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ABSTRACT Most metaheuristic algorithms, including harmony search (HS), suffer from parameter selection. Many 

variants have been developed to cope with this problem and improve algorithm performance. In this paper, a hybrid algorithm 

of HS with grey wolf optimizer (GWO) has been developed to solve the problem of HS parameter selection. Then, a modified 

version of opposition-based learning technique has been applied on the hybrid algorithm to improve the HS exploration because 

HS easily gets trapped into local optima. Two HS parameters were automatically updated using GWO, namely, pitch 

adjustment rate and bandwidth. The proposed hybrid algorithm for global optimization problems is called GWO-HS. GWO-

HS was evaluated using 24 classical benchmark functions with 30 state-of-the-art benchmark functions from CEC2014. Then, 

GWO-HS has been compared with recent HS variants and other well-known metaheuristic algorithms. Results show that the 

GWO-HS is superior over the old HS variants and other well-known metaheuristics in terms of accuracy and speed process. 

 
INDEX TERMS Computational Intelligence, Grey wolf optimizer, Harmony search, Hybrid algorithm, 
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I. INTRODUCTION 

Solving the NP-hard problem using an exhaustive search is 

an impractical technique because of long-time consumption 

and complex application. A well-known solution to solve the 

NP-hard problem with minimal time consumption is using a 

heuristic technique that can find a near-optimal solution. 

Heuristic algorithm sacrifices optimality or completeness to 

obtain quickly the best result. 

Meta-heuristic algorithms are higher-level heuristic 

algorithms that can cover a wider range of problems, with a 

lack of information or high computation time [1]. The main 

functionality of meta-heuristic algorithms is obtained by 

merging rules and randomness to simulate natural phenomena, 

such as physical annealing in a simulated annealing (SA) 

algorithm  [2], the human intelligence in the harmony search 

(HS) algorithm [3], the biological evolutionary process in an 

evolutionary algorithm (EA) [4], and animal behavior in Tabu 

search  [5]. 

The efficiency of metaheuristic algorithms depends on the 

utilization of explorative and exploitative ranges through the 

search process [6]. The exploitative process is accomplished 

by utilizing the information obtained to guide the search 

toward its goal. The explorative process is the capability of an 

algorithm to examine uncovered areas quickly within 

considerable search sizes. Overall performance develops if the 

balance between these two characteristics is established [7]. 

Harmony search (HS) algorithm is a well-known 

metaheuristic algorithm, introduced by Geem et al. [3] by 

mimicking the musician's process in creating a new musical 

harmony[8, 9]. The HS algorithm is used in different fields of 

optimization problems, such as engineering [10, 11], water 

distribution [12], structural optimization [6], music ensemble 

[13], and university timetable [14], Software testing [15-18]. 

Many other applications and variants of the HS algorithm were 

made according to previous survey articles [19, 20]. 

The success of using HS in different research fields is 

attributed to its characteristics. The main advantage of HS is 

its capability to utilize exploration and exploitation 

simultaneously through the search process [14]. 
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Most metaheuristic algorithms, including HS, suffer from 

parameter selection, and premature convergence. Many 

variants have been developed to cope with this problem and 

improve algorithm performance [21-26]. 

Generally, researchers have two ways of setting 

metaheuristic parameter values, namely, by using parameter 

tuning or by using parameter control. 

A. PARAMETER TUNING 

The use of parameter tuning is achieved by finding the best 

values for algorithm parameters before running the algorithm 

to fix the problem. Parameter tuning involves a number of 

difficulties, such as longtime consumption because of the need 

to cover all possibilities, which is practically impossible; 

another difficulty is high complexity because parameters are 

not independent; moreover, choosing a fixed parameter as 

optimal value through the search process is against the idea of 

EA of a dynamic and adaptive process[27]. 

B. PARAMETER CONTROL 

The other way to modify algorithm parameter values is 

through the search process, which can be accomplished in 

three ways. 

1: First method: The algorithm parameter values can be 

modified using a deterministic function to replace the 

static value of the parameters in the search process; an 

example of this process is the improved HS by Mahdavi 

et al.  [21], who replaced the static values of pitch 

adjustment rate (PAR) and bandwidth (BW) with new 

functions to modify their values throughout the search 

process. The following equations present the dynamic 

BW:   

𝐶 = (𝑙𝑛 (
𝐵𝑊 𝑚𝑖𝑛
𝐵𝑊 𝑚𝑎𝑥

 ) ÷ NI)                                      (1) 

𝐵𝑊 (𝑡 ) = 𝐵𝑊 𝑚𝑎𝑥 × 𝑒
(c ×𝑡).                                  (2) 

 

(BWmin; BWmax) are the minimum and maximum 

values of BW, t is the current number of iterations. The 

following equation present the dynamic PAR: 

PAR(t) = PARmin +
(PARmax – PARmin)

𝑁𝐼
× t.       (3) 

(PARmin; PARmax) are minimum and maximum values 

of PAR, t is the current number of iterations, NI is the 

total number of iterations. 

2: Second method: The algorithm can use feedback from 

the search process to improve the search parameter 

values, such as updating step size (by decreasing or 

increasing it) on the basis of the success rate of the search 

process. 

3: Third method: The third method uses the self-adaptive 

values of the algorithm parameters. The adapted 

parameters can change in chromosomes and mutation 

processes on the basis of the previous results; an 

example of this approach is the self-adaptive global best 

HS algorithm by Pan et al. who constructed the mutated 

values of harmony memory consideration rate (HMCR) 

and PAR through the search process.  
In the current article, we present a hybrid algorithm of HS 

and grey wolf optimizer (GWO). GWO is a newly developed 

algorithm inspired by the hunting and leadership of grey wolf 

packs [28]. Inspired by the idea of finding the best values using 

optimization algorithms, GWO was used in the current paper 

to modify the HS parameters as a self-adaptive process. 

Hence, instead of tuning the PAR and BW parameters before 

the search start, the GWO algorithm modifies the parameter 

values throughout the search process. 

To improve HS exploration and avoid premature 

convergence, a modified version of the original opposition-

based learning (OBL)  [29] is implemented in the hybrid 

algorithm. This paper mainly aims to design, implement, and 

evaluate a new hybrid algorithm of HS and GWO with self-

adaptive parameter selection. This paper also aims to improve 

HS algorithm exploration using a modified version of the OBL 

technique. 

To evaluate the effectiveness of the suggested hybrid 

algorithm, the hybrid algorithm has been tested using 24 

classical benchmark functions with 30 state-of-the-art 

benchmark functions from CEC and compared them with 

previous HS variants as well as with well-known 

metaheuristic algorithms. Parametric tests, namely, 

Wilcoxon’s rank test and Friedman test, were used. The tests 

were used to provide an insight into the new hybrid algorithm 

in contrast to the previous variants and hybrid algorithm at α 

= 5% significance level. The new hybrid algorithm shows 

highly competitive results in all experiments. To find the best 

values of harmony memory size (HMS) and HMCR for the 

hybrid algorithm, some experiments were conducted as 

presented in the experimental results and analysis section. 

The remaining sections of this paper are organized as 

follows. The original HS and its variants. Then GWO 

algorithm and modified OBL are investigated. The proposed 

algorithm is described after that. Then, a section will provide 

the results and discussion. Finally, a conclusion is provided, 

and possible future improvements are provided. 

 
II. HS and its Variants 

In this part, we will comprehensively describe HS, and 

different variants were created to overcome the HS variable 

selection and improve its performance. Some researchers 

utilized fuzzy logic to automatically update the HS 

parameters [40]. Mahdavi et al. [21], created a modified 

variant of HS by adding new functions to modify the HMCR 

and PAR values throughout the search process.  Other 

researchers, such as Omran et al. [22], modified the search 

process, which he borrowed from Particle Swarm 

Optimization [41].  
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FIGURE 1. HS Process 

A. HS ALGORITHM 

The HS algorithm process contains five main steps, as shown 

in Figure 1: 

Step 1: Creating initial values of HS parameters: BW, PAR, 

HMCR, number of iterations (NI), and HMS. The 

optimization objective function will be determined in this step 

either by using the maximum or minimum objective function  

f(x), which are the benchmark functions used in this paper. 𝑋𝑖 
is the prospect solution vector from N (all possible solution 

vectors of 𝑋𝑖, and the 𝑋𝑖 value is within (lower and upper 

boundaries) for all the decision variables. 

