
2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Hybrid Harmony Search Algorithm with Grey
Wolf Optimizer and Modified Opposition-based
Learning

Alaa A. Alomoush2, AbdulRahman A. Alsewari1,2 (Senior Member IEEE), Hammoudeh S.
Alamri2, Khalid S. Aloufi3, and Kamal Z. Zamli2

I,IBM Centre of Excellence, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
2Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
3College of Computer Science and Engineering Taibah University Saudi Arabia

Corresponding author: (e-mail: alsewari@ump.edu.my).

This research is partially funded by UMP DSS, UMP (RDU190334), A Novel Hybrid Harmony Search Algorithm with Nomadic People Optimizer algorithm

for global optimization and feature selection, and (FRGS/1/2018/ICT05/UMP/02/1) (RDU190102), A novel Hybrid Kidney-inspired algorithm for Global

Optimization Enhance Kidney Algorithm for IoT Combinatorial Testing Problem.

ABSTRACT Most metaheuristic algorithms, including harmony search (HS), suffer from parameter selection. Many

variants have been developed to cope with this problem and improve algorithm performance. In this paper, a hybrid algorithm

of HS with grey wolf optimizer (GWO) has been developed to solve the problem of HS parameter selection. Then, a modified

version of opposition-based learning technique has been applied on the hybrid algorithm to improve the HS exploration because

HS easily gets trapped into local optima. Two HS parameters were automatically updated using GWO, namely, pitch

adjustment rate and bandwidth. The proposed hybrid algorithm for global optimization problems is called GWO-HS. GWO-

HS was evaluated using 24 classical benchmark functions with 30 state-of-the-art benchmark functions from CEC2014. Then,

GWO-HS has been compared with recent HS variants and other well-known metaheuristic algorithms. Results show that the

GWO-HS is superior over the old HS variants and other well-known metaheuristics in terms of accuracy and speed process.

INDEX TERMS Computational Intelligence, Grey wolf optimizer, Harmony search, Hybrid algorithm,

Metaheuristic, Optimization algorithm, CEC2014.

I. INTRODUCTION

Solving the NP-hard problem using an exhaustive search is

an impractical technique because of long-time consumption

and complex application. A well-known solution to solve the

NP-hard problem with minimal time consumption is using a

heuristic technique that can find a near-optimal solution.

Heuristic algorithm sacrifices optimality or completeness to

obtain quickly the best result.

Meta-heuristic algorithms are higher-level heuristic

algorithms that can cover a wider range of problems, with a

lack of information or high computation time [1]. The main

functionality of meta-heuristic algorithms is obtained by

merging rules and randomness to simulate natural phenomena,

such as physical annealing in a simulated annealing (SA)

algorithm [2], the human intelligence in the harmony search

(HS) algorithm [3], the biological evolutionary process in an

evolutionary algorithm (EA) [4], and animal behavior in Tabu

search [5].

The efficiency of metaheuristic algorithms depends on the

utilization of explorative and exploitative ranges through the

search process [6]. The exploitative process is accomplished

by utilizing the information obtained to guide the search

toward its goal. The explorative process is the capability of an

algorithm to examine uncovered areas quickly within

considerable search sizes. Overall performance develops if the

balance between these two characteristics is established [7].

Harmony search (HS) algorithm is a well-known

metaheuristic algorithm, introduced by Geem et al. [3] by

mimicking the musician's process in creating a new musical

harmony[8, 9]. The HS algorithm is used in different fields of

optimization problems, such as engineering [10, 11], water

distribution [12], structural optimization [6], music ensemble

[13], and university timetable [14], Software testing [15-18].

Many other applications and variants of the HS algorithm were

made according to previous survey articles [19, 20].

The success of using HS in different research fields is

attributed to its characteristics. The main advantage of HS is

its capability to utilize exploration and exploitation

simultaneously through the search process [14].

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

2

Most metaheuristic algorithms, including HS, suffer from

parameter selection, and premature convergence. Many

variants have been developed to cope with this problem and

improve algorithm performance [21-26].

Generally, researchers have two ways of setting

metaheuristic parameter values, namely, by using parameter

tuning or by using parameter control.

A. PARAMETER TUNING

The use of parameter tuning is achieved by finding the best

values for algorithm parameters before running the algorithm

to fix the problem. Parameter tuning involves a number of

difficulties, such as longtime consumption because of the need

to cover all possibilities, which is practically impossible;

another difficulty is high complexity because parameters are

not independent; moreover, choosing a fixed parameter as

optimal value through the search process is against the idea of

EA of a dynamic and adaptive process[27].

B. PARAMETER CONTROL

The other way to modify algorithm parameter values is

through the search process, which can be accomplished in

three ways.

1: First method: The algorithm parameter values can be

modified using a deterministic function to replace the

static value of the parameters in the search process; an

example of this process is the improved HS by Mahdavi

et al. [21], who replaced the static values of pitch

adjustment rate (PAR) and bandwidth (BW) with new

functions to modify their values throughout the search

process. The following equations present the dynamic

BW:

𝐶 = (𝑙𝑛 (
𝐵𝑊 𝑚𝑖𝑛
𝐵𝑊 𝑚𝑎𝑥

) ÷ NI) (1)

𝐵𝑊 (𝑡) = 𝐵𝑊 𝑚𝑎𝑥 × 𝑒
(c ×𝑡). (2)

(BWmin; BWmax) are the minimum and maximum

values of BW, t is the current number of iterations. The

following equation present the dynamic PAR:

PAR(t) = PARmin +
(PARmax – PARmin)

𝑁𝐼
× t. (3)

(PARmin; PARmax) are minimum and maximum values

of PAR, t is the current number of iterations, NI is the

total number of iterations.

2: Second method: The algorithm can use feedback from

the search process to improve the search parameter

values, such as updating step size (by decreasing or

increasing it) on the basis of the success rate of the search

process.

3: Third method: The third method uses the self-adaptive

values of the algorithm parameters. The adapted

parameters can change in chromosomes and mutation

processes on the basis of the previous results; an

example of this approach is the self-adaptive global best

HS algorithm by Pan et al. who constructed the mutated

values of harmony memory consideration rate (HMCR)

and PAR through the search process.
In the current article, we present a hybrid algorithm of HS

and grey wolf optimizer (GWO). GWO is a newly developed

algorithm inspired by the hunting and leadership of grey wolf

packs [28]. Inspired by the idea of finding the best values using

optimization algorithms, GWO was used in the current paper

to modify the HS parameters as a self-adaptive process.

Hence, instead of tuning the PAR and BW parameters before

the search start, the GWO algorithm modifies the parameter

values throughout the search process.

To improve HS exploration and avoid premature

convergence, a modified version of the original opposition-

based learning (OBL) [29] is implemented in the hybrid

algorithm. This paper mainly aims to design, implement, and

evaluate a new hybrid algorithm of HS and GWO with self-

adaptive parameter selection. This paper also aims to improve

HS algorithm exploration using a modified version of the OBL

technique.

To evaluate the effectiveness of the suggested hybrid

algorithm, the hybrid algorithm has been tested using 24

classical benchmark functions with 30 state-of-the-art

benchmark functions from CEC and compared them with

previous HS variants as well as with well-known

metaheuristic algorithms. Parametric tests, namely,

Wilcoxon’s rank test and Friedman test, were used. The tests

were used to provide an insight into the new hybrid algorithm

in contrast to the previous variants and hybrid algorithm at α

= 5% significance level. The new hybrid algorithm shows

highly competitive results in all experiments. To find the best

values of harmony memory size (HMS) and HMCR for the

hybrid algorithm, some experiments were conducted as

presented in the experimental results and analysis section.

The remaining sections of this paper are organized as

follows. The original HS and its variants. Then GWO

algorithm and modified OBL are investigated. The proposed

algorithm is described after that. Then, a section will provide

the results and discussion. Finally, a conclusion is provided,

and possible future improvements are provided.

II. HS and its Variants

In this part, we will comprehensively describe HS, and

different variants were created to overcome the HS variable

selection and improve its performance. Some researchers

utilized fuzzy logic to automatically update the HS

parameters [40]. Mahdavi et al. [21], created a modified

variant of HS by adding new functions to modify the HMCR

and PAR values throughout the search process. Other

researchers, such as Omran et al. [22], modified the search

process, which he borrowed from Particle Swarm

Optimization [41].

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

3

FIGURE 1. HS Process

A. HS ALGORITHM

The HS algorithm process contains five main steps, as shown

in Figure 1:

Step 1: Creating initial values of HS parameters: BW, PAR,

HMCR, number of iterations (NI), and HMS. The

optimization objective function will be determined in this step

either by using the maximum or minimum objective function

f(x), which are the benchmark functions used in this paper. 𝑋𝑖
is the prospect solution vector from N (all possible solution

vectors of 𝑋𝑖, and the 𝑋𝑖 value is within (lower and upper

boundaries) for all the decision variables.

Step 2: In this step, HM will be initialized within the upper

and lower boundary ranges, as shown in the next equation, and

𝑋1 is a random value between 0 and 1.

𝑋𝑖 = 𝐿𝐵 + 𝑟1 × (𝑈𝐵 − 𝐿𝐵) (4)

Step 3: In this step, the improvisation of new harmony will be

performed using a combination of three major parameters,

namely, HMCR, PAR, and BW, according to line 9 in

Algorithm 1. First, random number 𝑋2 generated between 0

and 1; if 𝑋2 is larger than HMCR, then a new value 𝑋𝑗 will be

created using Equation 1; otherwise, a random value of 𝑋𝑖 will

be chosen from HM. Afterward, another random value 𝑟3 will

be generated between 0 and 1; if it is smaller than or equal to

PAR, then 𝑋𝑖 will be modified using Equation 2, as follows:

𝑋𝑖
′ = 𝑋𝑖

′ ± 𝐵𝑊 × 𝑟𝑛𝑑 (5)
Step 4: If the newly generated vector 𝑋𝑖

′ is better than the

worst vector in the harmony memory, then the worst vector

will be replaced with the new vector 𝑋𝑖
′ because of the

objective function.

