for seawater desalination and water reclamation. RO is a well-known process but is considerably expensive and not environmental friendly [6]. RO uses an average of prime electric energy 4 kW which shown in Table 1 below to produce one cubic meter of product water, whereby results in emission of 1.8 kg CO$_2$ per cubic meter of product water. In addition, fouling is inevitable in RO systems, thereby requiring the use of chemical cleaning agents and increasing the cost of water production by RO technology [7].

On the other hand, FO has been considered as an emerging membrane technology for water reuse and desalination of seawater. This spontaneous process demonstrates great potential to achieve energy efficient separations [10]. Furthermore, the major advantages of FO over RO are whether it operates at low or no hydraulic pressure at all, it can achieve high water recovery, and a lower tendency for membrane fouling. Generally, FO desalination processes involve two steps: osmotic dilution of the draw solution and fresh water generation from the diluted draw solution [11].

A careful analysis identified a low water flux, high reverse salt flux, and toxic by-products as the main drawbacks of using draw solutions. Therefore, a novel and appropriate draw solute that can overcome these limitations is essential. The ideal draw solutes for osmosis driven desalination that must have a high osmotic pressure in characteristics, zero toxicity, easy recovery and low cost. Many studies have been done to discover suitable draw solutes [12]. Akther et al. [13] explained that FO hybrid systems use thermos-responsive draw solutions, consume less total energy for desalting high-salinity waters and can be economically more feasible than other desalination technologies.
Many compounds have been proposed as thermally responsive draw solutes as listed in Table 2, including magnetic nanoparticles [14, 15], polymers [16], hydrogels [17], and ionic liquids [18, 19]. These draw solutes can be regenerated by various approaches, and they have certain advantages; however, they also involve significant drawbacks [20]. Therefore, there is a need to identify potential candidate of draw solution for FO system.

Ionic liquid (IL) are non-volatile, designable and a green solvent with wide liquid temperature range, excellent chemical and thermal stability [21-23]. All these unique characteristics are suitable for excellent draw solution. The comprehensive study in responsive IL as draw solutes focusing more on molecular structure design may attain better balance between hydrophilicity and hydrophobicity. There are two classification of thermo-responsive IL which are Upper Critical Solution Temperature (UCST) and Lower Critical Solution Temperature (LCST) behavior types [24].

The phase separations for UCST-type IL occur during cooling. Contrary to the UCST-type IL, the LCST-type IL phase separation occurs during heating. Interestingly, based on the mechanism of the LCST-type IL behaviour, more hydrophobic molecules facilitate easier regeneration and are perhaps more suitable for colder climate because both FO and regeneration are done at respective low temperatures. Otherwise, more hydrophilic (UCST-type IL) could be designed for use in the warmer climate [19].

Table 1. Comparison of estimated energy requirement for desalination technologies.

<table>
<thead>
<tr>
<th>Desalination technique</th>
<th>Equivalent energy requirement (kWh/m³)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>3-8</td>
<td>Moon and Lee [8]</td>
</tr>
<tr>
<td>RO</td>
<td>4-6</td>
<td>Moon and Lee [8]</td>
</tr>
<tr>
<td>MED</td>
<td>15-58</td>
<td>Semiat [9]</td>
</tr>
<tr>
<td>MSF</td>
<td>21-58</td>
<td>Semiat [9]</td>
</tr>
</tbody>
</table>

Table 2. Summary of several types of thermo-responsive draw solutes.