Step 2: In this step, HM will be initialized within the upper 

and lower boundary ranges, as shown in the next equation, and 

𝑋1 is a random value between 0 and 1. 

𝑋𝑖 = 𝐿𝐵 + 𝑟1 × (𝑈𝐵 − 𝐿𝐵)                                             (4) 
 

Step 3: In this step, the improvisation of new harmony will be 

performed using a combination of three major parameters, 

namely, HMCR, PAR, and BW, according to line 9 in 

Algorithm 1. First, random number 𝑋2 generated between 0 

and 1; if 𝑋2 is larger than HMCR, then a new value 𝑋𝑗 will be 

created using Equation 1; otherwise, a random value of 𝑋𝑖 will 

be chosen from HM. Afterward, another random value 𝑟3 will 

be generated between 0 and 1; if it is smaller than or equal to 

PAR, then 𝑋𝑖 will be modified using Equation 2, as follows: 

𝑋𝑖
′ = 𝑋𝑖

′ ± 𝐵𝑊 × 𝑟𝑛𝑑                                                (5) 
Step 4: If the newly generated vector 𝑋𝑖

′ is better than the 

worst vector in the harmony memory, then the worst vector 

will be replaced with the new vector 𝑋𝑖
′ because of the 

objective function. 

Step 5: The stopping criteria, such as the maximum number of 

improvisations, should be checked after every improvisation. A 

detailed description of the HS algorithm is presented in the 

following pseudocode: 

Algorithm1: Harmony Search algorithm improvisation 

1. 𝑤ℎ𝑖𝑙𝑒 (𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 
2. 𝑓𝑜𝑟 (𝑗 = 1 𝑡𝑜 𝐷) = {𝐷: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠} 
3.   𝐼𝑓 (𝑅2) ≤ 𝐻𝑀𝐶𝑅 {𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛} 
4.      𝑥𝑖

′ = 𝑥𝑖,𝑗   {𝑖 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (1, …𝐻𝑀𝑆)} 

5.      𝑖𝑓 (𝑅3 ≤ 𝑃𝐴𝑅){𝑃𝑖𝑡𝑐ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡} 
6.         𝑥𝑗

′ = 𝑥𝑗
′ ± 𝑅4 × 𝑏𝑤 

7.      𝑒𝑛𝑑 𝑖𝑓 

8.      𝑒𝑙𝑠𝑒 

9.        𝑥𝑗
′ = 𝐿𝐵 + 𝑅5 × (𝑈𝐵 − 𝐿𝐵)) 

10.    𝑒𝑛𝑑 𝑖𝑓 

11.   𝑒𝑛𝑑 𝑓𝑜𝑟 

12.   𝑈𝑝𝑑𝑎𝑡𝑒 𝐻𝑀: 

13.    𝑖𝑓 (𝑥𝑗
′ 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑤𝑜𝑟𝑠𝑡 𝑥𝑗  {𝑥𝑗 ∈ 𝐻𝑀}) 

14.    𝑥𝑗 = 𝑥𝑗
′ 

15.    𝑡 = 𝑡 + 1 

16.    𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

17.    𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑦 

B. EXPLORATORY POWER OF THE HARMONY SEARCH 
ALGORITHM: ANALYSIS AND IMPROVEMENTS FOR 
GLOBAL NUMERICAL OPTIMIZATION (EHS; 2011) 

To improve HS performance, Das et al. [42] conducted a 

theoretical study of the HS algorithm; another variant of the 

HS algorithm was introduced. The new variant is compared 

with other variants of HS and other state-of-the-art 

optimization algorithms. The new variant shows competitive 

results. The new variant has the same steps as the original 

HS except for the BW value, which is updated based on the 

following equations: 

𝐵𝑊 = 𝑘√𝑉𝑎𝑟(𝑥)                                                   (6) 

𝑉𝑎𝑟(𝑥) =
1

m
∑(𝑥𝑖 − �̅�)

2

𝑚

𝑘=1

=  𝑥𝑖
2 − �̅� 2                           (7) 

For the benchmark function, the author suggests using (k = 1 

.17); meanwhile, m = HMS, and X is the population average. 
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TABLE 1 

BENCHMARK FUNCTIONS (GOV: GLOBAL OPTIMUM VALUE). 

Function Function Formula Type Range GOV 

 
 F1: Sphere ∑𝑥𝑖

2

𝑛

𝑖=1

 

 

 
UM 

 
-100, 100 

 
0 

 
F2: Schwefel’s 2.22 ∑|𝑋𝑖|

𝐷

𝑖=1

+ 𝛱𝑖=1
𝐷 = |𝑋𝑖| 

 

 
UM 

 
-10, 10 

 
0 

 

F3: Step ∑(|𝑋𝑖 + 0.5|)
2

𝐷

𝑖=1

 

 

 

UM 

 

-100, 100 

 

0 

 

F4: Rosenbrock 

 

∑100 × (𝑋𝑖 − 𝑋𝑖−1
2 )2 + (𝑥𝑖−1 − 1)

2

𝐷

𝑖=1

 

 

 

UM 

 

-30, 30 

 

0 

 

F5: Schwefel’s 2.26 −∑[𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|)]

𝑛

𝑖=1

 

 

 

UM 

 

-500, 500 

 

−12569.5 

 

F6: Rastrigin ∑(𝑋𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

 

 

 

M 

 

-5.12, 5.12 

 

0 

 
F7: Ackleys 

−20𝑒𝑥𝑝

(

 −0.2√
1

30
∑𝑥2
𝐷

𝑖=1
)

 − 𝑒𝑥𝑝

(

 √
1

30
∑𝑐𝑜𝑠 2𝑥2
𝐷

𝑖=1
)

 + 20 + 𝑒 

 

 
M 

 
-32, 32 

 
0 

 

F8: Griewank 
1

4000
∑𝑥2
𝐷

𝑖=1

− 𝛱𝑖=1
𝐷 𝑐𝑜𝑠

𝑥𝑖

√𝑖
+ 1 

 

 

M 

 

-600, 600 

 

0 

 
F9: Rotated hyper-ellipsoid 

 

∑(∑𝑥𝑗

𝑗=𝑖

𝑗=1

)2
𝑛

𝑖=1

 

 

 
UM 

 
-100, 100 

 
0 

 

 
F10: Schaffer 

 

0.5 +
𝑠𝑖𝑛2 (√(𝑥1

2 + 𝑥2
2) − 0.5

|1 + 0.001(𝑥1
2 + 𝑥2

2)|2
 

 

M 

 

-100, 100 

 

0 

 
 

F11: Zakharov 

 

∑𝑥𝑖
2

𝑛

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑛

𝑖=1

)

4

 

 

 
M 

 
-5, 10 

 
0 

 
 

F12: Alpine 

 

∑|𝑥𝑖 .  𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|

𝑛

𝑖=1

 

 

 
M 

 
-10, 10 

 
0 

 

F13: Inverted Cosine Wave −∑𝑒(
−(𝑥𝑖

2+𝑥𝑖+1
2 +0.5𝑥𝑖𝑥𝑖+1)
8 ) 𝑐𝑜𝑠 4 × √𝑥𝑖

2 + 𝑥𝑖+1
2 + 0.5𝑥𝑖𝑥𝑖+1

𝑛−1

𝑖=1

 

M -1, 1 0 

 

F14: Dixon price (𝑥1 − 1)
2 +∑𝑖(2𝑥𝑖

2 − 𝑥𝑖 − 1)
2

𝑛

𝑖=1

 

 
 

 

UM 

 

-10, 10 

 

0 

 

F15: Axis parallel hyper-
ellipsoid 2.2 

∑𝑖 × 𝑋𝑖
2

𝐷

𝑖=1

 

 

 

UM 

 

-5.12, 5.12 

 

0 

 

F16: Sum of a different 
power 2.8 

∑ 𝑋𝑖
{1+𝑖}

{𝐷}

{𝑖=1}

 

 

 

UM 

 

-1, 1 

 