Step 5: The stopping criteria, such as the maximum number of

improvisations, should be checked after every improvisation. A

detailed description of the HS algorithm is presented in the

following pseudocode:

Algorithm1: Harmony Search algorithm improvisation

1. 𝑤ℎ𝑖𝑙𝑒 (𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)
2. 𝑓𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝐷) = {𝐷: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠}
3. 𝐼𝑓 (𝑅2) ≤ 𝐻𝑀𝐶𝑅 {𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛}
4. 𝑥𝑖

′ = 𝑥𝑖,𝑗 {𝑖 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (1, …𝐻𝑀𝑆)}

5. 𝑖𝑓 (𝑅3 ≤ 𝑃𝐴𝑅){𝑃𝑖𝑡𝑐ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡}
6. 𝑥𝑗

′ = 𝑥𝑗
′ ± 𝑅4 × 𝑏𝑤

7. 𝑒𝑛𝑑 𝑖𝑓

8. 𝑒𝑙𝑠𝑒

9. 𝑥𝑗
′ = 𝐿𝐵 + 𝑅5 × (𝑈𝐵 − 𝐿𝐵))

10. 𝑒𝑛𝑑 𝑖𝑓

11. 𝑒𝑛𝑑 𝑓𝑜𝑟

12. 𝑈𝑝𝑑𝑎𝑡𝑒 𝐻𝑀:

13. 𝑖𝑓 (𝑥𝑗
′ 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑤𝑜𝑟𝑠𝑡 𝑥𝑗 {𝑥𝑗 ∈ 𝐻𝑀})

14. 𝑥𝑗 = 𝑥𝑗
′

15. 𝑡 = 𝑡 + 1

16. 𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

17. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑦

B. EXPLORATORY POWER OF THE HARMONY SEARCH
ALGORITHM: ANALYSIS AND IMPROVEMENTS FOR
GLOBAL NUMERICAL OPTIMIZATION (EHS; 2011)

To improve HS performance, Das et al. [42] conducted a

theoretical study of the HS algorithm; another variant of the

HS algorithm was introduced. The new variant is compared

with other variants of HS and other state-of-the-art

optimization algorithms. The new variant shows competitive

results. The new variant has the same steps as the original

HS except for the BW value, which is updated based on the

following equations:

𝐵𝑊 = 𝑘√𝑉𝑎𝑟(𝑥) (6)

𝑉𝑎𝑟(𝑥) =
1

m
∑(𝑥𝑖 − �̅�)

2

𝑚

𝑘=1

= 𝑥𝑖
2 − �̅� 2 (7)

For the benchmark function, the author suggests using (k = 1

.17); meanwhile, m = HMS, and X is the population average.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

4

TABLE 1

BENCHMARK FUNCTIONS (GOV: GLOBAL OPTIMUM VALUE).

Function Function Formula Type Range GOV

 F1: Sphere ∑𝑥𝑖

2

𝑛

𝑖=1

UM

-100, 100

0

F2: Schwefel’s 2.22 ∑|𝑋𝑖|

𝐷

𝑖=1

+ 𝛱𝑖=1
𝐷 = |𝑋𝑖|

UM

-10, 10

0

F3: Step ∑(|𝑋𝑖 + 0.5|)
2

𝐷

𝑖=1

UM

-100, 100

0

F4: Rosenbrock

∑100 × (𝑋𝑖 − 𝑋𝑖−1
2)2 + (𝑥𝑖−1 − 1)

2

𝐷

𝑖=1

UM

-30, 30

0

F5: Schwefel’s 2.26 −∑[𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|)]

𝑛

𝑖=1

UM

-500, 500

−12569.5

F6: Rastrigin ∑(𝑋𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

M

-5.12, 5.12

0

F7: Ackleys

−20𝑒𝑥𝑝

(

 −0.2√
1

30
∑𝑥2
𝐷

𝑖=1
)

 − 𝑒𝑥𝑝

(

 √
1

30
∑𝑐𝑜𝑠 2𝑥2
𝐷

𝑖=1
)

 + 20 + 𝑒

M

-32, 32

0

F8: Griewank
1

4000
∑𝑥2
𝐷

𝑖=1

− 𝛱𝑖=1
𝐷 𝑐𝑜𝑠

𝑥𝑖

√𝑖
+ 1

M

-600, 600

0

F9: Rotated hyper-ellipsoid

∑(∑𝑥𝑗

𝑗=𝑖

𝑗=1

)2
𝑛

𝑖=1

UM

-100, 100

0

F10: Schaffer

0.5 +
𝑠𝑖𝑛2 (√(𝑥1

2 + 𝑥2
2) − 0.5

|1 + 0.001(𝑥1
2 + 𝑥2

2)|2

M

-100, 100

0

F11: Zakharov

∑𝑥𝑖
2

𝑛

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

4

M

-5, 10

0

F12: Alpine

∑|𝑥𝑖 . 𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|

𝑛

𝑖=1

M

-10, 10

0

F13: Inverted Cosine Wave −∑𝑒(
−(𝑥𝑖

2+𝑥𝑖+1
2 +0.5𝑥𝑖𝑥𝑖+1)
8) 𝑐𝑜𝑠 4 × √𝑥𝑖

2 + 𝑥𝑖+1
2 + 0.5𝑥𝑖𝑥𝑖+1

𝑛−1

𝑖=1

M -1, 1 0

F14: Dixon price (𝑥1 − 1)
2 +∑𝑖(2𝑥𝑖

2 − 𝑥𝑖 − 1)
2

𝑛

𝑖=1

UM

-10, 10

0

F15: Axis parallel hyper-
ellipsoid 2.2

∑𝑖 × 𝑋𝑖
2

𝐷

𝑖=1

UM

-5.12, 5.12

0

F16: Sum of a different
power 2.8

∑ 𝑋𝑖
{1+𝑖}

{𝐷}

{𝑖=1}

UM

-1, 1

0

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

5

F17: Levy 𝑠𝑖𝑛2(𝜋𝜔1) +∑(𝜔𝑖 − 1)
2[1 + 10\𝑠𝑖𝑛2(𝜋𝜔𝑖+ 1)]

𝐷−1

𝑖=1

+ (𝜔𝐷 − 1)
2[1 +\𝑠𝑖𝑛2(2𝜋𝜔𝐷)]

M

-10, 10

0

F18: Salomon’s 2.8
 1 − 𝑐𝑜𝑠(2𝜋 | 𝑥 |) + 0.1| 𝑥 | , | 𝑥 | = √∑ 𝑥𝑖

2
𝑛

𝑖=1

M

-100, 100

0

F19: Pathologic ∑[0.5 +]
𝑠𝑖𝑛

2(√{100𝑥𝑖
2+𝑥{𝑖+1}

2 })
− 0.5

1 + 0.001(𝑥𝑖
2 − 2𝑥𝑖𝑥{𝑖+1} + 𝑥{𝑖+1}

2)
2

𝑛−1

𝑖=1

M

-100, 100

0

F20: Whitley's ∑∑(

(100(𝑥𝑖
2 − 𝑥𝑗)

2
+ (1 − 𝑥𝑗)

2
)
2

4000

𝑛

𝑖=1

𝑛

𝑖=1

− 𝑐𝑜𝑠 (100(𝑥𝑖
2 − 𝑥𝑗)

2
+ (1 − 𝑥𝑗)

2
) + 1)

M

-10, 10

0

F21: Schwefel's problem

2.21

𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛 }

UM

-100, 100

0

F22: Quartic

∑𝑖

𝑛

𝑖=0

𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

UM

-1.28, 1.28

0

F23: Penalized 1

𝜋

𝑛
× {10 × 𝑠𝑖𝑛2(𝜋𝑦1) +}∑ (𝑦1 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦1 +
𝑛−1
𝑖=1

1)] + (𝑦𝑛 − 1)
2 + ∑ 𝑢𝑛

𝑖=1 (𝑥𝑖, a, k, m)

UM

-50, 50

0

F24: Penalized 2

𝜋

𝑛
× {10 × 𝑠𝑖𝑛2(𝜋𝑦1) +}∑ (𝑦1 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦1 +
𝑛−1
𝑖=1

1)] + (𝑦𝑛 − 1)
2 + ∑ 𝑢𝑛

𝑖=1 (𝑥𝑖, a, k, m)

UM

-50, 50

0

C. AN IMPROVED GLOBAL-BEST HARMONY SEARCH
ALGORITHM (IGHS; 2013)

El-Abd [24] developed as an improved variant of GHS [22] by

focusing on the explorative range at the beginning, and then

on the exploitative range at the end of a search. To accomplish

this, the author used Gaussian distribution to select the random

pitch adjustment, as described in the next Equation:

𝑋𝑗
′ = 𝐻𝑀𝑑

𝑟 + 𝐺𝑎𝑢𝑠𝑠(0,1) × 𝐵𝑊 (8)

Where 𝐻𝑀𝑑
𝑟 is a randomly selected value from HM, and

Gauss is a random number with a mean of 0 and a standard

deviation of 1. For pitch adjustment, the next equation is used

as follows:

𝑋𝑗
′ = 𝐻𝑀𝑑

𝑏𝑒𝑠𝑡 + ∅ × 𝐵𝑊 (9)
Where 𝐻𝑀𝑑

𝑏𝑒𝑠𝑡 is the best value in HM based on the

objective function evaluation f(x). The value φ is a random

number that is uniformly distributed within the range “-1 to

1”. PAR value is decreased within the iterations to achieve

great exploitation, as described by [43]. For BW, the author

borrowed its formula from the IHS [21] variant. The algorithm

was compared with seven previous HS-variants using the CEC

2005 benchmark function.

D. DIFFERENTIAL-BASED HARMONY SEARCH
ALGORITHM FOR THE OPTIMIZATION OF
CONTINUOUS PROBLEMS (DH/BEST; 2016)

Hosein et al.[25] introduced a new HS-variant by modifying

two aspects of the original HS. The first modification is

applied to the initialization of HS by using a new method to

initiate feasible solutions with less randomness. The second

modification involves replacing pitch adjustment with the

applied to the initialization of HS by using a new method to

initiate feasible solutions with less randomness. The second

modification involves replacing pitch adjustment with the

updated version inspired by the differential evolution (DE)

mutation strategy and excluding the BW parameter. The

following algorithm describes the new initialization processes,

which is implemented by replacing the random value with a

new calculation based on HMS:
Algorithm4: DH/best Initialization (Hosein 2016)

1. 𝑓𝑜𝑟(𝑗 = 1 𝑡𝑜𝐷) {𝐷 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠}
2. 𝑓𝑜𝑟(𝑖 = 1 𝑡𝑜 𝐻𝑀𝑆)

3. 𝑡𝑒𝑚𝑝𝑖 = 𝐿𝐵 + ((𝑖 −
0.5

𝐻𝑀𝑆
)) × (𝑈𝐵 − 𝐿𝐵)

4. 𝑒𝑛𝑑 𝑓𝑜𝑟
5. 𝑆ℎ𝑢𝑓𝑓𝑙𝑒 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑎𝑟𝑟𝑎𝑦

6. 𝑓𝑜𝑟(𝑖 = 1 𝑡𝑜 𝐻𝑀𝑆)
7. 𝐻𝑀 = 𝑡𝑒𝑚𝑝𝑖
8. 𝑒𝑛𝑑 𝑓𝑜𝑟
9. 𝑒𝑛𝑑 𝑓𝑜𝑟

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

6

Where UB and LB are the upper and lower bounds of the

decision variables. The new variant eliminates the requirement

of setting BW, and pitches are adjusted based on the distances

between the pitches in HM by using DE/best/1 mutation, as

described in the following Pseudo-code:

Algorithm5: DH/best Improvisation (Hosein 2016)

1: 𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝐷)
2: 𝑖𝑓 (𝑟(0~1) ≤ 𝐻𝑀𝐶𝑅)
3: 𝑋𝑖

′ = 𝑋𝑖𝑗 (𝑖 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑟𝑜𝑚 1. . 𝐻𝑀𝑆)

4: 𝑖𝑓(𝑟(0~1) ≤ 𝑃𝐴𝑅)
5: 𝑋𝑖

′ = 𝑋𝑏𝑒𝑠𝑡 + 𝑟(0~1) × (𝑋𝑟1,𝐽 − 𝑋𝑟2,𝐽)

6: 𝑖𝑓(𝑋𝑗
′ < 𝐿𝐵 𝑜𝑟 𝑋𝑗

′ > 𝑈𝐵)

7: 𝑋𝑗
′ = 𝑟(0~1) × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵

8: 𝑒𝑛𝑑 𝑖𝑓

9: 𝑒𝑛𝑑 𝑖𝑓

10: 𝑒𝑙𝑠𝑒

11: 𝑋𝑗
′ = 𝑟(0~1) × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵

12: 𝑒𝑛𝑑 𝑖𝑓

13: 𝑒𝑛𝑑 𝑓𝑜𝑟

where UB and LB are the upper and lower bounds of the

decision variables, 𝑟(0– 1) is the random value between 0 and

1, 𝑋𝑏𝑒𝑠𝑡 is the best 𝑋𝑖 in HM based on the objective function,

and 𝑋𝑟1,𝐽 and 𝑋𝑟2,𝐽 are two random values in the 𝑗𝑡ℎ

dimension.