<table>
<thead>
<tr>
<th>Types</th>
<th>Name</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic nanoparticles</td>
<td>(PSSS-PNIPAM), (PNVCL), (POEGMA)</td>
<td>High water flux but poor regeneration and enhance membrane fouling.</td>
<td>Zhao et al. [14], Ling et al. [15] and Yildiz and Yildiz [25]</td>
</tr>
<tr>
<td>Polymer</td>
<td>(PPG), (PEI), OPT</td>
<td>Low osmotic pressure, low water flux and poor regeneration.</td>
<td>Kim et al. [16] and Chai and Hu [20]</td>
</tr>
<tr>
<td>Hydrogel</td>
<td>(PNIPAM), (PNIPAM-co-PSA)</td>
<td>Low water flux, and weak mechanical toughness.</td>
<td>Li et al. [17] Wei et al. [26] and Razmjou et al. [27]</td>
</tr>
<tr>
<td>Ionic liquids</td>
<td>(P4444DMBS), (P4444TMBS), (P4448Br), ([Hbet][NTf2])</td>
<td>High osmotic pressure and can be directly reused as draw solution without further treatment.</td>
<td>Cai et al. [18], Zhong et al. [19] and Cai and Hu [20], Hu et al. [28]</td>
</tr>
</tbody>
</table>

2. Methodology

2.1. Material

1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF₄]), tetrabutylphosphonium hydroxide (40 wt. %), trifluoracetic acid for Synthesis and sodium chloride were purchased from Sigma Aldrich. The commercial FO
semipermeable membrane cellulose triacetate (CTA) flat sheet was purchased from Hydration Technologies Inc. (HTI, USA).

2.2. Ionic liquid synthesis

Tetrabutylphosphonium trifluoroacetate ([P₄₄₄₄][CF₃COO]) was synthesized by neutralization process. Equal molar amount of tetrabutylphosphonium hydroxide and trifluoroacetic acid were added to a three-necked round bottom flask equipped with reflux condenser, a magnetic stirrer, and N₂ gas inlet and outlet. After 24 h of stirring, the solution was added to a dichloromethane (CH₂Cl₂)/water biphasic system in separatory funnel for extraction process as shown in Fig. 1. The dichloromethane layer was washed several times with distilled water. Then, the solution was evaporated using rotary evaporator as the dichloromethane layer was vaporised easily at its boiling point of 39.6 °C. After evaporation, the left solution is then dried in vacuum at 70 °C for at least 24 hours before stored in centrifuge tube [29]. Lastly, ([P₄₄₄₄][CF₃COO]) have been characterized using FTIR spectroscopic techniques to confirm the IL structure.

(a) Neutralization process. (b) CH₂Cl₂/water biphasic system.

Fig. 1. Synthesis of ionic liquid experiment set up.

2.3. Determination of water flux

FO experiments were conducted through a lab-scale circulating set-up with the feed solution of 0.04 M NaCl and the draw solution of 0.087 M NaCl as a reference and is illustrated in Fig. 2. The same concentration of 0.087 M (Bmim) (BF₄)(UCST-type IL) and ([P₄₄₄₄][CF₃COO]) (LCST-type IL) were prepared as draw solution. The amount of 300 mL feed solution and draw solution were used to carry out the FO process at room temperature. The peristaltic pump drive the draw and feed solutions to flow in a loop at each side of membrane cell with co-currently flow rate of 60.36 mL/min [30].

The water flux, J_w (LMH) in FO process was measured by the weight of feed solution monitored through balance that linked with a computer which able to
export the data automatically at a 5 minutes interval until the process accomplished, and calculated by Eq. (1) [31] where:

\[J_w = \frac{\Delta V}{A_m \Delta t} \]

The \(\Delta V \) (L) is the volume change of the feed solution over a time \(\Delta t \) (H) and \(A_m \) (m²) is the effective membrane surface area.

2.4. Draw solution phase separation

Once FO process was completed, thermally stimulated phase separation was employed to separate water from the diluted IL draw solution. For UCST-type IL, the diluted draw solution was cooling down below the critical temperature to undergo liquid-liquid phase separation. Unlike UCST-type IL, the diluted LCST-type IL need to be heated up above the critical temperature to undergo liquid-liquid phase separation.

The diluted IL draw solution was poured into the rotary flask and evaporated using rotatory evaporator to reduce the amount of water present in the diluted IL draw solution. The remaining small amount of diluted IL draw solution was transferred into the specimen vial and placed in ice bath (UCST-type IL) or hot water bath (LCST-type IL).