0 
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F17: Levy 𝑠𝑖𝑛2(𝜋𝜔1) +∑(𝜔𝑖 −  1)
2[1 + 10\𝑠𝑖𝑛2(𝜋𝜔𝑖+ 1)]

𝐷−1

𝑖=1

+ (𝜔𝐷 − 1)
2[1 +\𝑠𝑖𝑛2(2𝜋𝜔𝐷)] 

 

M 

 

-10, 10 

 

0 

 

 

F18: Salomon’s 2.8 
 1 − 𝑐𝑜𝑠(2𝜋 | 𝑥 |) + 0.1| 𝑥 | , | 𝑥 | = √∑ 𝑥𝑖

2
𝑛

𝑖=1
 

 

 

M 

 

-100, 100 

 

0 

 

 

F19: Pathologic ∑[0.5 +]
𝑠𝑖𝑛

2(√{100𝑥𝑖
2+𝑥{𝑖+1}

2 })
− 0.5

1 + 0.001(𝑥𝑖
2 − 2𝑥𝑖𝑥{𝑖+1} + 𝑥{𝑖+1}

2 )
2

𝑛−1

𝑖=1

 

 

 

 

M 

 

 

-100, 100 
 

 

 

 

0 

 
F20: Whitley's  ∑∑(

(100(𝑥𝑖
2 − 𝑥𝑗)

2
+ (1 − 𝑥𝑗)

2
)
2

4000

𝑛

𝑖=1

𝑛

𝑖=1

− 𝑐𝑜𝑠 (100(𝑥𝑖
2 − 𝑥𝑗)

2
+ (1 − 𝑥𝑗)

2
) + 1) 

 
 

 

M 

 
 

 

-10, 10 

 
 

 

0 

 
F21: Schwefel's problem 

2.21 

 
 

𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛 } 
 

 
 

UM 

 
 

-100, 100 

 
 

0 

 
 

F22: Quartic 

 

∑𝑖

𝑛

𝑖=0

𝑥𝑖
4 +  𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 

 
UM 

 
-1.28, 1.28 

 
 

 

0 
 

 

F23: Penalized 1 

 

 
𝜋

𝑛
× {10 × 𝑠𝑖𝑛2(𝜋𝑦1) +}∑ (𝑦1 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦1 +
𝑛−1
𝑖=1

1)] + (𝑦𝑛 − 1)
2 + ∑ 𝑢𝑛

𝑖=1 (𝑥𝑖, a, k, m) 

 

 

 
UM 

 

 

 
-50, 50 

 

 

 
0 

 

 
 

F24: Penalized 2 

 

 
𝜋

𝑛
× {10 × 𝑠𝑖𝑛2(𝜋𝑦1) +}∑ (𝑦1 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦1 +
𝑛−1
𝑖=1

1)] + (𝑦𝑛 − 1)
2 + ∑ 𝑢𝑛

𝑖=1 (𝑥𝑖, a, k, m) 
 

 

 
 

UM 

 

 
 

-50, 50 

 

 
 

0 

C. AN IMPROVED GLOBAL-BEST HARMONY SEARCH 
ALGORITHM (IGHS; 2013) 

El-Abd [24] developed as an improved variant of GHS [22] by 

focusing on the explorative range at the beginning, and then 

on the exploitative range at the end of a search. To accomplish 

this, the author used Gaussian distribution to select the random 

pitch adjustment, as described in the next Equation: 

𝑋𝑗
′ = 𝐻𝑀𝑑

𝑟 + 𝐺𝑎𝑢𝑠𝑠(0,1) × 𝐵𝑊                              (8) 

Where 𝐻𝑀𝑑
𝑟   is a randomly selected value from HM, and 

Gauss is a random number with a mean of 0 and a standard 

deviation of 1. For pitch adjustment, the next equation is used 

as follows: 

𝑋𝑗
′ = 𝐻𝑀𝑑

𝑏𝑒𝑠𝑡 +  ∅ ×  𝐵𝑊                                       (9) 
Where 𝐻𝑀𝑑

𝑏𝑒𝑠𝑡  is the best value in HM based on the 

objective function evaluation f(x). The value φ is a random 

number that is uniformly distributed within the range “-1 to 

1”. PAR value is decreased within the iterations to achieve 

great exploitation, as described by [43]. For BW, the author 

borrowed its formula from the IHS [21] variant. The algorithm 

was compared with seven previous HS-variants using the CEC 

2005 benchmark function. 

D. DIFFERENTIAL-BASED HARMONY SEARCH 
ALGORITHM FOR THE OPTIMIZATION OF 
CONTINUOUS PROBLEMS (DH/BEST; 2016) 

Hosein et al.[25]  introduced a new HS-variant by modifying 

two aspects of the original HS. The first modification is 

applied to the initialization of HS by using a new method to 

initiate feasible solutions with less randomness. The second 

modification involves replacing pitch adjustment with the 

applied to the initialization of HS by using a new method to 

initiate feasible solutions with less randomness. The second 

modification involves replacing pitch adjustment with the 

updated version inspired by the differential evolution (DE) 

mutation strategy and excluding the BW parameter. The 

following algorithm describes the new initialization processes,  

which is implemented by replacing the random value with a 

new calculation based on HMS: 
Algorithm4: DH/best Initialization (Hosein 2016) 

1.  𝑓𝑜𝑟(𝑗 = 1 𝑡𝑜𝐷) {𝐷 =  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠} 
2.   𝑓𝑜𝑟(𝑖 = 1 𝑡𝑜 𝐻𝑀𝑆)  

3.   𝑡𝑒𝑚𝑝𝑖 = 𝐿𝐵 + ((𝑖 −
0.5

𝐻𝑀𝑆
)) × (𝑈𝐵 − 𝐿𝐵) 

4.           𝑒𝑛𝑑 𝑓𝑜𝑟 
5.    𝑆ℎ𝑢𝑓𝑓𝑙𝑒 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑎𝑟𝑟𝑎𝑦 

6.     𝑓𝑜𝑟(𝑖 = 1 𝑡𝑜 𝐻𝑀𝑆)  
7.          𝐻𝑀 = 𝑡𝑒𝑚𝑝𝑖 
8.     𝑒𝑛𝑑 𝑓𝑜𝑟 
9. 𝑒𝑛𝑑 𝑓𝑜𝑟  
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Where UB and LB are the upper and lower bounds of the 

decision variables. The new variant eliminates the requirement 

of setting BW, and pitches are adjusted based on the distances 

between the pitches in HM by using DE/best/1 mutation, as 

described in the following Pseudo-code: 

Algorithm5: DH/best Improvisation (Hosein 2016) 

1: 𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝐷) 
2:       𝑖𝑓 (𝑟(0~1)  ≤ 𝐻𝑀𝐶𝑅) 
3:             𝑋𝑖

′ =   𝑋𝑖𝑗  (𝑖 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑟𝑜𝑚 1. . 𝐻𝑀𝑆) 

4:            𝑖𝑓( 𝑟(0~1) ≤ 𝑃𝐴𝑅) 
5:               𝑋𝑖

′ =   𝑋𝑏𝑒𝑠𝑡 + 𝑟(0~1) × (𝑋𝑟1,𝐽 − 𝑋𝑟2,𝐽  )  

6:               𝑖𝑓( 𝑋𝑗
′ < 𝐿𝐵 𝑜𝑟 𝑋𝑗

′ > 𝑈𝐵) 

7:                   𝑋𝑗
′ = 𝑟(0~1) × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 

8:               𝑒𝑛𝑑 𝑖𝑓 

9:             𝑒𝑛𝑑 𝑖𝑓 

10:       𝑒𝑙𝑠𝑒 

11:             𝑋𝑗
′ = 𝑟(0~1) × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 

12:       𝑒𝑛𝑑 𝑖𝑓 

13: 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

where UB and LB are the upper and lower bounds of the 

decision variables, 𝑟(0– 1) is the random value between 0 and 

1, 𝑋𝑏𝑒𝑠𝑡  is the best 𝑋𝑖 in HM based on the objective function, 

and 𝑋𝑟1,𝐽  and 𝑋𝑟2,𝐽 are two random values in the 𝑗𝑡ℎ 

dimension. 