E. A HYBRID HARMONY SEARCH AND SIMULATED
ANNEALING (HS-SA; 2018)

New hybrid HS algorithm and SA algorithm were presented

by Assad et al. [26], the temperature parameter in SA has been

introduced inside the HS algorithm. The new hybrid algorithm

adopts a similar process to the original HS, except that it has

been updated to accept the poor results of the improvisation

process via the probability of the temperature parameter. The

temperature starts with a high value to provide high

exploration, and it then decreases at each iteration to focus on

exploitation through the search process. The new hybrid

algorithm provided better results in comparison with the

original HS and SA.

III. GWO ALGORITHM

GWO algorithm is a new metaheuristic algorithm

developed by Mirjalili et al. [28], GWO has been presented as

a swarm-based algorithm that simulates the natural driving life

of grey wolves[30, 31]. The GWO algorithm shows high

performance in many optimization problems [32-35].

The GWO algorithm divides the population into four

groups, namely alpha α, beta β, Delta δ, and Omega ω.

Firstly, random populations of wolves are created. The

wolves change their location through the optimization phase

on the basis of the fittest wolves, which is α. Consequently, the

second and third best solutions are named β, and δ, ω will be

guided through the search by those wolves. In order to attack

the prey, wolves will encircle the prey as described in the

following equations:

 𝐷⃗⃗ ⃗ = | 𝐶⃗⃗ ⃗ . 𝑋⃗⃗ ⃗𝑝(𝑡) − 𝑋⃗⃗ ⃗(𝑡) | (10)

 𝑋⃗⃗ ⃗(𝑡 + 1) = 𝑋⃗⃗ ⃗𝑝(𝑡) − 𝐴⃗⃗ ⃗ . 𝐷⃗⃗ ⃗ (11)

 𝑋⃗⃗ ⃗𝑝 marks the location vector of the prey, and 𝑋⃗⃗ ⃗ marks the

location vector of the grey wolf. 𝐶⃗⃗ ⃗ and 𝐴⃗⃗ ⃗ represent the

coefficient vectors, whereas t indicates the current iteration

value. 𝐶⃗⃗ ⃗ and 𝐴⃗⃗ ⃗ values are calculated using the following

equations:

 𝐴⃗⃗ ⃗ = 2 𝐴⃗⃗ ⃗ . 𝑟⃗⃗ 1 − 𝑎⃗⃗⃗ (8)

 𝐶⃗⃗ ⃗ = 2. 𝑟⃗⃗ 2 (9)

where 𝑟⃗⃗ 1 and 𝑟⃗⃗ 2 are random vectors in (0,1), and 𝑎⃗⃗⃗
decreased from 2 to 0 through iterations.

The α, β, and δ values will be the best solution acquired thus

far. Then, all the other values (wolves) are considered as ω and

will be relocated with respect to α, β, and δ. The updated value

of the wolves is based on the following equations:

 𝐷⃗⃗ ⃗α = | 𝐶⃗⃗ ⃗1 . 𝑋⃗⃗ ⃗α − 𝑋⃗⃗ ⃗ | (12)

 𝐷⃗⃗ ⃗β = | 𝐶⃗⃗ ⃗2 . 𝑋⃗⃗ ⃗β − 𝑋⃗⃗ ⃗ | (13)

 𝐷⃗⃗ ⃗δ = | 𝐶⃗⃗ ⃗3 . 𝑋⃗⃗ ⃗δ − 𝑋⃗⃗ ⃗ | (14)

Where 𝑋⃗⃗ ⃗ is the location of the current solution; 𝑋⃗⃗ ⃗𝛼, 𝑋⃗⃗ ⃗𝛽,

and 𝑋⃗⃗ ⃗𝛿 are the α, β, δ locations, respectively; 𝐶⃗⃗ ⃗1, 𝐶⃗⃗ ⃗2, and 𝐶⃗⃗ ⃗3
are random vectors between (0 to 2); and 𝑋⃗⃗ ⃗𝛼, 𝑋⃗⃗ ⃗𝛽, and 𝑋⃗⃗ ⃗𝛿 ,

represent the distance between the current solution and α, β,

and δ, respectively. Afterward, the final location of the current

solution is calculated using the following equations:

 𝑋⃗⃗ ⃗1 = 𝑋⃗⃗ ⃗α − 𝐴⃗⃗ ⃗1 . (𝐷⃗⃗ ⃗⃗ ⃗α) (15)

 𝑋⃗⃗ ⃗2 = 𝑋⃗⃗ ⃗β − 𝐴⃗⃗ ⃗2 . (𝐷⃗⃗ ⃗⃗ ⃗β) (16)

 𝑋⃗⃗ ⃗3 = 𝑋⃗⃗ ⃗δ − 𝐴⃗⃗ ⃗3 . (𝐷⃗⃗ ⃗⃗ ⃗δ) (17)

 𝑋⃗⃗ ⃗(𝑡 + 1) =
 𝑋⃗⃗ ⃗1 + 𝑋⃗⃗ ⃗2 + 𝑋⃗⃗ ⃗3

3
 (18)

Where 𝐴⃗⃗ ⃗1, 𝐴⃗⃗ ⃗2, 𝐴⃗⃗ ⃗3 are random vectors between {-2a, 2a},

where a decreased from 2 to 0, within the course of iteration

(t).

The final location will be calculated using Equations (10 to

12). Finally, 𝐴⃗⃗ ⃗ and 𝐶⃗⃗ ⃗ assist the exploration and exploitation

as random and adaptive vectors, respectively. The entire

process is described in algorithm 2.

IV. Modified opposition-based learning technique

The original OBL introduced by Tizhoosh [29], and many

variants of OBL developed after that and used by different

research areas [36]. Many HS variants and hybridizations

utilized the OBL and its variants in the literature [37-39].

In this article we applied a modified version of the original

OBL within the HS updating process, to improve the HS

exploration, as described in Algorithm 3.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

7

Algorithm2: Grey wolf algorithm

1. Initialize grey wolf population within the boundaries

𝑥𝑖(𝑖 = 1,2, … . , 𝑛)
2. Initialize A, a and C

3. Calculate the fitness of each search agent

4. 𝑥α = 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡
5. 𝑥β = 𝑠𝑒𝑐𝑜𝑛𝑑 − 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡

6. 𝑥δ = 𝑡ℎ𝑖𝑟𝑑 − 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡
7. 𝑤ℎ𝑖𝑙𝑒 (𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)do

8. 𝑓𝑜𝑟 (𝑒𝑎𝑐ℎ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡)
9. 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 𝑝𝑜𝑠𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑦 𝑒𝑞 18

10. End for

11. Update A, a, and C

12. Calculate the fitness of all search agents

13. Update 𝑥α, 𝑥β and 𝑥δ

14. 𝑡 = 𝑡 + 1

15. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑋𝑎

In algorithm 3, 𝑥{𝑑} represents the new improvisation

vector, r is a random value between 0, and 1, d is the number

of dimensions, and 𝑥𝑖 is the modified opposition value. Once

the improvisation process of HS creates a new value 𝑥𝑗, the

modified opposition will be applied on the new improvisation

value 𝑥𝑗 in the update section and will replace it if it is better

on the basis of the objective function f.

V. PROPOSED HYBRID ALGORITHM

A hybrid algorithm is an algorithm that merges two or more

algorithms to solve a problem. The goal of this algorithm is to

create a new algorithm that combines advantages from these

algorithms. The main purpose of this paper is to design,

implement, and evaluate a new hybrid algorithm of HS and

GWO with a self-adaptive parameter selection, where the

benchmark functions are the case studies to evaluate the new

proposed algorithm.

 Given that the PAR and BW have a high effect on the

efficiency of HS [22, 44], we utilize the GWO algorithm to

find the right values of PAR and BW through the search

process. We use a modified version of the original OBL

technique [29] to improve improvisation results because HS

suffers from bad exploration, especially if one or more of its

vectors are near the local optimum. Meanwhile, we use the

static values of 5 and 0.99 for HMS and HMCR, respectively.

The new algorithm was tested on the benchmark function and

proves the superior performance compared with the previous

HS variants and other well-known metaheuristics. Figure 6

presents the general process of the hybrid algorithm, which is

described as follows:

1. Hybrid algorithm parameter and population initialization:

a. Hybrid parameters will be initialized, as described in

Table 2: HMCR, HMS, the minimum and maximum

value of PAR and BW, number of iterations of HS

(HS-NI), GWO number of iterations (GWO-NI), and

the number of GWO search agents.

b. The GWO population will be initialized for PAR and

BW within their upper and lower boundaries and

represented as two dimensions.

c. The HS population vectors (for the benchmark

functions in this paper) will be initialized using HS

initialization process. These vectors will be used as

HM through the whole process of the hybrid

algorithm.

2. Improvisation process:

a. In the HS-improvisation process, the HM vectors will

be optimized using the objective function (benchmark

functions in this paper).

b. A modified OBL was used to improve the obtained

result, from HS improvisation process, within the

updating phase of HS, which is described in

Algorithm 3. The final result is sent as a fitness

function value of GWO optimization process.

c. The GWO improvisation process, as described in

Algorithm 2, will be used to improvise the PAR and

BW values. The fitness function (as included in line 3

in Algorithm 2) value will be the result of HS

improvisation process in every GWO improvisation.

3. Results: The best results of the hybrid algorithm will be

presented in this phase.

Algorithm 6: Hybrid algorithm GWO-HS

1: Define the objective function f(x)

2: Initialize HS and GWO Parameters (HMS, HMCR,

GWO-Number-of-Agents, HS-NI, GWO-NI)

3: Initialize GWO population (PARi; BWi)

4: Initialize HS population (Xi)

5: 𝑤ℎ𝑖𝑙𝑒(𝑖𝑡 < 𝐺𝑊𝑂𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)𝑑𝑜

6: 𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠)𝑑𝑜
7: 𝑤ℎ𝑖𝑙𝑒(𝑑 < 2)𝑑𝑜 (𝑓𝑜𝑟 𝑃𝐴𝑅 𝑎𝑛𝑑 𝐵𝑊)
8: 𝑓𝑖𝑡𝑛𝑒𝑠 = 𝐻𝑆()(HS-improvisation)

9: 𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑠𝑒 𝑛𝑒𝑤 𝑃𝐴𝑅 𝑎𝑛𝑑 𝐵𝑊(𝑢𝑠𝑖𝑛𝑔 𝐺𝑊𝑂)
10: 𝑈𝑝𝑑𝑎𝑡𝑒 𝐴𝑙𝑝ℎ𝑎, 𝐵𝑒𝑡𝑎, 𝑎𝑛𝑑 𝐷𝑒𝑙𝑡𝑎

11: 𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑠𝑒 𝑛𝑒𝑤 𝑃𝐴𝑅 𝑎𝑛𝑑 𝐵𝑊 (𝑢𝑠𝑖𝑛𝑔 𝐺𝑊𝑂 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑠𝑎𝑡𝑖𝑜𝑛
12: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)
13: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑦

The values of PARi, BWi in Algorithm 6 are random values of

PAR and BW within their lower and upper bounds. Possible

solutions for xi for HS initialization are the random values

between the objective function boundaries.