2.5. Detecting IL traceable using UV-Vis spectroscopy

The traceable of both thermo-responsive IL draw solutions after phase separation was measured by using UV-Vis spectroscopy. The selection of this technique is because of the feature of ILs, visible and ultraviolet spectroscopy which is a good method in detecting the concentration of IL [32].

Sample solutions were prepared simply by taking the water phase of the draw solution. The optical transmittance spectra were measured using an UV-Vis-near infrared transmittance spectrometer at room temperature. The data of the water phase were collected at 190-400 nm. The light passed through the mixtures in a quartz cell with path length of 1 cm.
3. Results and Discussion

3.1. Infrared (IR) spectra of ([P4444][CF3COO]) ionic liquid

Infrared (IR) spectrum obtained for ([P4444][CF3COO]) is shown in Fig. 3. It was compared with the IR spectra of trifluoroacetic acid and tetrabutylphosphonium bromide as shown in Figs. A-1. and A-2 (Appendix A) to determine the present of functional groups.

In ([P4444][CF3COO]), carboxyl group was presented by the peaks at the frequencies of 2959.27, 2932.68 and 2872.48 cm$^{-1}$, indicated the stretching of O−H. Another peak can be seen at the frequency of 1409.39 cm$^{-1}$. This band indicated the bending of O−H which also belonged to carboxyl group. There were peaks appeared between the frequencies of 1000-1400 cm$^{-1}$ and indicated the stretching of C-F.

Fluoro compound was presented and belonged to the halogen group. Besides that, the peaks appeared between the frequencies of 950-1250 cm$^{-1}$ shows that the bending of P-H and the phosphonium cation was presented. Therefore, based on the functional groups presented, it was confirmed that ([P4444][CF3COO]) was successfully synthesised.

![Fig. 3. Infrared spectrum of ([P4444][CF3COO]).](image)

3.2. Draw solution performance

The water flux was obtained with concentration of feed solution 0.040 M NaCl and 0.087 M of draw solution. NaCl draw solution was compared with two different types of thermo-responsive draw solution consist of LCST-type IL ([P4444][CF3COO]) and UCST-type IL ([Bmim][BF4]).

Figure 4 shows that 0.087 M ([Bmim][BF4]) attained the highest water flux of 0.71 LMH compare to ([P4444][CF3COO]) (0.44 LMH) and NaCl (0.33 LMH) with the same concentration of feed solution.

The water fluxes for the NaCl and ([P4444][CF3COO]) draw solutes were relatively low compared to ([Bmim][BF4]) because there were more water molecules drawn and diffused through the membrane by ([Bmim][BF4]) draw solution side.
As studied for FO process, the difference in osmotic pressure across the membrane, the occurrence of extracranial or intracranial pressure, and the membrane performance will affect the water flux as well.

It was demonstrated that (Bmim)(BF₄) (UCST-type IL) have the highest draw ability as it is higher than ([P₄₄₄₄][CF₃COO]) (LCST-type IL) and NaCl solution.

![Graph showing water flux comparison at different draw solutions.](image)

Fig. 4. Comparison of water flux at different draw solution.

3.3. Phase separation analysis

After conducting the FO process, the diluted IL draw solution underwent thermally stimulated phase separation experiment by heating above the critical temperature in water bath for LCST-type IL. The critical temperature of ([P₄₄₄₄][CF₃COO]) starting from 29 °C [24]. This temperature stimulated phase change behavior which is reversible and fast; by means ([P₄₄₄₄][CF₃COO]) formed homogenous mixtures with water at temperature below than 29 °C. Upon gentle heating, it was observed that the clear diluted IL draw solution turned to turbid and phase separation started. When the draw solution was heated above it critical temperature, a clear liquid-liquid phase separation appeared which formed an IL rich sediment phase and water rich supernatant phase as shown in Fig. 5.