E. A HYBRID HARMONY SEARCH AND SIMULATED 
ANNEALING (HS-SA; 2018) 

New hybrid HS algorithm and SA algorithm were presented 

by Assad et al. [26], the temperature parameter in SA has been 

introduced inside the HS algorithm. The new hybrid algorithm 

adopts a similar process to the original HS, except that it has 

been updated to accept the poor results of the improvisation 

process via the probability of the temperature parameter. The 

temperature starts with a high value to provide high 

exploration, and it then decreases at each iteration to focus on 

exploitation through the search process. The new hybrid 

algorithm provided better results in comparison with the 

original HS and SA. 

III. GWO ALGORITHM 

GWO algorithm is a new metaheuristic algorithm 

developed by Mirjalili et al. [28], GWO has been presented as 

a swarm-based algorithm that simulates the natural driving life 

of grey wolves[30, 31]. The GWO algorithm shows high 

performance in many optimization problems [32-35]. 

The GWO algorithm divides the population into four 

groups, namely alpha α, beta β, Delta δ, and Omega ω. 

Firstly, random populations of wolves are created. The 

wolves change their location through the optimization phase 

on the basis of the fittest wolves, which is α. Consequently, the 

second and third best solutions are named β, and δ, ω will be 

guided through the search by those wolves. In order to attack 

the prey, wolves will encircle the prey as described in the 

following equations: 

  𝐷⃗⃗  ⃗ = |  𝐶⃗⃗  ⃗ .  𝑋⃗⃗  ⃗𝑝(𝑡) −  𝑋⃗⃗  ⃗(𝑡) |                                (10) 

 𝑋⃗⃗  ⃗(𝑡 + 1) =  𝑋⃗⃗  ⃗𝑝(𝑡) −  𝐴⃗⃗  ⃗ .  𝐷⃗⃗  ⃗                              (11) 

 𝑋⃗⃗  ⃗𝑝 marks the location vector of the prey, and  𝑋⃗⃗  ⃗ marks the 

location vector of the grey wolf.  𝐶⃗⃗  ⃗ and  𝐴⃗⃗  ⃗ represent the 

coefficient vectors, whereas t indicates the current iteration 

value. 𝐶⃗⃗  ⃗ and  𝐴⃗⃗  ⃗ values are calculated using the following 

equations: 

 𝐴⃗⃗  ⃗ = 2 𝐴⃗⃗  ⃗ .  𝑟⃗⃗ 1 −  𝑎⃗⃗⃗                                               (8) 

 𝐶⃗⃗  ⃗ = 2.  𝑟⃗⃗ 2                                                           (9) 

where  𝑟⃗⃗ 1 and  𝑟⃗⃗ 2 are random vectors in (0,1), and  𝑎⃗⃗⃗   
decreased from 2 to 0 through iterations. 

The α, β, and δ values will be the best solution acquired thus 

far. Then, all the other values (wolves) are considered as ω and 

will be relocated with respect to α, β, and δ. The updated value 

of the wolves is based on the following equations: 

 

 𝐷⃗⃗  ⃗α = |  𝐶⃗⃗  ⃗1 .  𝑋⃗⃗  ⃗α −  𝑋⃗⃗  ⃗  |                          (12) 

 𝐷⃗⃗  ⃗β = |  𝐶⃗⃗  ⃗2 .  𝑋⃗⃗  ⃗β −  𝑋⃗⃗  ⃗   |                           (13) 

 𝐷⃗⃗  ⃗δ = |  𝐶⃗⃗  ⃗3 .  𝑋⃗⃗  ⃗δ −  𝑋⃗⃗  ⃗   |                           (14) 

Where  𝑋⃗⃗  ⃗ is the location of the current solution;  𝑋⃗⃗  ⃗𝛼,   𝑋⃗⃗  ⃗𝛽, 

and  𝑋⃗⃗  ⃗𝛿  are the α, β, δ locations, respectively;  𝐶⃗⃗  ⃗1,  𝐶⃗⃗  ⃗2, and  𝐶⃗⃗  ⃗3 
are random vectors between (0 to 2); and  𝑋⃗⃗  ⃗𝛼,  𝑋⃗⃗  ⃗𝛽, and  𝑋⃗⃗  ⃗𝛿 , 

represent the distance between the current solution and α, β, 

and δ, respectively. Afterward, the final location of the current 

solution is calculated using the following equations: 

 𝑋⃗⃗  ⃗1 =  𝑋⃗⃗  ⃗α −  𝐴⃗⃗  ⃗1 .   (𝐷⃗⃗ ⃗⃗  ⃗α)                                  (15) 

 𝑋⃗⃗  ⃗2 =  𝑋⃗⃗  ⃗β −  𝐴⃗⃗  ⃗2 .   (𝐷⃗⃗ ⃗⃗  ⃗β)                                  (16) 

 𝑋⃗⃗  ⃗3 =  𝑋⃗⃗  ⃗δ −  𝐴⃗⃗  ⃗3 .   (𝐷⃗⃗ ⃗⃗  ⃗δ)                                  (17) 

 𝑋⃗⃗  ⃗(𝑡 + 1) =
 𝑋⃗⃗  ⃗1 +  𝑋⃗⃗  ⃗2 +  𝑋⃗⃗  ⃗3

3
                         (18) 

Where  𝐴⃗⃗  ⃗1,  𝐴⃗⃗  ⃗2,  𝐴⃗⃗  ⃗3 are random vectors between {-2a, 2a}, 

where a decreased from 2 to 0, within the course of iteration 

(t). 

The final location will be calculated using Equations (10 to 

12). Finally,  𝐴⃗⃗  ⃗  and   𝐶⃗⃗  ⃗  assist the exploration and exploitation 

as random and adaptive vectors, respectively. The entire 

process is described in algorithm 2. 

IV. Modified opposition-based learning technique 

The original OBL introduced by Tizhoosh [29], and many 

variants of OBL developed after that and used by different 

research areas [36]. Many HS variants and hybridizations 

utilized the OBL and its variants in the literature [37-39]. 

In this article we applied a modified version of the original 

OBL within the HS updating process, to improve the HS 

exploration, as described in Algorithm 3. 
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Algorithm2: Grey wolf algorithm 

1. Initialize grey wolf population within the boundaries 

𝑥𝑖(𝑖 = 1,2, … . , 𝑛) 
2. Initialize A, a and C 

3. Calculate the fitness of each search agent 

4. 𝑥α = 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 
5. 𝑥β = 𝑠𝑒𝑐𝑜𝑛𝑑 − 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 

6. 𝑥δ = 𝑡ℎ𝑖𝑟𝑑 − 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 
7. 𝑤ℎ𝑖𝑙𝑒 (𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)do 

8. 𝑓𝑜𝑟 (𝑒𝑎𝑐ℎ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡) 
9. 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 𝑝𝑜𝑠𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑦 𝑒𝑞 18 

10. End for 

11. Update A, a, and C 

12. Calculate the fitness of all search agents 

13. Update 𝑥α, 𝑥β and 𝑥δ 

14. 𝑡 = 𝑡 + 1 

15.    𝑟𝑒𝑡𝑢𝑟𝑛 𝑋𝑎 

In algorithm 3, 𝑥{𝑑} represents the new improvisation 

vector, r is a random value between 0, and 1, d is the number 

of dimensions, and 𝑥𝑖 is the modified opposition value. Once 

the improvisation process of HS creates a new value 𝑥𝑗, the 

modified opposition will be applied on the new improvisation 

value 𝑥𝑗 in the update section and will replace it if it is better 

on the basis of the objective function f. 

 

 

 
V. PROPOSED HYBRID ALGORITHM 

A hybrid algorithm is an algorithm that merges two or more 

algorithms to solve a problem. The goal of this algorithm is to 

create a new algorithm that combines advantages from these 

algorithms. The main purpose of this paper is to design, 

implement, and evaluate a new hybrid algorithm of HS and 

GWO with a self-adaptive parameter selection, where the 

benchmark functions are the case studies to evaluate the new 

proposed algorithm. 

 Given that the PAR and BW have a high effect on the 

efficiency of HS [22, 44], we utilize the GWO algorithm to 

find the right values of PAR and BW through the search 

process. We use a modified version of the original OBL 

technique  [29] to improve improvisation results because HS 

suffers from bad exploration, especially if one or more of its 

vectors are near the local optimum.  Meanwhile, we use the 

static values of 5 and 0.99 for HMS and HMCR, respectively. 