To conclude the whole process, the GOW-initialization will be

used to create PAR and BW possible values (as search agents).

HS initialization will be used to initialize the benchmark

functions possible solution vectors (as HM). In every iteration

of GWO, the GWO-fitness function will be the result of HS

optimization using the PAR and BW values from GWO-

memory. HS improvisation will improvise HM values to find

Algorithm3: Modified opposition

1. 𝑥{𝑑} = {𝑥1, 𝑥2, … . . 𝑥𝑑}
2. 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (0 , 1)
3. 𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑑)𝑑𝑜

4. 𝑋�̅� = −1 × 𝑥{𝑖} × 𝑟;

5. 𝑖𝑓(𝑓(�̅�) < 𝑓(𝑥))

6. x = �̅�

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

8

possible solutions to the benchmark functions. Finally, we

included a modified version of OBL technique as part of our

hybrid algorithm through HS updating. The modified OBL

will improve the exploration of HS and help the algorithm

avoid falling in local optima. Figure 6 presents the general

structure of the hybrid algorithm process. The pseudo code of

Algorithm 6 describes the hybrid algorithm.

4.

FIGURE 6. The general process of GWO/HS hybrid algorithm.

VI. EXPERIMENT RESULTS AND ANALYSIS
In the first section, we investigate HMCR and HMS parameter

best values for the hybrid algorithm using the first 15 classical

benchmark functions from Table 1. In the second and third

sections, we apply the hybrid algorithm to minimize a set of

24 classical benchmark functions, as described in Table 1 and

30 state-of-the-art test cases from CEC2014 [45]. The classical

test functions contain unimodal and multimodal functions to

provide insight into the hybrid algorithm capabilities to cover

different types of problems. The CEC2014 is also a well-

known experimental test for single objective optimization

problems that contain shifted, rotated, hybrid, and

composition optimization test cases. Friedman test and

Wilcoxon nonparametric test at α = 5% significance level were

conducted to evaluate the overall performance of the new

hybrid algorithm. All experiments are performed on Microsoft

Windows 10 Education in a computer with Intel Core i7 Quad

CPU 4702MQ processor 2.2 GHz with 240 GB SSD hard

drive and 16GB DDR3 RAM. All algorithms are coded in

Java. The best results obtained from the experiments are

highlighted in bold.

A. EFFECTS OF HMS AND HMCR ON THE HYBRID
ALGORITHM

To determine the best values of the static parameters of the

hybrid algorithm, we investigate the different values of the

static parameters, namely, HMS and HMCR. Other

parameters of the hybrid algorithm for these experiments are

the same as those shown in Table 2. We used the first 15

benchmark functions as described in Table 1 to determine the

best values of HMS and HMCR as static values in this article.

The total number of improvisations is set to 104 for all

experiments in this article, except for CEC2014 experiments

in which we used106. The mean and SD are calculated for 30

runs of each function with 30 dimensions. Table 4 presents the

results of using different HMS values (i.e., 5, 30, 50, and 100).

Meanwhile, f presents function.

 TABLE 2 PARAMETERS SETTING GWO-HS

Algorithm Parameters Value

Harmony search HMS 5

 HMCR 0.99

 PAR minimum value 0.1

 PAR maximum value 0.4

 BW minimum value 0.1

 BW maximum value 0.4

 HS iteration 100

Grey wolf optimizer Number of search agents 10

 iteration 100

 number of dimensions 2

TABLE 3
PARAMETERS SETTING FOR COMPARED ALGORITHMS

Algorithm Parameters Value

ACS2013 N 5

 GLOBAL MINIMUM 1.0E+20

 PP 0.1

MULTIVERSE2016 N 5

 BEST UNIVERSE INFLATION

RATE

1.0E+20

ABC2005 N 5

 LIMIT2 800

DE1997 N 5

 F 0.9

 CR 0.5

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

9

TABLE 4

PARAMETERS SETTING FOR HS VARIANTS

Algorithm HMS HMCR

PAR

BW

Other

EHS2011 5 0.99 PAR = 0.33 𝐵𝑊 = 𝑘. √𝑉𝑎𝑟(𝑥)

IGHS2013 5 0.9 𝑃𝐴𝑅𝑚𝑖𝑛 = 0.01

𝑃𝐴𝑅𝑚𝑎𝑥 = 0.99

𝐵𝑊𝑚𝑖𝑛 = 0.0001

𝐵𝑊max=0.06

DHBest2016 5 0.99 0.9 - CR=0.5

HS-SA2018 5 0.9 0.3 0.001 α =0.99

TABLE 5

EFFECTS OF HMS ON THE GWO-HS PERFORMANCE (HMCR = 0.99).

F Index HMS

5

30

50

100

F1 Mean 0.0 0.0 4.7E-147 2.1E-157

 SD 0.0 0.0 4.7E-147 2.1E-157

F2 Mean 0.0 0.0 6.3E-161 2.0E-74

 SD 0.0 0.0 6.3E-161 2.0E-74

F3 Mean 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0

F4 Mean 27.6 27.729 27.738 27.73

 SD 27.6 27.729 27.738 27.73

F5 Mean -12528 -12500 -12494 -12454

 SD 12528 12500 -2494 12454

F6 Mean 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0

F7 Mean 4.4E-16 4.4e-16 4.4e-16 4.4e-16

 SD 4.4E-16 4.4e-16 4.4e-16 4.4e-16

F8 Mean 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0

F9 Mean 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0

F10 Mean 0.06 0.049 0.009 0.06

 SD 0.06 0.049 0.009 0.06

F11 Mean 3.8e-14 4.0e-8 4.0e-2 1.59

 SD 3.8e-14 4.0e-8 4.0e-2 1.59

F12 Mean 1.5e-53 3.2e-107 4.5e-145 0.45

 SD 1.5e-53 3.2e-107 4.5 e-145 0.45

F13 Mean -26.836 -26.79 26.783 -26.87

 SD 26.836 26.79 26.783 -26.87

F14 Mean 0.666 0.667 0.666 0.67

 SD 0.666 0.667 0.666 0.67

F15 Mean 0.0 0.0 1.3E-241 1.3E-148

 SD 0.0 0.0 1.3E-241 1.3E-148

TABLE 6

EFFECTS OF HMCR ON THE GWO-HS PERFORMANCE (HMS = 5).

F Index HMCR

0.7

0.8

0.9

0.99

F1 Mean 7.0E-24 1.4E-37 3.9E-76 0.0

 SD 7.0E-24 1.4E-37 3.9E-76 0.0

F2 Mean 1.1E-1 9.6E-15 4.3E-70 0.0

 SD 1.1E-1 9.6E-15 4.3E-70 0.0

F3 Mean 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0

F4 Mean 28.05 27.91 27.5 27.6

 SD 28.05 27.91 27.5 27.6

F5 Mean -10081 -12091 -12552 -12528

 SD -10081 -12091 -12552 12528

F6 Mean 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0

F7 Mean 3.6E-12 8.3E-13 4.4E-16 4.4E-16

 SD 3.6E-12 8.3E-13 4.4E-16 4.4E-16

F8 Mean 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0

F9 Mean 6.6E-20 4.0E-34 7.1E-15 0.0

 SD 6.6E-20 4.0E-34 7.1E-15 0.0

F10 Mean 8.4 0.79 0.029 0.009

 SD 8.4 0.79 0.029 0.009

F11 Mean 2.59 2.60 7.7E-6 3.8e-14

 SD 2.59 2.60 7.7E-6 3.8e-14

F12 Mean 0.49 0.45 0.062 1.5e-53

 SD 0.49 0.45 0.062 1.5e-53

F13 Mean -26.44 -26.73 -26.87 -26.836

 SD -26.44 -26.73 -26.87 26.836

F14 Mean 3.08 2.6 0.84 0.666

 SD 3.08 2.6 0.84 0.666

F15 Mean 1.1E-23 1.0E-30 0.0 0.0

 SD 1.1E-23 1.0E-30 0.0 0.0

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

10

TABLE 7

MEAN AND SD OF THE ERRORS OF HS VARIANTS FOR (D = 30).

F Index Algorithms

 EHS2011 IGHS 2013 DHBest 2016 HS-SA2018 GWO-HS

F1 Mean 2.235 e-60 14.613 0.0 10.242 0.0

 SD 2.235 e-60 14.61 0.0 10.242 0.0

F2 Mean 3.484 e-35 0.179 0.0 0.851 0.0

 SD 3.484 e-35 0.179 0.0 0.851 0.0

F3 Mean 0.0 20.0 0.0 11.766 0.0

 SD 0.0 20.0 0.0 11.766 0.0

F4 Mean 28.712 393.048 28.767 553.709 27.766

 SD 28.712 393.048 28.767 553.709 27.766

F5 Mean -10238.560 -12539.117 -12565.425 -12542.17 -12540.709

 SD 10238.560 12539.117 12565.425 12542.17 12540.709

F6 Mean 0.0 3.152 0.335 1.449 0.0

 SD 0.0 3.152 0.335 1.449 0.0

F7 Mean 5.417 e-15 1.841 4.440 e-16 1.610 4.440 e-16

 SD 5.417 e-15 1.841 4.440 e-16 1.610 4.440 e-16

F8 Mean 8.924 e-4 1.050 0.0 1.103 0.0

 SD 8.924 e-4 1.050 0.0 1.103 0.0

F9 Mean 11.881 70.978 0.0 92.409 0.0

 SD 11.881 70.978 0.0 92.409 0.0

F10 Mean 0.016 0.441 0.155 0.405 0.009

 SD 0.016 0.441 0.155 0.405 0.009

F11 Mean 9.206 e-5 975.251 57.17 24.633 1.002 e-5

 SD 9.206 e-5 975.251 57.17 24.633 1.002 e-5

F12 Mean 5.954 e-4 0.189 0.032 0.068 1.153 e-62

 SD 5.954 e-4 0.189 0.032 0.068 1.153 e-62

F13 Mean -26.530 -26.875 -26.786 -26.842 -26.753

 SD 26.530 26.875 26.786 26.842 26.753

F14 Mean 0.697 4.555 10.520 7.625 0.666

 SD 0.697 4.555 10.520 7.625 0.666

F15 Mean 0.032 1.45 e-5 0.033 0.10 0.0

 SD 0.032 1.45 e-5 0.033 0.10 0.0

F16 Mean 3.250 e-10 4.692 e-14 1.785 e-8 1.70E-16 0.0

 SD 3.250 e-10 4.692 e-14 1.785 e-8 1.70E-16 0.0

F17 Mean 1.587 0.785 2.869 0.043 0.305

 SD 1.587 0.785 2.869 0.043 0.305

F18 Mean 0.103 3.506 0.0 1.867 0.0

 SD 0.103 3.506 0.0 1.867 0.0

F19 Mean 1.22 2.623 0.0 1.674 0.0

 SD 1.22 2.623 0.0 1.674 0.0

F20 Mean 372.07 947.823 411.16 394.573 362.217

 SD 372.07 947.823 411.16 394.573 362.217

F21 Mean -2835.156 -2985.634 -2129.06 -3076.838 -2928.403

 SD 2835.156 2985.634 2129.06 3076.838 2928.403

F22 Mean 4.574 8.894 6.747 8.116 2.80

 SD 4.574 8.894 2 6.747 8.116 2.80

F23 Mean 0.330 2.175 1.592 0.054 0.398

 SD 0.330 2.175 1.592 0.054 0.398

F24 Mean 2.086 7.155 2.938 0.448 1.976

 SD 2.086 7.155 2.938 0.448 1.976

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

11

TABLE 8
MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS OF HS VARIANTS FOR (D = 50).