Differing with LCST-type IL, ([Bmim][BF₄]) was cooling below the critical temperature about 6 °C in ice bath. The time taken for phase separation ([Bmim][BF₄]) as shown in Fig. 6 was about 20 minutes at temperature 3 °C compare to ([P₄₄₄₄][CF₃COO]) that take for an hour at temperature of 50 °C. However, when heating temperature increased, the time taken to complete phase separation decreased due to hydrogen bonding effect between LCST-type IL and water as shown in Fig. 7. This allowed the IL to be efficiently regenerated and reused. The phase separation temperature of the IL/water mixtures strongly depends on the hydrophobicity of the component ions as well as mixing ratio [29].
(a) Before heating.
(b) After heating.

Fig. 5. Thermally stimulated phase separation process of LCST-type IL.

(a) Before cooling.
(b) After cooling.

Fig. 6. Thermally stimulated phase separation process of UCST-type IL.

Fig. 7. Time for phase separation of ([P4444][CF3COO]) -water mixture at different heating temperature.

3.4. Detecting of IL in water phase

By introducing the UV−Vis absorption spectra to detect traceable of IL in water phase, the result shown in Fig. 8 for thermo-responsive IL. The maximum
absorption wavelength (λ, Max) were around 283 nm for ([Bmim][BF₄]) and 196 nm for ([P₄₄₄₄][CF₃COO]).

In short wavelength region as shown in Fig. 8, pure ([Bmim][BF₄]) and ([P₄₄₄₄][CF₃COO]) have typical absorption peaks at that point. Since pure H₂O has three typical weak peaks at 740, 765, 785 nm [33], the concentration of draw solution after phase separation can be detected quickly by a UV-Vis spectrometer.

Fig. 8. UV-Vis absorption spectra.

4. Conclusions

Both LCST and UCST-type IL as draw solutions were successfully synthesized and performance evaluation was conducted in reflective water flux. ([Bmim][BF₄]) has high potential that can be use as draw solution due to high water flux 0.71 LMH compare to ([P₄₄₄₄][CF₃COO]) 0.44 LMH and both ILs achievable regeneration with thermally stimulate. Both IL traceable can be simply detected using UV-Vis spectrometer where λ Max was found around 283 nm for ([Bmim][BF₄]) and 196 nm for ([P₄₄₄₄][CF₃COO]).

<table>
<thead>
<tr>
<th>Nomenclatures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aₘ</td>
<td>Effective membrane surface area, m²</td>
</tr>
<tr>
<td>Jₖ</td>
<td>Water flux, Lm⁻²h⁻¹</td>
</tr>
<tr>
<td>LMH</td>
<td>Water flux unit, Lm⁻²h⁻¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greek Symbols</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt</td>
<td>Time change, h</td>
</tr>
<tr>
<td>ΔV</td>
<td>Volume change, L</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength, nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hbet][NTf₂]</td>
<td>Betaine bis (trifluoromethyl sulfonyl) imide</td>
</tr>
<tr>
<td>OPT</td>
<td>Oligomeric poly (tetrabutylphosphonium styrene sulfonate)</td>
</tr>
<tr>
<td>P₄₄₄₄DMBS</td>
<td>Tetrabutylphosphonium 2,4- dimethylbenzene sulfonate</td>
</tr>
<tr>
<td>P₄₄₄₄TMBS</td>
<td>Tetrabutylphosphonium mesitylene sulfonate</td>
</tr>
<tr>
<td>P₄₄₄₄Br</td>
<td>Tributylcetyl-phosphonium bromide</td>
</tr>
<tr>
<td>PEI</td>
<td>N-acrylatepolyethylenimine</td>
</tr>
<tr>
<td>PNIPAM</td>
<td>Poly(N-isopropylacrylamide)</td>
</tr>
</tbody>
</table>
References

Appendix A

Representation and Figures of Design Charts

![Infrared spectrum of trifluoroacetic acid](image1)

Fig. A-1. Infrared spectrum of trifluoroacetic acid [34].

![Infrared spectrum of tetrabutylphosphonium bromide](image2)

Fig. A-2. Infrared spectrum of tetrabutylphosphonium bromide [34].