The new algorithm was tested on the benchmark function and 

proves the superior performance compared with the previous 

HS variants and other well-known metaheuristics. Figure 6 

presents the general process of the hybrid algorithm, which is 

described as follows: 

1. Hybrid algorithm parameter and population initialization: 

a. Hybrid parameters will be initialized, as described in 

Table 2: HMCR, HMS, the minimum and maximum 

value of PAR and BW, number of iterations of HS 

(HS-NI), GWO number of iterations (GWO-NI), and 

the number of GWO search agents. 

b. The GWO population will be initialized for PAR and 

BW within their upper and lower boundaries and 

represented as two dimensions. 

c. The HS population vectors (for the benchmark 

functions in this paper) will be initialized using HS 

initialization process. These vectors will be used as 

HM through the whole process of the hybrid 

algorithm. 

2. Improvisation process: 

a. In the HS-improvisation process, the HM vectors will 

be optimized using the objective function (benchmark 

functions in this paper). 

b. A modified OBL was used to improve the obtained 

result, from HS improvisation process, within the 

updating phase of HS, which is described in 

Algorithm 3. The final result is sent as a fitness 

function value of GWO optimization process. 

c. The GWO improvisation process, as described in 

Algorithm 2, will be used to improvise the PAR and 

BW values. The fitness function (as included in line 3 

in Algorithm 2) value will be the result of HS 

improvisation process in every GWO improvisation. 

3. Results: The best results of the hybrid algorithm will be 

presented in this phase. 

Algorithm 6: Hybrid algorithm GWO-HS 

1: Define the objective function f(x) 

2: Initialize HS and GWO Parameters (HMS, HMCR, 

GWO-Number-of-Agents, HS-NI, GWO-NI) 

3: Initialize GWO population (PARi; BWi) 

4: Initialize HS population (Xi) 

5: 𝑤ℎ𝑖𝑙𝑒(𝑖𝑡 < 𝐺𝑊𝑂𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)𝑑𝑜 

6:       𝑤ℎ𝑖𝑙𝑒(𝑖 < 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠)𝑑𝑜  
7:            𝑤ℎ𝑖𝑙𝑒(𝑑 < 2)𝑑𝑜 (𝑓𝑜𝑟 𝑃𝐴𝑅 𝑎𝑛𝑑 𝐵𝑊)  
8:               𝑓𝑖𝑡𝑛𝑒𝑠 = 𝐻𝑆()(HS-improvisation) 

9:               𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑠𝑒 𝑛𝑒𝑤 𝑃𝐴𝑅 𝑎𝑛𝑑 𝐵𝑊(𝑢𝑠𝑖𝑛𝑔 𝐺𝑊𝑂) 
10: 𝑈𝑝𝑑𝑎𝑡𝑒 𝐴𝑙𝑝ℎ𝑎, 𝐵𝑒𝑡𝑎, 𝑎𝑛𝑑 𝐷𝑒𝑙𝑡𝑎 

11: 𝐼𝑚𝑝𝑟𝑜𝑣𝑖𝑠𝑒 𝑛𝑒𝑤 𝑃𝐴𝑅 𝑎𝑛𝑑 𝐵𝑊 (𝑢𝑠𝑖𝑛𝑔 𝐺𝑊𝑂 𝑖𝑚𝑝𝑟𝑜𝑣𝑖𝑠𝑎𝑡𝑖𝑜𝑛  
12: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠) 
13: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑦       

 

The values of PARi, BWi in Algorithm 6 are random values of 

PAR and BW within their lower and upper bounds. Possible 

solutions for xi for HS initialization are the random values 

between the objective function boundaries. 

To conclude the whole process, the GOW-initialization will be 

used to create PAR and BW possible values (as search agents). 

HS initialization will be used to initialize the benchmark 

functions possible solution vectors (as HM). In every iteration 

of GWO, the GWO-fitness function will be the result of HS 

optimization using the PAR and BW values from GWO-

memory. HS improvisation will improvise HM values to find 

Algorithm3: Modified opposition 

1. 𝑥{𝑑} = {𝑥1, 𝑥2, … . . 𝑥𝑑} 
2. 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (0 , 1) 
3. 𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 𝑑 )𝑑𝑜 

4. 𝑋�̅� = −1 × 𝑥{𝑖} × 𝑟; 

5. 𝑖𝑓(𝑓(�̅�) < 𝑓(𝑥)) 

6. x = �̅� 
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possible solutions to the benchmark functions. Finally, we 

included a modified version of OBL technique as part of our 

hybrid algorithm through HS updating. The modified OBL 

will improve the exploration of HS and help the algorithm 

avoid falling in local optima. Figure 6 presents the general 

structure of the hybrid algorithm process. The pseudo code of 

Algorithm 6 describes the hybrid algorithm. 

4.  
 

 
FIGURE 6. The general process of GWO/HS hybrid algorithm. 

VI. EXPERIMENT RESULTS AND ANALYSIS 
In the first section, we investigate HMCR and HMS parameter 

best values for the hybrid algorithm using the first 15 classical 

benchmark functions from Table 1. In the second and third 

sections, we apply the hybrid algorithm to minimize a set of 

24 classical benchmark functions, as described in Table 1 and 

30 state-of-the-art test cases from CEC2014 [45]. The classical 

test functions contain unimodal and multimodal functions to 

provide insight into the hybrid algorithm capabilities to cover 

different types of problems. The CEC2014 is also a well-

known experimental test for single objective optimization 

problems that contain shifted, rotated, hybrid, and 

composition optimization test cases. Friedman test and 

Wilcoxon nonparametric test at α = 5% significance level were 

conducted to evaluate the overall performance of the new 

hybrid algorithm. All experiments are performed on Microsoft 

Windows 10 Education in a computer with Intel Core i7 Quad 

CPU 4702MQ processor 2.2 GHz with 240 GB SSD hard 

drive and 16GB DDR3 RAM. All algorithms are coded in 

Java. The best results obtained from the experiments are 

highlighted in bold. 

A. EFFECTS OF HMS AND HMCR ON THE HYBRID 
ALGORITHM 

To determine the best values of the static parameters of the 

hybrid algorithm, we investigate the different values of the 

static parameters, namely, HMS and HMCR. Other 

parameters of the hybrid algorithm for these experiments are 

the same as those shown in Table 2. We used the first 15 

benchmark functions as described in Table 1 to determine the 

best values of HMS and HMCR as static values in this article. 

The total number of improvisations is set to 104 for all 

experiments in this article, except for CEC2014 experiments 

in which we used106. The mean and SD are calculated for 30 

runs of each function with 30 dimensions. Table 4 presents the 

results of using different HMS values (i.e., 5, 30, 50, and 100). 

Meanwhile, f presents function. 
 

                    TABLE 2 PARAMETERS SETTING GWO-HS 

Algorithm Parameters Value 

Harmony search HMS 5 

 HMCR 0.99 

 PAR minimum value 0.1 

 PAR maximum value 0.4 

 BW minimum value 0.1 

 BW maximum value 0.4 

 HS iteration 100 

Grey wolf optimizer Number of search agents 10 

 iteration 100 

 number of dimensions 2 

 
 

 

TABLE 3 
PARAMETERS SETTING FOR COMPARED ALGORITHMS 

Algorithm Parameters Value 

ACS2013 N 5 

 GLOBAL MINIMUM 1.0E+20 

 PP 0.1 

MULTIVERSE2016 N 5 

 BEST UNIVERSE INFLATION 

RATE 

1.0E+20 

ABC2005 N 5 

 LIMIT2 800 

DE1997 N 5 

 F 0.9 

 CR 0.5 
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TABLE 4 

PARAMETERS SETTING FOR HS VARIANTS 

Algorithm HMS HMCR 
 

PAR 

 

BW 

 

Other 

EHS2011 5 0.99 PAR = 0.33 𝐵𝑊 = 𝑘. √𝑉𝑎𝑟(𝑥) 
 

 

      

IGHS2013 5 0.9 𝑃𝐴𝑅𝑚𝑖𝑛 = 0.01 

𝑃𝐴𝑅𝑚𝑎𝑥 = 0.99 
 

𝐵𝑊𝑚𝑖𝑛 = 0.0001 

𝐵𝑊max=0.06 

 

      

DHBest2016 5 0.99 0.9 - CR=0.5 
      

HS-SA2018 5 0.9 0.3 0.001 α =0.99 

 
TABLE 5 

EFFECTS OF HMS ON THE GWO-HS PERFORMANCE (HMCR = 0.99). 