F Index Algorithms

 EHS2011 IGHS 2013 DHBest 2016 HS-SA 2018 GWO-HS

F1 Mean 3.958 e-6 382.791 0.0 524.218 0.0

 SD 3.958 e-6 382.791 0.0 524.218 0.0

F2 Mean 2.08 e-5 8.310 0.0 10.119 0.0

 SD 2.08 e-5 8.310 0.0 10.119 0.0

F3 Mean 0.0 280 0.0 535.9 0.0

 SD 0.0 280 0.0 535.9 0.0

F4 Mean 48.869 18234 48.644 30394 47.718

 SD 48.869 18234 48.644 30394 47.718

F5 Mean -12372.787 -20216 -20929 -20093 -20750

 SD 12372.787 20216 20929 20093 20750

F6 Mean 2.677 41.536 1.519 45.022 0.0

 SD 2.677 41.536 1.519 45.022 0.0

F7 Mean 1.678 e-4 4.366 4.440 e-16 5.711 4.440 e-16

 SD 1.678 e-4 4.366 4.440 e-16 5.711 4.440 e-16

F8 Mean 0.054 2.476 0.0 5.788 0.0

 SD 0.054 2.476 0.0 5.788 0.0

F9 Mean 54.862 4507.177 0.0 8509 0.0

 SD 54.862 4507.177 0.0 8509 0.0

F10 Mean 0.057 0.471 0.306 0.488 0.037

 SD 0.057 0.471 0.306 0.488 0.037

F11 Mean 3.165 7410.696 175.885 131.789 0.036

 SD 3.165 7410.696 175.885 131.789 0.036

F12 Mean 0.103 1.08 0.051 2.329 2.528 e-68

 SD 0.103 1.08 0.051 2.329 2.528 e-68

F13 Mean -42.985 -45.301 -45.144 -45.094 -45.370

 SD 42.985 45.301 45.144 45.094 45.370

F14 Mean 0.724 270.194 25.759 360.223 0.666

 SD 0.724 270.194 25.759 360.223 0.666

F15 Mean 0.195 17.166 0.169 23.059 0.0

 SD 0.195 17.166 0.169 23.059 0.0

F16 Mean 2.50 e-9 3.774 e-12 2.799 e-7 6.07 E-13 7.591 e-19

 SD 2.50 e-9 3.774 e-12 2.799 e-7 6.07 E-13 7.591 e-19

F17 Mean 3.319 7.999 1.813 1.729 2.954

 SD 3.319 7.999 1.813 1.729 2.954

F18 Mean 0.129 7.635 0.0 5.176 0.0

 SD 0.129 7.635 0.0 5.176 0.0

F19 Mean 3.835 5.289 0.0 4.437 0.0

 SD 3.835 5.289 0.0 4.437 0.0

F20 Mean 1051.242 682667.321 1096.557 4199.406 1032.046

 SD 1051.242 682667.321 1096.557 4199.406 1032.046

F21 Mean -4094.937 4539.074 -4936.221 -4894.840 -4399.1614

 SD 4094.937 4539.074 4936.221 4894.840 4399.1614

F22 Mean 11.247 23.853 12.479 21.414 8.30

 SD 11.247 23.8532 12.479 21.414 8.30

F23 Mean 0.527 25.025 0.652 2.710 0.579

 SD 0.527 25.025 0.652 2.710 0.579

F24 Mean 4.004 173.633 3.528 22.184 3.887

 SD 4.004 173.633 3.528 22.184 3.887

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

12

TABLE 9

MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS FOR THE EXISTING OPTIMIZATION ALGORITHMS FOR (D = 30).

F Index Algorithms

 ACS 2013 Multiverse 2016 ABC2005 DE 1997 GWO-HS

F1 Mean 3.356 e-34 0.0039 1.674 173.066 0.0

 SD 3.356 e-34 0.0039 1.674 173.066 0.0

F2 Mean 5.936 e-20 0.024 0.158 0.623 0.0

 SD 5.936 e-20 0.024 0.158 0.623 0.0

F3 Mean 0.0 0.666 0.0 775.266 0.0

 SD 0.0 0.666 0.0 775.266 0.0

F4 Mean 33.133 28.816 2232289.712 161316.322 27.766

 SD 33.133 28.816 2232289.712 161316.322 27.766

F5 Mean -12542.508 -6745.606 -11701.463 -10417.237 -12540.709

 SD 12542.508 6745.606 11701.463 10417.237 12540.709

F6 Mean 0.8622 2.026 7.07 44.736 0.0

 SD 0.8622 2.026 7.07 44.736 0.0

F7 Mean 0.098 0.051 2.545 6.379 4.440 e-16

 SD 0.098 0.051 2.545 6.379 4.440 e-16

F8 Mean 0.001 0.009 0.348 3.338 0.0

 SD 0.001 0.009 0.348 3.338 0.0

F9 Mean 8.252 e-34 0.582 0.0 2137.225 0.0

 SD 8.252 e-34 0.582 0.0 2137.225 0.0

F10 Mean 0.195 0.009 0.459 0.347 0.009

 SD 0.195 0.009 0.459 0.347 0.009

F11 Mean 0.871 0.001 335.010 4.624 1.002 e-5

 SD 0.871 0.001 335.010 4.624 1.002 e-5

F12 Mean 1.221 e-6 0.017 0.014 0.567 1.153 e-62

 SD 1.221 e-6 0.017 0.014 0.567 1.153 e-62

F13 Mean -26.864 -26.850 -26.553 -26.833 -26.753

 SD 26.864 26.850 26.553 26.833 26.753

F14 Mean 0.746 0.741 3366.446 1036.294 0.666

 SD 0.746 0.741 3366.446 1036.294 0.666

F15 Mean 1.186 e-36 0.001 0.230 6.354 0.0

 SD 1.186 e-36 0.001 0.230 6.354 0.0

F16 Mean 2.913 e-148 9.550 e-12 1.131 e-16 1.439 e-4 0.0

 SD 2.913 e-148 9.550 e-12 1.131 e-16 1.439 e-4 0.0

F17 Mean 3.349 3.349 3.349 3.349 0.305

 SD 3.349 3.349 3.349 3.349 0.305

F18 Mean 0.0 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0 0.0

F19 Mean 0.0 3.250 e-10 0.0 0.0 0.0

 SD 0.0 3.250 e-10 0.0 0.0 0.0

F20 Mean 413.952 413.952 413.952 413.952 362.217

 SD 413.952 413.952 413.952 413.952 362.217

F21 Mean -3099.99 -2971.234 -3088.953 -3075.226 -2928.403

 SD 3099.99 2971.234 3088.953 3075.226 -2928.403

F22 Mean 7.013 3.324 13.676 17.238 2.80

 SD 7.013 3.324 2 13.676 17.238 2.80

F23 Mean 1.668 1.668 1.668 1.668 0.398

 SD 1.668 1.668 1.668 1.668 0.398

F24 Mean 3.0 3.0 3.0 3.0 1.976

 SD 3.0 3.0 3.0 3.0 1.976

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

13

TABLE 10

MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS EXISTING OPTIMIZATION ALGORITHMS FOR (D = 50).

F Index Algorithms

 ACS 2013 Multiverse 2016 ABC2005 DE 1997 GWO-HS

F1 Mean 5.212 e-19 0.027 1689.224 459.970 0.0

 SD 5.212 e-19 0.027 1689.224 459.970 0.0

F2 Mean 5.496 e-12 0.065 6.481 1.352 0.0

 SD 5.496 e-12 0.065 6.481 1.352 0.0

F3 Mean 1.4 1.633 0.3 2854.266 0.0

 SD 1.4 1.633 0.3 2854.266 0.0

F4 Mean 96.360 50.836 2050687.392 2232815.458 47.718

 SD 96.360 50.836 2050687.392 2232815.458 47.718

F5 Mean -20842.549 -10662.148 -17807.783 -16560.174 -20750.237

 SD 20842.549 10662.148 17807.783 16560.174 20750.237

F6 Mean 4.123 5.1942 50.508 95.855 0.0

 SD 4.123 5.1942 50.508 95.855 0.0

F7 Mean 0.271 0.097 9.991 9.743 4.440 e-16

 SD 0.271 0.097 9.991 9.743 4.440 e-16

F8 Mean 0.004 0.057 13.013 10.318 0.0

 SD 0.004 0.057 13.013 10.318 0.0

F9 Mean 3.679 e-18 18.199 26232.197 14722.357 0.0

 SD 3.679 e-18 18.199 26232.197 14722.357 0.0

F10 Mean 0.384 0.042 0.497 0.477 0.037

 SD 0.384 0.042 0.497 0.477 0.037

F11 Mean 24.058 0.034 667.084 144.123 0.036

 SD 24.058 0.034 667.084 144.123 0.036

F12 Mean 1.573 e-4 0.114 0.619 1.804 2.528 e-68

 SD 1.573 e-4 0.114 0.619 1.804 2.528 e-68

F13 Mean -45.313 -45.385 -44.409 -45.283 -45.370

 SD 45.313 45.385 44.409 45.283 45.370

F14 Mean 3.910 1.022 43610.849 23618.905 0.666

 SD 3.910 1.022 43610.849 23618.905 0.666

F15 Mean 7.768 e-21 0.016 88.173 41.068 0.0

 SD 7.768 e-21 0.016 88.173 41.068 0.0

F16 Mean 2.123 e-124 6.993 e-12 8.463 e-5 2.128 e-4 7.591 e-19

 SD 2.123 e-124 6.993 e-12 8.463 e-5 2.128 e-4 7.591 e-19

F17 Mean 5.166 5.166 5.166 5.166 2.954

 SD 5.166 5.166 5.166 5.166 2.954

F18 Mean 0.0 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0 0.0

F19 Mean 0.0 0.0 0.0 0.0 0.0

 SD 0.0 0.0 0.0 0.0 0.0

F20 Mean 1149.869 1149.869 1149.869 1149.869 1032.046

 SD 1149.869 1149.869 1149.869 1149.869 1032.046

F21 Mean -5099.996 -4682.634 -4891.577 -5011.839 -4399.161

 SD 5099.996 4682.634 4891.5774 5011.839 4399.161

F22 Mean 15.965 9.513 34.917 31.775 8.30

 SD 15.965 9.513 34.917 31.775 8.30

F23 Mean 1.472 1.472 1.472 1.472 0.579

 SD 1.472 1.472 1.472 1.472 0.579

F24 Mean 5.0 5.0 5.0 5.0 3.887

 SD 5.0 5.0 5.0 5.0 3.887

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

14

TABLE 11

MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS FOR HS VARIANTS USING THE CEC2014 (D = 30).