F Index HMS 

5 

 

30 

 

50 

 

100 

F1 Mean 0.0 0.0 4.7E-147 2.1E-157 

 SD 0.0 0.0 4.7E-147 2.1E-157 

F2 Mean 0.0 0.0 6.3E-161 2.0E-74 

 SD 0.0 0.0 6.3E-161 2.0E-74 

F3 Mean 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 

F4 Mean 27.6 27.729 27.738 27.73 

 SD 27.6 27.729 27.738 27.73 

F5 Mean -12528 -12500 -12494 -12454 

 SD 12528 12500 -2494 12454 

F6 Mean 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 

F7 Mean 4.4E-16 4.4e-16 4.4e-16 4.4e-16 

 SD 4.4E-16 4.4e-16 4.4e-16 4.4e-16 

F8 Mean 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 

F9 Mean 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 

F10 Mean 0.06 0.049 0.009 0.06 

 SD 0.06 0.049 0.009 0.06 

F11 Mean 3.8e-14 4.0e-8 4.0e-2 1.59 

 SD 3.8e-14 4.0e-8 4.0e-2 1.59 

F12 Mean 1.5e-53 3.2e-107 4.5e-145 0.45 

 SD 1.5e-53 3.2e-107 4.5 e-145 0.45 

F13 Mean -26.836 -26.79 26.783 -26.87 

 SD 26.836 26.79 26.783 -26.87 

F14 Mean 0.666 0.667 0.666 0.67 

 SD 0.666 0.667 0.666 0.67 

F15 Mean 0.0 0.0 1.3E-241 1.3E-148 

 SD 0.0 0.0 1.3E-241 1.3E-148 

 

 

TABLE 6 

EFFECTS OF HMCR ON THE GWO-HS PERFORMANCE (HMS = 5). 

F Index HMCR 

0.7 

 

0.8 

 

0.9 

 

0.99 

F1 Mean 7.0E-24 1.4E-37 3.9E-76 0.0 

 SD 7.0E-24 1.4E-37 3.9E-76 0.0 

F2 Mean 1.1E-1 9.6E-15 4.3E-70 0.0 

 SD 1.1E-1 9.6E-15 4.3E-70 0.0 

F3 Mean 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 

F4 Mean 28.05 27.91 27.5 27.6 

 SD 28.05 27.91 27.5 27.6 

F5 Mean -10081 -12091 -12552 -12528 

 SD -10081 -12091 -12552 12528 

F6 Mean 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 

F7 Mean 3.6E-12 8.3E-13 4.4E-16 4.4E-16 

 SD 3.6E-12 8.3E-13 4.4E-16 4.4E-16 

F8 Mean 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 

F9 Mean 6.6E-20 4.0E-34 7.1E-15 0.0 

 SD 6.6E-20 4.0E-34 7.1E-15 0.0 

F10 Mean 8.4 0.79 0.029 0.009 

 SD 8.4 0.79 0.029 0.009 

F11 Mean 2.59 2.60 7.7E-6 3.8e-14 

 SD 2.59 2.60 7.7E-6 3.8e-14 

F12 Mean 0.49 0.45 0.062 1.5e-53 

 SD 0.49 0.45 0.062 1.5e-53 

F13 Mean -26.44 -26.73 -26.87 -26.836 

 SD -26.44 -26.73 -26.87 26.836 

F14 Mean 3.08 2.6 0.84 0.666 

 SD 3.08 2.6 0.84 0.666 

F15 Mean 1.1E-23 1.0E-30 0.0 0.0 

 SD 1.1E-23 1.0E-30 0.0 0.0 
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TABLE  7

MEAN AND SD OF THE ERRORS OF HS VARIANTS FOR (D = 30). 

F Index Algorithms  

  EHS2011 IGHS 2013 DHBest 2016 HS-SA2018 GWO-HS 

F1 Mean 2.235 e-60 14.613 0.0 10.242 0.0 

 SD 2.235 e-60 14.61 0.0 10.242 0.0 

F2 Mean 3.484 e-35 0.179 0.0 0.851 0.0 

 SD 3.484 e-35 0.179 0.0 0.851 0.0 

F3 Mean 0.0 20.0 0.0 11.766 0.0 

 SD 0.0 20.0 0.0 11.766 0.0 

F4 Mean 28.712 393.048 28.767 553.709 27.766 

 SD 28.712 393.048 28.767 553.709 27.766 

F5 Mean -10238.560 -12539.117 -12565.425 -12542.17 -12540.709 

 SD 10238.560 12539.117 12565.425 12542.17 12540.709 

F6 Mean 0.0 3.152 0.335 1.449 0.0 

 SD 0.0 3.152 0.335 1.449 0.0 

F7 Mean 5.417 e-15 1.841 4.440 e-16 1.610 4.440 e-16 

 SD 5.417 e-15 1.841 4.440 e-16 1.610 4.440 e-16 

F8 Mean 8.924 e-4 1.050 0.0 1.103 0.0 

 SD 8.924 e-4 1.050 0.0 1.103 0.0 

F9 Mean 11.881 70.978 0.0 92.409 0.0 

 SD 11.881 70.978 0.0 92.409 0.0 

F10 Mean 0.016 0.441 0.155 0.405 0.009 

 SD 0.016 0.441 0.155 0.405 0.009 

F11 Mean 9.206 e-5 975.251 57.17 24.633 1.002 e-5 

 SD 9.206 e-5 975.251 57.17 24.633 1.002 e-5 

F12 Mean 5.954 e-4 0.189 0.032 0.068 1.153 e-62 

 SD 5.954 e-4 0.189 0.032 0.068 1.153 e-62 

F13 Mean -26.530 -26.875 -26.786 -26.842 -26.753 

 SD 26.530 26.875 26.786 26.842 26.753 

F14 Mean 0.697 4.555 10.520 7.625 0.666 

 SD 0.697 4.555 10.520 7.625 0.666 

F15 Mean 0.032 1.45 e-5 0.033 0.10 0.0 

 SD 0.032 1.45 e-5 0.033 0.10 0.0 

F16 Mean 3.250 e-10 4.692 e-14 1.785 e-8 1.70E-16 0.0 

 SD 3.250 e-10 4.692 e-14 1.785 e-8 1.70E-16 0.0 

F17 Mean 1.587 0.785 2.869 0.043 0.305 

 SD 1.587 0.785 2.869 0.043 0.305 

F18 Mean 0.103 3.506 0.0 1.867 0.0 

 SD 0.103 3.506 0.0 1.867 0.0 

F19 Mean 1.22 2.623 0.0 1.674 0.0 

 SD 1.22 2.623 0.0 1.674 0.0 

F20 Mean 372.07 947.823 411.16 394.573 362.217 

 SD 372.07 947.823 411.16 394.573 362.217 

F21 Mean -2835.156 -2985.634 -2129.06 -3076.838 -2928.403 

 SD 2835.156 2985.634 2129.06 3076.838 2928.403 

F22 Mean 4.574 8.894 6.747 8.116 2.80 

 SD 4.574 8.894 2 6.747 8.116 2.80 

F23 Mean 0.330 2.175 1.592 0.054 0.398 

 SD 0.330 2.175 1.592 0.054 0.398 

F24 Mean 2.086 7.155 2.938 0.448 1.976 

 SD 2.086 7.155 2.938 0.448 1.976 

 

 
 

 

 
 



2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

 

11 
 

 

TABLE 8
MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS OF HS VARIANTS FOR (D = 50). 