F Index Algorithms

 EHS2011 IGHS 2013 DHBest 2016 HS-SA 2018 GWO-HS

F1 Mean 4.78 E7 2.44 E7 2.17 E7 1.64 E7 413113

 SD 4.78 E7 2.44 E7 2.17 E7 1.64 E7 413113

 Time 35 36 402.25 32.483 60.163

F2 Mean 1.016 E9 2799924 1.62 E8 1180792 18904

 SD 1.016 E9 2799924 1.62 E8 1180792 18904

 Time 20 18 219.85 17.855 20.395

F3 Mean 9247 12394 15863.40 13003 5051

 SD 9247 12394 15863.40 13003 5051

 Time 20 21 239.87 20.542 25.632

F4 Mean 644 533 530.31 538 439

 SD 644 533 530.31 538 439

 Time 21 20.45 256.36 20.926 25.033

F5 Mean 520.67 519.99 520.08 520.04 520.00

 SD 520.67 519.99 520.08 520.04 520.00

 Time 33.023 31.048 405.066 32.749 49.116

F6 Mean 619.58 616.68 614.96 616 620.245

 SD 619.58 616.68 614.96 616 620.245

 Time 3305 3499.66 39014 4057.221 6312.374

F7 Mean 708.46 700.95 708.03 700.52 700.01

 SD 708.46 700.95 708.03 700.52 700.01

 Time 41 40.83 485 41.882 52.229

F8 Mean 863.71 800.20 803.37 800.09 800

 SD 863.71 800.20 803.37 800.09 800

 Time 29 27.35 335 27.826 27.31

F9 Mean 1047.49 977.72 989.04 971.87 1037

 SD 1047.49 977.72 989.04 971.87 1037

 Time 36 38.59 460 39.245 37.85

F10 Mean 1995.28 1001.11 1048.71 1001.26 1001

 SD 1995.28 1001.11 1048.71 1001.26 1001

 Time 58 56.51 13273 60.757 63.43

F11 Mean 4479.43 3333.98 3282.25 3220.57 3793.02

 SD 4479.43 3333.98 3282.25 3220.57 3793.02

 Time 67 82.37 726.23 69.857 97.10

F12 Mean 1200.71 1200.16 1200.17 1200.22 1200.18

 SD 1200.71 1200.16 1200.17 1200.22 1200.18

 Time 690 708.27 8221 739.323 1083.54

F13 Mean 1300.64 1300.57 1300.62 1300.59 1300.55

 SD 1300.64 1300.57 1300.62 1300.59 1300.55

 Time 28 26.45 360.72 26.858 17.811

F14 Mean 1686.38 1660.91 1686.04 1685.41 1685.40

 SD 1686.38 1660.91 1686.04 1685.41 1685.40

 Time 29 26.40 370 26.07 16.18

F15 Mean 1541.48 1519.03 2321.51 1515.24 1537.52

 SD 1541.48 1519.03 2321.51 1515.24 1537.52

 Time 43 40.17 492 41.091 32.40

F16 Mean 1611.25 1610.12 1610.06 1610.07 1610.51

 SD 1611.25 1610.12 1610.06 1610.07 1610.51

 Time 42 39.22 497 41.409 31.95

F17 Mean 2699841 3011342 2894964 3716289.87 58210.62

 SD 2699841 3011342 2894964 3716289.87 58210.62

 Time 52 51.86 639 54.856 24.30

F18 Mean 12719 7058.42 445339 5989.24 3523.70

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

15

 SD 12719 7058.42 445339 5989.24 3523.70

 Time 37 34.15 437 37.037 24.30

F19 Mean 2539.23 2296.31 2534 2538.38 2539

 SD 2539.23 2296.31 2534 2538.38 2539

 Time 834 798.49 9895 947.406 1046

F20 Mean 14549.12 15983.76 28188 17269.85 15049.83

 SD 14549.12 15983.76 28188 17269.85 15049.83

 Time 37 36.81 448 30.658 49.09

F21 Mean 748419 585489 1097997 774049.91 61828

 SD 748419 585489 1097997 774049.91 61828

 Time 49 47.32 856 40.798 63

F22 Mean 2758 2727.08 2844 2703.86 2813

 SD 2758 2727.08 2844 2703.86 2813

 Time 115 114.450 1696 109.921 139.4

F23 Mean 2617 2616.48 2620.21 2616.43 2500

 SD 2617 2616.48 2620.21 2616.43 2500

 Time 139 139.79 1976 134.524 173.45

F24 Mean 2600 2635.87 2603 2634.43 2600

 SD 2600 2635.87 2603 2634.43 2600

 Time 107 111.17 1503 118.136 127.97

F25 Mean 2707 2710.26 2700.32 2709.29 2700

 SD 2707 2710.26 2700.32 2709.29 2700

 Time 140 142.09 1846 155.969 172.26

F26 Mean 2782 2740.74 2800.04 2766.17 2798.04

 SD 2782 2740.74 2800.04 2766.17 2798.04

 Time 4118 4186.60 50167 3616.477 11220.31

F27 Mean 3443 3431.52 3273.93 3401.17 2900

 SD 3443 3431.52 3273.93 3401.17 2900

 Time 4382 4398 45428 2723.65 5419.98

F28 Mean 4495 3925.84 4050.87 3870.42 3000

 SD 4495 3925.84 4050.87 3870.42 3000

 Time 299 295.40 2768 186.109 344.37

F29 Mean 16215 4177.09 2015087 4362.35 3100

 SD 16215 4177.09 2015087 4362.35 3100

 Time 926 825 9245 646.452 1190.62

F30 Mean 14983 11741.60.0 17050.01 11977.69 3200

 SD 14983 11741.60 17050.01 11977.69 3200

 Time 208 178.75 1773 126.545 369.84

TABLE 12
MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS EXISTING OPTIMIZATION ALGORITHMS USING THE CEC2014 (D = 30).

F Index Algorithms

 ACS 2013 MultiVerse 2016 ABC2005 DE 1997 GWO-HS

F1 Mean 68849 2463618 2.34 E7 3889379 413113

 SD 68849 2463618 2.34 E7 3889379 413113

 Time 273 174 113 449 60.163

F2 Mean 200 1908 993 4.76 E8 18904

 SD 200 1908 993 4.76 E8 18904

 Time 147 97 32 163 20.395

F3 Mean 300 374 1600.05 5684 5051

 SD 300 374 1600.05 5684 5051

 Time 161 95 38 197 25.632

F4 Mean 400.42 470 500.03 512 439

 SD 400.42 470 500.03 512 439

 Time 172 99 43 198 25.033

F5 Mean 520.01 520 520.01 520.81 520.00

 SD 520.01 520 520.01 520.81 520.00

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

16

 Time 228 139 89 389 49.116

F6 Mean 610.23 604.01 617.59 613 620.245

 SD 610.23 604.01 617.59 613 620.245

 Time 37222 16555 17323 84542 6312.374

F7 Mean 700 700.01 700.11 706.74 700.01

 SD 700 700.01 700.11 706.74 700.01

 Time 235 207 110 451 52.229

F8 Mean 800.91 868 800 856.48 800

 SD 800.91 868 800 856.48 800

 Time 162 165 12749 856.48 27.31

F9 Mean 961 971 1039.01 993 1037

 SD 961 971 1039.01 993 1037

 Time 231 192 85 527 37.85

F10 Mean 1000.49 2649.50 1000.08 1743 1001

 SD 1000.49 2649.50 1000.08 1743 1001

 Time 337 316 158 881 63.43

F11 Mean 2899.09 4168.99 3536.66 6115 3793.02

 SD 2899.09 4168.99 3536.66 6115 3793.02

 Time 423 360 221 1103 97.10

F12 Mean 1200.10 1200.16 1200.14 1201.50 1200.18

 SD 1200.10 1200.16 1200.14 1201.50 1200.18

 Time 4105 3451 3011 11534 1083.54

F13 Mean 1300.29 1300.26 1300.22 1300.40 1300.55

 SD 1300.29 1300.26 1300.22 1300.40 1300.55

 Time 160 167 56 215 17.811

F14 Mean 1685.39 1691 1685.39 1686.15 1685.40

 SD 1685.39 1691 1685.39 1686.15 1685.40

 Time 169 169 67 227 16.18

F15 Mean 1505.86 1508.67 1516.61 1612.67 1537.52

 SD 1505.86 1508.67 1516.61 1612.67 1537.52

 Time 243 216 116 476 32.40

F16 Mean 1609.12 1610.97 1610.11 1611.78 1610.51

 SD 1609.12 1610.97 1610.11 1611.78 1610.51

 Time 247 218 127 497 31.95

F17 Mean 15909.63 68155 3051313 440195.74 58210.62

 SD 15909.63 68155 3051313 440195.74 58210.62

 Time 348 267 203 701 24.30

F18 Mean 1970.31 3693 7320 3.09 E7 3523.70

 SD 1970.31 3693 7320 3.09 E7 3523.70

 Time 277 205 112 406 24.30

F19 Mean 2538.04 2547.94 2538.38 2538.97 2539

 SD 2538.04 2547.94 2538.38 2538.97 2539

 Time 6847 3787 3944 14593 1046

F20 Mean 2799 2227 22185.48 5931 15049.83

 SD 2799 2227 22185.48 5931 15049.83

 Time 246 221 118 434 49.09

F21 Mean 7125.01 34062 658713 125970 61828

 SD 7125.01 34062 658713 125970 61828

 Time 314 275 160 593 63

F22 Mean 2550.16 2475.32 2657.33 2486 2813

 SD 2550.16 2475.32 2657.33 2486 2813

 Time 721 611 503 1809 139.4

F23 Mean 2615.24 2502 2617.83 2617.13 2500

 SD 2615.24 2502 2617.83 2617.13 2500

 Time 999 715 662 2406 173.45

F24 Mean 2627 2600.60 2630 2646.36 2600

 SD 2627 2600.60 2630 2646.36 2600

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

17

 Time 781 703 500 1761 127.97

F25 Mean 2707.99 2700.08 2712 2711.38 2700

 SD 2707.99 2700.08 2712 2711.38 2700

 Time 1059 919 633 2227 172.26

F26 Mean 2715 2700.34 2721 2725.87 2798.04

 SD 2715 2700.34 2721 2725.87 2798.04

 Time 26476 21762 21399 61044 11220.31

F27 Mean 3124 2903.90 3168 3297.27 2900

 SD 3124 2903.90 3168 3297.27 2900

 Time 25270 21615 20556 48621 5419.98

F28 Mean 3753 3017.05 4751 3913.60 3000

 SD 3753 3017.05 4751 3913.60 3000

 Time 1776 1831 1339 2895 344.37

F29 Mean 3626.38 19816.49 4931 59318.770 3100

 SD 3626.38 19816.49 4931 59318.770 3100

 Time 6063 4775 4515 9249 1190.62

F30 Mean 5500.63 5142.61 7907 7762.58 3200

 SD 5500.63 5142.61 7907 7762.58 3200

 Time 1403 1232 916 1876 369.84

TABLE 13

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS HS VARIANTS 30D.

Algorithms P-value R+ R- n/h/l/s

GWO-HS vs EHS2011 0.0001 221 -52 24/21/1/2
GWO-HS vs IGHS 2013 0.00022 276 0 24/24/0/0
GWO-HS vs DHBest 2016 0.00782 217 -23 24/14/2/8

GWO-HS vs HS-SA 2018 0.00614 254 -22 24/21/3/0

TABLE 14

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS HS VARIANTS 50D.