F Index Algorithms 

  EHS2011  IGHS 2013 DHBest 2016 HS-SA 2018 GWO-HS 

F1 Mean 3.958 e-6  382.791 0.0 524.218 0.0 

 SD 3.958 e-6  382.791 0.0 524.218 0.0 

F2 Mean 2.08 e-5  8.310 0.0 10.119 0.0 

 SD 2.08 e-5  8.310 0.0 10.119 0.0 

F3 Mean 0.0  280 0.0 535.9 0.0 

 SD 0.0  280 0.0 535.9 0.0 

F4 Mean 48.869  18234 48.644 30394 47.718 

 SD 48.869  18234 48.644 30394 47.718 

F5 Mean -12372.787  -20216 -20929 -20093 -20750 

 SD 12372.787  20216 20929 20093 20750 

F6 Mean 2.677  41.536 1.519 45.022 0.0 

 SD 2.677  41.536 1.519 45.022 0.0 

F7 Mean 1.678 e-4  4.366 4.440 e-16 5.711 4.440 e-16 

 SD 1.678 e-4  4.366 4.440 e-16 5.711 4.440 e-16 

F8 Mean 0.054  2.476 0.0 5.788 0.0 

 SD 0.054  2.476 0.0 5.788 0.0 

F9 Mean 54.862  4507.177 0.0 8509 0.0 

 SD 54.862  4507.177 0.0 8509 0.0 

F10 Mean 0.057  0.471 0.306 0.488 0.037 

 SD 0.057  0.471 0.306 0.488 0.037 

F11 Mean 3.165  7410.696 175.885 131.789 0.036 

 SD 3.165  7410.696 175.885 131.789 0.036 

F12 Mean 0.103  1.08 0.051 2.329 2.528 e-68 

 SD 0.103  1.08 0.051 2.329 2.528 e-68 

F13 Mean -42.985  -45.301 -45.144 -45.094 -45.370 

 SD 42.985  45.301 45.144 45.094 45.370 

F14 Mean 0.724  270.194 25.759 360.223 0.666 

 SD 0.724  270.194 25.759 360.223 0.666 

F15 Mean 0.195  17.166 0.169 23.059 0.0 

 SD 0.195  17.166 0.169 23.059 0.0 

F16 Mean 2.50 e-9  3.774 e-12 2.799 e-7 6.07 E-13 7.591 e-19 

 SD 2.50 e-9  3.774 e-12 2.799 e-7 6.07 E-13 7.591 e-19 

F17 Mean 3.319  7.999 1.813 1.729 2.954 

 SD 3.319  7.999 1.813 1.729 2.954 

F18 Mean 0.129  7.635 0.0 5.176 0.0 

 SD 0.129  7.635 0.0 5.176 0.0 

F19 Mean 3.835  5.289 0.0 4.437 0.0 

 SD 3.835  5.289 0.0 4.437 0.0 

F20 Mean 1051.242  682667.321 1096.557 4199.406 1032.046 

 SD 1051.242  682667.321 1096.557 4199.406 1032.046 

F21 Mean -4094.937  4539.074 -4936.221 -4894.840 -4399.1614 

 SD 4094.937  4539.074 4936.221 4894.840 4399.1614 

F22 Mean 11.247  23.853 12.479 21.414 8.30 

 SD 11.247  23.8532 12.479 21.414 8.30 

F23 Mean 0.527  25.025 0.652 2.710 0.579 

 SD 0.527  25.025 0.652 2.710 0.579 

F24 Mean 4.004  173.633 3.528 22.184 3.887 

 SD 4.004  173.633 3.528 22.184 3.887 
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TABLE 9

MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS FOR THE EXISTING OPTIMIZATION ALGORITHMS FOR (D = 30). 

F Index Algorithms  

  ACS 2013 Multiverse 2016 ABC2005 DE 1997 GWO-HS 

F1 Mean 3.356 e-34 0.0039 1.674 173.066 0.0 

 SD 3.356 e-34 0.0039 1.674 173.066 0.0 

F2 Mean 5.936 e-20 0.024 0.158 0.623 0.0 

 SD 5.936 e-20 0.024 0.158 0.623 0.0 

F3 Mean 0.0 0.666 0.0 775.266 0.0 

 SD 0.0 0.666 0.0 775.266 0.0 

F4 Mean 33.133 28.816 2232289.712 161316.322 27.766 

 SD 33.133 28.816 2232289.712 161316.322 27.766 

F5 Mean -12542.508 -6745.606 -11701.463 -10417.237 -12540.709 

 SD 12542.508 6745.606 11701.463 10417.237 12540.709 

F6 Mean 0.8622 2.026 7.07 44.736 0.0 

 SD 0.8622 2.026 7.07 44.736 0.0 

F7 Mean 0.098 0.051 2.545 6.379 4.440 e-16 

 SD 0.098 0.051 2.545 6.379 4.440 e-16 

F8 Mean 0.001 0.009 0.348 3.338 0.0 

 SD 0.001 0.009 0.348 3.338 0.0 

F9 Mean 8.252 e-34 0.582 0.0 2137.225 0.0 

 SD 8.252 e-34 0.582 0.0 2137.225 0.0 

F10 Mean 0.195 0.009 0.459 0.347 0.009 

 SD 0.195 0.009 0.459 0.347 0.009 

F11 Mean 0.871 0.001 335.010 4.624 1.002 e-5 

 SD 0.871 0.001 335.010 4.624 1.002 e-5 

F12 Mean 1.221 e-6 0.017 0.014 0.567 1.153 e-62 

 SD 1.221 e-6 0.017 0.014 0.567 1.153 e-62 

F13 Mean -26.864 -26.850 -26.553 -26.833 -26.753 

 SD 26.864 26.850 26.553 26.833 26.753 

F14 Mean 0.746 0.741 3366.446 1036.294 0.666 

 SD 0.746 0.741 3366.446 1036.294 0.666 

F15 Mean 1.186 e-36 0.001 0.230 6.354 0.0 

 SD 1.186 e-36 0.001 0.230 6.354 0.0 

F16 Mean 2.913 e-148 9.550 e-12 1.131 e-16 1.439 e-4 0.0 

 SD 2.913 e-148 9.550 e-12 1.131 e-16 1.439 e-4 0.0 

F17 Mean 3.349 3.349 3.349 3.349 0.305 

 SD 3.349 3.349 3.349 3.349 0.305 

F18 Mean 0.0 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 0.0 

F19 Mean 0.0 3.250 e-10 0.0 0.0 0.0 

 SD 0.0 3.250 e-10 0.0 0.0 0.0 

F20 Mean 413.952 413.952 413.952 413.952 362.217 

 SD 413.952 413.952 413.952 413.952 362.217 

F21 Mean -3099.99 -2971.234 -3088.953 -3075.226 -2928.403 

 SD 3099.99 2971.234 3088.953 3075.226 -2928.403 

F22 Mean 7.013 3.324 13.676 17.238 2.80 

 SD 7.013 3.324 2 13.676 17.238 2.80 

F23 Mean 1.668 1.668 1.668 1.668 0.398 

 SD 1.668 1.668 1.668 1.668 0.398 

F24 Mean 3.0 3.0 3.0 3.0 1.976 

 SD 3.0 3.0 3.0 3.0 1.976 
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TABLE 10

MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS EXISTING OPTIMIZATION ALGORITHMS FOR (D = 50). 