Algorithms P-value R+ R- n/h/l/s

GWO-HS vs EHS2011 0.0001 208 -2 24/20/3/1
GWO-HS vs IGHS 2013 0.0001 251 -21 24/22/2/0
GWO-HS vs DHBest 2016 0. 02642 188 -29 24/13/3/8
GWO-HS vs HS-SA 2018 0.0002 247 -6 24/21/3/0

TABLE 15

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS OTHER METAHEURISTICS 30D.

Algorithms P-value R+ R- n/h/l/s

GWO-HS vs ACS 2013 0. 00374 225 0 24/21/0/3
GWO-HS vs MultiVerse 2016 0. 00124 228 0 24/22/0/2
GWO-HS vs ABC2005 0. 00078 213 -8 24/19/1/4
GWO-HS vs DE 1997 0. 00044 228 0 24/22/0/2

TABLE 16

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS OTHER METAHEURISTICS 50D.

Algorithms P-value R+ R- n/h/l/s

GWO-HS vs ACS 2013 0. 00214 231 -15 24/20/2/2
GWO-HS vs MultiVerse 2016 0. 00086 240 -4 24/21/1/2
GWO-HS vs ABC2005 0. 00034 249 -8 24/20/2/2
GWO-HS vs DE 1997 0. 00038 256 -4 24/20/2/2

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

18

TABLE 17

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS HS VARIANTS CEC2014 30D.

 P-value R+ R- n/h/l/s

GWO-HS vs EHS2011 0.0002 414 -50 30/25/4/1
GWO-HS vs IGHS 2013 0.01778 347 -117 30/19/-11/0
GWO-HS vs DHBest 2016 0.00044 403 -62 30/24/6/0
GWO-HS vs HS-SA 2018 0.00782 359 -103 30/22/8/0

TABLE 18

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS OTHER METAHEURISTICS CEC 2014 30D.

Algorithms P-value R+ R- n/h/l/s

GWO-HS vs ACS 2013 0. 03662 362 -103 30/22/8/0
GWO-HS vs Multiverse 2016 0. 4965 267 -195 30/17/11/2
GWO-HS vs ABC2005 0. 14706 300 -163 30/16/13/1
GWO-HS vs DE 1997 0. 00128 389 -76 30/23/7/0

FIGURE 2. CONVERGENCE CURVE FOR F1

 FIGURE 3. CONVERGENCE CURVE FOR F4

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91

F1: Convergence Rate

GWO-HS Multiverse 2016
ABC 2005 ACS 2013
DE 1997

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

1.E+09

2.E+09

2.E+09

1 11 21 31 41 51 61 71 81 91

F4: Convergence Rate

GWO-HS Multiverse 2016
ABC 2005 ACS 2013
DE 1997

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

19

FIGURE 4. CONVERGENCE CURVE FOR F6

 FIGURE 5. CONVERGENCE CURVE FOR F7

TABLE 19

FRIEDMAN TEST RESULTS GWO-HS VS HS VARIANTS.

Algorithms Classical 30D Classical 50D CEC2014 30D

EHS2011 2.8542 2.9583 4.0833
IGHS 2013 4.1250 4.2083 2.6333
DHBest 2016 2.9792 2.1875 3.6000
HS-SA 2018 3.3750 4.1667 2.7000
GWO-HS 1.6667 1.4792 1.9833

TABLE 20
FRIEDMAN TEST RESULTS GWO-HS VS OTHER METAHEURISTICS.

Algorithms Classical 30D Classical 50D CEC2014 30D

ACS 2013 2.4792 2.5417 1.8667
Multiverse 2016 3.1458 2.8750 2.6667
ABC2005 3.6250 2.5417 3.4500
DE1997 4.1875 3.9583 4.2333
GWO-HS 1.5625 1.5000 2.7833

0.0

100.0

200.0

300.0

400.0

500.0

600.0

1 11 21 31 41 51 61 71 81 91

F6: Convergence Rate

GOW-HS Multiverse 2016

ABC 2005 ACS 2013

DE 1997

0.00

5.00

10.00

15.00

20.00

25.00

1 11 21 31 41 51 61 71 81 91

F7: Convergence Rate
GOW-HS Multiverse 2016

ABC 2005 ACS 2013

DE 1997

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

20

Table 4 shows that the best results for the hybrid algorithm are

obtained using HMS = 5 and shows the fastest results obtained

in most functions. Table 4 shows that increasing HMS does

not improve the performance in most algorithms. Thus, a small

HMS improves the update rate in HM for most cases. Table 5

presents the results of running the hybrid algorithm with

different HMCR values (i.e., 0.7, 0.8, 0.9, and 0.99). The

obtained results show that the HMCR value has a high

influence on the HS performance. A large HMCR value

provides improved results. The best results are obtained using

HMCR = 0.99 for most benchmark functions with the fastest

convergence rate. Through the experiment of HMS values, we

use HMCR = 0.99 and HMS = 5 to run the HMCR value

experiment.

B. EXPERIMENT 1

In this part, we will analyze the experiment of the new hybrid

algorithm compared with four recent HS variants and one

hybrid algorithm (i.e., EHS 2011, IGHS 2013, DH/best 2016

and HS-SA 2018). The parameter configurations for these

variants are described in Table 4. The parameter values for the

hybrid algorithm are the same as those listed in Table 2. First,

we examine the hybrid algorithm together with four HS

variants using 24 benchmark functions with 30 and 50

dimensions, as described in Table 1.

For both dimensions, as presented in Tables 7 and 8, the hybrid

algorithm provides better results than the other HS variants in

most cases. Second, we compare the hybrid algorithm with the

recent variants of HS using 30 state-of-the-art CEC

benchmark functions [45], with 30 dimensions. The results

presented in Table 11 show that the new hybrid algorithm

outperforms the recent variants in 20 out of the 30 test cases

and provides highly competitive results. In terms of speed, the

algorithm only outperforms the other variants in seven

functions, but it provides high speed in all cases.

Wilcoxon’s rank test was applied to the mean results of Tables

7, 8, and 11 presented in Tables 13, 14, and 17 respectively.

The p-value shows the significance of the results and

performance improvement in comparison with other variants.

A low p-value means high improvement. R+ presents the total

ranks whenever the hybrid algorithm provides better results

than the other variants, whereas R- provides the total ranks of

lower results than the other variants. N is the total number of

benchmark functions, l, h, and s indicate the total number of

functions with higher, lower, or similar results of the hybrid

algorithm compared with other variants. As presented in

Tables 13, 14, and 17, the new hybrid algorithm outperforms

all variants of HS with improved performance. Finally, to

establish a comparative assessment, Friedman statistical test

has been conducted based on the mean results of Tables 7, 8,

and 11. The results presented in Table 19 confirm that the new

hybrid algorithm outperforms all previous variants of HS

because it provides the highest ranking. These results obtained

the lowest value on the Friedman test, which shows a high

ranking. The results contain classical 30D as classical

benchmark functions with 30 dimensions, and classical 50D

as classical benchmark functions with 50 dimensions, and

finally the CEC2014 test cases with 30 dimensions.

C. EXPERIMENT 2

To investigate the capability of the hybrid algorithm, we

evaluate it with other state-of-the-art metaheuristic algorithms

from different families, as follows: artificial cooperative

search (ACS 2013) [46], (multi-verse 2016) [47], artificial bee

colony (ABC 2005)[48], and differential evolution (DE 1997)

[49]. The parameter characteristics of these algorithms are

shown in Table 3 as used in this experiment.

In Table 9, we compare the hybrid algorithm with other

metaheuristics using classical benchmark functions as

described in Table 1. These functions have 30 dimensions. The

hybrid algorithm provides the best results in all test functions,

except for F5 and F13. The hybrid algorithm provides the

second-best results. Table 10 presents the mean, and the SD of

the hybrid algorithm with other metaheuristics by using 50

dimensions for the classical benchmark functions. The hybrid

algorithm outperforms other metaheuristics in all test

functions, except for F5, F13, and F16; the hybrid algorithm

provides the second-best result. Finally, we compare the

hybrid algorithm with other metaheuristics in Table 12 using

30 state-of-the-art benchmark functions from CEC 2014. The

results of mean and standard deviations and running time show

that the hybrid algorithm provides the highest speed in all the

30 cases. Moreover, this algorithm outperforms all other

metaheuristics in 12 cases, as presented in Table 12. Overall,

according to the results shown in Tables 9 and 10, the hybrid

algorithm provides a competitive result compared to other

metaheuristic algorithms in terms of efficiency.

Similar to the previous section, we conducted Wilcoxon’s rank

test and Friedman statistical test based on the mean results of

Tables 9, 10, and 12. The Wilcoxon’s rank test results

presented in Tables 15, 16, and 18 were derived from 30, 50

dimensions of classical benchmark functions, and CEC2014

test cases, respectively.

 As shown in Tables 15 and 16, the hybrid algorithm provides

very small p-values. Therefore, it outperforms all other

metaheuristic algorithms and provides very high significant

improvement. Table 18 shows the results based on CEC2014

experiment results presented in Table 12. The hybrid

algorithm provides high significance results against two

algorithms, namely, ACS and DE.

 For the Friedman test, Table 20 presents a full overview of the

classical benchmark functions with two dimensions, 30 and

50, and the CEC test cases. As seen in the classical

experiments, the hybrid algorithm has the lowest value on

Friedman test, which means it has the highest ranking among

other metaheuristics. For the CEC2014 experiment, the hybrid

algorithm has the second raking following ACS algorithm.

To provide insight into the hybrid algorithm convergence rate,

we run experiment using four benchmark functions. Two

functions with unimodal optimum (F1, F4), and two functions

with multimodal optimum (F6, F7). Figures (2 - 5) illustrate

the best score obtained so far of the hybrid algorithm and other

HS variants versus the iteration.

VII. CONCLUSION

This paper presents a new hybrid algorithm of the HS

algorithm with the GWO algorithm called GWO-HS

algorithm for the global continuous optimization problem. The

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

21

new hybrid algorithm solves the parameter selection problem

of the HS algorithm by using another algorithm, namely,

GWO, to modify the values of the PAR and BW parameters

as a self-adaptive process. Another modification is performed

to harmonize search by applying the modified opposition

technique to the search result and improving the obtained

results. The GWO-HS convergence is very high compared to

the existing HS variants due to the opposition technique, and

GWO-HS can reach the optimum results with less iterations.

The new hybrid algorithm can cover different types of

problems with the same parameter setting, which makes it a

better version of HS than the original one. Two groups of

evaluation tests are used to examine the new algorithm

performance. First, we compare the hybrid algorithm with the

recent variants of the HS algorithm using different types of

optimization functions, namely, 24 classical and 30 CEC2014

benchmark functions. The results show that the hybrid

algorithm is better than the previous variants in terms of

accuracy and provides competitive time consumption.

Additionally, the algorithm has been evaluated with well-

known metaheuristics from different families. The hybrid

algorithm shows improved results and speed compared with

these algorithms. The new hybrid algorithm shows high

performance, which is essential in solving real-world

optimization. Therefore, we recommend using a new

algorithm to solve real-world problems. The current

experiment focuses on continuous benchmark functions.

Future work could utilize the new hybrid algorithm in discrete

optimization problems.

REFERENCES

1. Sörensen, K., Metaheuristics—the metaphor exposed. International
Transactions in Operational Research, 2015. 22(1): p. 3-18.

2. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, Optimization by simulated

annealing. science, 1983. 220(4598): p. 671-680.
3. Geem, Z.W., J.H. Kim, and G. Loganathan, A new heuristic optimization

algorithm: harmony search. simulation, 2001. 76(2): p. 60-68.

4. Fogel, L.J., A.J. Owens, and M.J. Walsh, Artificial intelligence through
simulated evolution. 1966.

5. Glover, F., Heuristics for integer programming using surrogate

constraints. Decision Sciences, 1977. 8(1): p. 156-166.
6. Lee, K.S. and Z.W. Geem, A new structural optimization method based

on the harmony search algorithm. Computers & structures, 2004. 82(9):

p. 781-798.
7. Eiben, A.E. and C.A. Schippers, On evolutionary exploration and

exploitation. Fundamenta Informaticae, 1998. 35(1-4): p. 35-50.

8. Castillo, O., et al., Shadowed Type-2 Fuzzy Systems for Dynamic
Parameter Adaptation in Harmony Search and Differential Evolution

Algorithms. Algorithms, 2019. 12(1): p. 17.

9. Peraza, C., et al., Fuzzy dynamic parameter adaptation in the harmony
search algorithm for the optimization of the ball and beam controller.

Advances in Operations Research, 2018. 2018.

10.Geem, Z.W., J.H. Kim, and G. Loganathan, Harmony search

optimization: application to pipe network design. International Journal of

Modelling and Simulation, 2002. 22(2): p. 125-133.

11.Vasebi, A., M. Fesanghary, and S. Bathaee, Combined heat and power
economic dispatch by harmony search algorithm. International Journal

of Electrical Power & Energy Systems, 2007. 29(10): p. 713-719.
12.Geem, Z.W., Optimal cost design of water distribution networks using

harmony search. Engineering Optimization, 2006. 38(03): p. 259-277.

13.Geem, Z.W. Improved harmony search from ensemble of music players.
in Knowledge-based intelligent information and engineering systems.

2006. Springer.

14.Al-Betar, M.A. and A.T. Khader, A harmony search algorithm for
university course timetabling. Annals of Operations Research, 2012.

194(1): p. 3-31.

15.Alazzawi, A.K., et al., Artificial Bee Colony Algorithm for Pairwise Test

Generation. Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), 2017. 9(1-2): p. 103-108.

16.Alsewari, A.R.A. and K.Z. Zamli, A harmony search based pairwise

sampling strategy for combinatorial testing. International Journal of

Physical Sciences, 2012. 7(7): p. 1062-1072.

17.Zamli, K.Z., A.A. Al-Sewari, and M.H.M. Hassin, On Test Case

Generation Satisfying the MC/DC Criterion. International Journal of
Advances in Soft Computing & Its Applications, 2013. 5(3).

18.Alsewari, A., K. Zamli, and B. Al-Kazemi, Generating t-way test suite

in the presence of constraints. Journal of Engineering and Technology
(JET), 2015. 6(2): p. 52-66.

19.Manjarres, D., et al., A survey on applications of the harmony search

algorithm. Engineering Applications of Artificial Intelligence, 2013.
26(8): p. 1818-1831.

20.Ala’a, A., et al., Comprehensive review of the development of the

harmony search algorithm and its applications. IEEE Access, 2019.
21.Mahdavi, M., M. Fesanghary, and E. Damangir, An improved harmony

search algorithm for solving optimization problems. Applied

mathematics and computation, 2007. 188(2): p. 1567-1579.
22.Omran, M.G. and M. Mahdavi, Global-best harmony search. Applied

mathematics and computation, 2008. 198(2): p. 643-656.

23.Pan, Q.-K., et al., A self-adaptive global best harmony search algorithm
for continuous optimization problems. Applied Mathematics and

Computation, 2010. 216(3): p. 830-848.

24.El-Abd, M., An improved global-best harmony search algorithm.
Applied Mathematics and Computation, 2013. 222: p. 94-106.

25.Abedinpourshotorban, H., et al., A differential-based harmony search
algorithm for the optimization of continuous problems. Expert Systems

with Applications, 2016. 62: p. 317-332.

26.Assad, A. and K. Deep, A Hybrid Harmony search and Simulated
Annealing algorithm for continuous optimization. Information Sciences,

2018. 450: p. 246-266.

27.Eiben, Á.E., R. Hinterding, and Z. Michalewicz, Parameter control in
evolutionary algorithms. IEEE Transactions on evolutionary

computation, 1999. 3(2): p. 124-141.

28.Mirjalili, S., S.M. Mirjalili, and A. Lewis, Grey wolf optimizer.
Advances in engineering software, 2014. 69: p. 46-61.

29.Tizhoosh, H.R. Opposition-based learning: a new scheme for machine

intelligence. in Computational intelligence for modelling, control and
automation, 2005 and international conference on intelligent agents, web

technologies and internet commerce, international conference on. 2005.

IEEE.

30.Rodríguez, L., et al., A fuzzy hierarchical operator in the grey wolf

optimizer algorithm. Applied Soft Computing, 2017. 57: p. 315-328.

31.Rodríguez, L., et al., A Comparative Study of Dynamic Adaptation of
Parameters in the GWO Algorithm Using Type-1 and Interval Type-2

Fuzzy Logic, in Fuzzy Logic Augmentation of Neural and Optimization

Algorithms: Theoretical Aspects and Real Applications. 2018, Springer.
p. 3-16.

32.Komaki, G. and V. Kayvanfar, Grey Wolf Optimizer algorithm for the

two-stage assembly flow shop scheduling problem with release time.
Journal of Computational Science, 2015. 8: p. 109-120.

33.Jayabarathi, T., et al., Economic dispatch using hybrid grey wolf

optimizer. Energy, 2016. 111: p. 630-641.
34.Zhang, S., et al., Grey wolf optimizer for unmanned combat aerial

vehicle path planning. Advances in Engineering Software, 2016. 99: p.

121-136.
35.Song, X., et al., Grey Wolf Optimizer for parameter estimation in surface

waves. Soil Dynamics and Earthquake Engineering, 2015. 75: p. 147-

157.
36.Xu, Q., et al., A review of opposition-based learning from 2005 to 2012.

Engineering Applications of Artificial Intelligence, 2014. 29: p. 1-12.

37.Gao, X., et al., A hybrid optimization method of harmony search and
opposition-based learning. Engineering Optimization, 2012. 44(8): p.

895-914.

38.Xiang, W.-l., et al., An improved global-best harmony search algorithm
for faster optimization. Expert Systems with Applications, 2014. 41(13):

p. 5788-5803.

39.Guo, Z., et al., Global harmony search with generalized opposition-based
learning. Soft Computing, 2017. 21(8): p. 2129-2137.

40.Peraza, C., et al., A new fuzzy harmony search algorithm using fuzzy

logic for dynamic parameter adaptation. Algorithms, 2016. 9(4): p. 69.

2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

22

41.Eberhart, R. and J. Kennedy, A new optimizer using particle swarm

theory. Micro Machine and Human Science, 1995. MHS'95., Proceedings
of the Sixth International Symposium on, 1995: p. 39-43.

42.Das, S., et al., Exploratory power of the harmony search algorithm:

analysis and improvements for global numerical optimization. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

2011. 41(1): p. 89-106.

43.Wang, C.-M. and Y.-F. Huang, Self-adaptive harmony search algorithm
for optimization. Expert Systems with Applications, 2010. 37(4): p.

2826-2837.

44.Castillo, O., et al., Comparative Study in Fuzzy Controller Optimization
Using Bee Colony, Differential Evolution, and Harmony Search

Algorithms. Algorithms, 2019. 12(1): p. 9.

45.Liang, J., B. Qu, and P. Suganthan, Problem definitions and evaluation
criteria for the CEC 2014 special session and competition on single

objective real-parameter numerical optimization. Computational

Intelligence Laboratory, Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University, Singapore, 2013.

46.Civicioglu, P., Artificial cooperative search algorithm for numerical

optimization problems. Information Sciences, 2013. 229: p. 58-76.
47.Mirjalili, S., S.M. Mirjalili, and A. Hatamlou, Multi-verse optimizer: a

nature-inspired algorithm for global optimization. Neural Computing and

Applications, 2016. 27(2): p. 495-513.
48.Karaboga, D., An idea based on honey bee swarm for numerical

optimization. 2005, Technical report-tr06, Erciyes university,

engineering faculty, computer ….
49.Storn, R. and K. Price, Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces. Journal of
global optimization, 1997. 11(4): p. 341-359.

Alaa A. Alomoush Received B.Sc. degree in

computer science from Al Albayt University in

2010, The M.Sc. degree from University Putra

Malaysia in 2013, and currently a PhD candidate
in computer science at Faculty of Computer

Systems and Software Engineering, Universiti

Malaysia Pahang. His main research interests
include Artificial intelligence, Computational

Intelligence.

AbdulRahman A. Alsewari was born in

Sana’a, Yemen in 1980. He obtained his BEng in

computer engineering from Military College of
Engineering, Baghdad, Iraq in 2002, his MSc

degree in electronic system design engineering

from Universiti Sains Malaysia in 2008, and his
PhD in Software Engineering from Universiti

Sains Malaysia in 2012. From Sep. 2012 to

March 2013, he was an Assistant Professor and a
head of Information Technology Department, Engineering College,

DarAssalam International University for Science and Technology, Yemen.

Since April 2013, he has been a senior lecturer (Assistant Professor) and a
researcher at the Software Engineering Department, Faculty of Computer

Systems and Software Engineering, Universiti Malaysia Pahang. He is the

author and co-author of one book, more than 30 articles, and more than 10
inventions. He is IEEE senior member. His research interests include

software engineering, Software Testing, Optimization Algorithms,

Artificial Intelligence, Soft Computing, Embedded Systems, and Image
Processing.

 Kamal Z Zamli obtained his degree in the field

of Electrical Engineering from Worcester
Polytechnic Institute, USA in 1992. He then

pursued his MSc (Real-Time Software

Engineering) from Universiti Teknologi Malaysia
in 2000 and PhD from Software Engineering from

University of Newcastle upon Tyne, UK in 2003.

He is a Professor and dean of the Faculty of
Computer Systems and Software Engineering,

Universiti Malaysia Pahang. He is the author and

co-author of one book, more than 30 articles, and
more than 350 papers in journals and conferences worldwide mainly in the

area of (combinatorial t-way) Software Testing as well as Search based

Software Engineering.

Hammoudeh S. Alamir Received B.Sc.

degree in computer engineering from Yarmouk

University in 2008, The M.Sc. degree from
University Malaysia Pahang in 2016, and

currently a PhD candidate in computer science at

Faculty of Computer Systems and Software
Engineering, Universiti Malaysia Pahang. His

main research interests include Optimization

Algorithms, IoT, and Computational Intelligence.

Khalid Aloufi is an associate professor in the

Department of Computer Engineering, Taibah
University, Madinah, Saudi Arabia. He

received his Ph.D. and M.Sc. degrees in

informatics from Bradford University, UK, in
2002 and in 2006 respectively. His B.Sc. degree

in computer engineering was received in 1999

from King Fahd University of Petroleum and
Minerals (KFUPM), Saudi Arabia. From 2002 to

2006, he was part of the networks and

performance engineering research group at Bradford University. Since

2013, Dr. Aloufi has been the dean of the College of Computer Science and

Engineering at Taibah University, Saudi Arabia.