F Index Algorithms  

  ACS 2013 Multiverse 2016 ABC2005 DE 1997 GWO-HS 

F1 Mean 5.212 e-19 0.027 1689.224 459.970 0.0 

 SD 5.212 e-19 0.027 1689.224 459.970 0.0 

F2 Mean 5.496 e-12 0.065 6.481 1.352 0.0 

 SD 5.496 e-12 0.065 6.481 1.352 0.0 

F3 Mean 1.4 1.633 0.3 2854.266 0.0 

 SD 1.4 1.633 0.3 2854.266 0.0 

F4 Mean 96.360 50.836 2050687.392 2232815.458 47.718 

 SD 96.360 50.836 2050687.392 2232815.458 47.718 

F5 Mean -20842.549 -10662.148 -17807.783 -16560.174 -20750.237 

 SD 20842.549 10662.148 17807.783 16560.174 20750.237 

F6 Mean 4.123 5.1942 50.508 95.855 0.0 

 SD 4.123 5.1942 50.508 95.855 0.0 

F7 Mean 0.271 0.097 9.991 9.743 4.440 e-16 

 SD 0.271 0.097 9.991 9.743 4.440 e-16 

F8 Mean 0.004 0.057 13.013 10.318 0.0 

 SD 0.004 0.057 13.013 10.318 0.0 

F9 Mean 3.679 e-18 18.199 26232.197 14722.357 0.0 

 SD 3.679 e-18 18.199 26232.197 14722.357 0.0 

F10 Mean 0.384 0.042 0.497 0.477 0.037 

 SD 0.384 0.042 0.497 0.477 0.037 

F11 Mean 24.058 0.034 667.084 144.123 0.036 

 SD 24.058 0.034 667.084 144.123 0.036 

F12 Mean 1.573 e-4 0.114 0.619 1.804 2.528 e-68 

 SD 1.573 e-4 0.114 0.619 1.804 2.528 e-68 

F13 Mean -45.313 -45.385 -44.409 -45.283 -45.370 

 SD 45.313 45.385 44.409 45.283 45.370 

F14 Mean 3.910 1.022 43610.849 23618.905 0.666 

 SD 3.910 1.022 43610.849 23618.905 0.666 

F15 Mean 7.768 e-21 0.016 88.173 41.068 0.0 

 SD 7.768 e-21 0.016 88.173 41.068 0.0 

F16 Mean 2.123 e-124 6.993 e-12 8.463 e-5 2.128 e-4 7.591 e-19 

 SD 2.123 e-124 6.993 e-12 8.463 e-5 2.128 e-4 7.591 e-19 

F17 Mean 5.166 5.166 5.166 5.166 2.954 

 SD 5.166 5.166 5.166 5.166 2.954 

F18 Mean 0.0 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 0.0 

F19 Mean 0.0 0.0 0.0 0.0 0.0 

 SD 0.0 0.0 0.0 0.0 0.0 

F20 Mean 1149.869 1149.869 1149.869 1149.869 1032.046 

 SD 1149.869 1149.869 1149.869 1149.869 1032.046 

F21 Mean -5099.996 -4682.634 -4891.577 -5011.839 -4399.161 

 SD 5099.996 4682.634 4891.5774 5011.839 4399.161 

F22 Mean 15.965 9.513 34.917 31.775 8.30 

 SD 15.965 9.513 34.917 31.775 8.30 

F23 Mean 1.472 1.472 1.472 1.472 0.579 

 SD 1.472 1.472 1.472 1.472 0.579 

F24 Mean 5.0 5.0 5.0 5.0 3.887 

 SD 5.0 5.0 5.0 5.0 3.887 
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TABLE 11

MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS FOR HS VARIANTS USING THE CEC2014 (D = 30). 

F Index Algorithms  

  EHS2011 IGHS 2013 DHBest 2016 HS-SA 2018 GWO-HS 

F1 Mean 4.78 E7 2.44 E7 2.17 E7 1.64 E7 413113 

 SD 4.78 E7 2.44 E7 2.17 E7 1.64 E7 413113 

 Time 35 36 402.25 32.483 60.163 

F2 Mean 1.016 E9 2799924 1.62 E8 1180792 18904 

 SD 1.016 E9 2799924 1.62 E8 1180792 18904 

 Time 20 18 219.85 17.855 20.395 

F3 Mean 9247 12394 15863.40 13003 5051 

 SD 9247 12394 15863.40 13003 5051 

 Time 20 21 239.87 20.542 25.632 

F4 Mean 644 533 530.31 538 439 

 SD 644 533 530.31 538 439 

 Time 21 20.45 256.36 20.926 25.033 

F5 Mean 520.67 519.99 520.08 520.04 520.00 

 SD 520.67 519.99 520.08 520.04 520.00 

 Time 33.023 31.048 405.066 32.749 49.116 

F6 Mean 619.58 616.68 614.96 616 620.245 

 SD 619.58 616.68 614.96 616 620.245 

 Time 3305 3499.66 39014 4057.221 6312.374 

F7 Mean 708.46 700.95 708.03 700.52 700.01 

 SD 708.46 700.95 708.03 700.52 700.01 

 Time 41 40.83 485 41.882 52.229 

F8 Mean 863.71 800.20 803.37 800.09 800 

 SD 863.71 800.20 803.37 800.09 800 

 Time 29 27.35 335 27.826 27.31 

F9 Mean 1047.49 977.72 989.04 971.87 1037 

 SD 1047.49 977.72 989.04 971.87 1037 

 Time 36 38.59 460 39.245 37.85 

F10 Mean 1995.28 1001.11 1048.71 1001.26 1001 

 SD 1995.28 1001.11 1048.71 1001.26 1001 

 Time 58 56.51 13273 60.757 63.43 

F11 Mean 4479.43 3333.98 3282.25 3220.57 3793.02 

 SD 4479.43 3333.98 3282.25 3220.57 3793.02 

 Time 67 82.37 726.23 69.857 97.10 

F12 Mean 1200.71 1200.16 1200.17 1200.22 1200.18 

 SD 1200.71 1200.16 1200.17 1200.22 1200.18 

 Time 690 708.27 8221 739.323 1083.54 

F13 Mean 1300.64 1300.57 1300.62 1300.59 1300.55 

 SD 1300.64 1300.57 1300.62 1300.59 1300.55 

 Time 28 26.45 360.72 26.858 17.811 

F14 Mean 1686.38 1660.91 1686.04 1685.41 1685.40 

 SD 1686.38 1660.91 1686.04 1685.41 1685.40 

 Time 29 26.40 370 26.07 16.18 

F15 Mean 1541.48 1519.03 2321.51 1515.24 1537.52 

 SD 1541.48 1519.03 2321.51 1515.24 1537.52 

 Time 43 40.17 492 41.091 32.40 

F16 Mean 1611.25 1610.12 1610.06 1610.07 1610.51 

 SD 1611.25 1610.12 1610.06 1610.07 1610.51 

 Time 42 39.22 497 41.409 31.95 

F17 Mean 2699841 3011342 2894964 3716289.87 58210.62 

 SD 2699841 3011342 2894964 3716289.87 58210.62 

 Time 52 51.86 639 54.856 24.30 

F18 Mean 12719 7058.42 445339 5989.24 3523.70 
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 SD 12719 7058.42 445339 5989.24 3523.70 

 Time 37 34.15 437 37.037 24.30 

F19 Mean 2539.23 2296.31 2534 2538.38 2539 

 SD 2539.23 2296.31 2534 2538.38 2539 

 Time 834 798.49 9895 947.406 1046 

F20 Mean 14549.12 15983.76 28188 17269.85 15049.83 

 SD 14549.12 15983.76 28188 17269.85 15049.83 

 Time 37 36.81 448 30.658 49.09 

F21 Mean 748419 585489 1097997 774049.91 61828 

 SD 748419 585489 1097997 774049.91 61828 

 Time 49 47.32 856 40.798 63 

F22 Mean 2758 2727.08 2844 2703.86 2813 

 SD 2758 2727.08 2844 2703.86 2813 

 Time 115 114.450 1696 109.921 139.4 

F23 Mean 2617 2616.48 2620.21 2616.43 2500 

 SD 2617 2616.48 2620.21 2616.43 2500 

 Time 139 139.79 1976 134.524 173.45 

F24 Mean 2600 2635.87 2603 2634.43 2600 

 SD 2600 2635.87 2603 2634.43 2600 

 Time 107 111.17 1503 118.136 127.97 

F25 Mean 2707 2710.26 2700.32 2709.29 2700 

 SD 2707 2710.26 2700.32 2709.29 2700 

 Time 140 142.09 1846 155.969 172.26 

F26 Mean 2782 2740.74 2800.04 2766.17 2798.04 

 SD 2782 2740.74 2800.04 2766.17 2798.04 

 Time 4118 4186.60 50167 3616.477 11220.31 

F27 Mean 3443 3431.52 3273.93 3401.17 2900 

 SD 3443 3431.52 3273.93 3401.17 2900 

 Time 4382 4398 45428 2723.65 5419.98 

F28 Mean 4495 3925.84 4050.87 3870.42 3000 

 SD 4495 3925.84 4050.87 3870.42 3000 

 Time 299 295.40 2768 186.109 344.37 

F29 Mean 16215 4177.09 2015087 4362.35 3100 

 SD 16215 4177.09 2015087 4362.35 3100 

 Time 926 825 9245 646.452 1190.62 

F30 Mean 14983 11741.60.0 17050.01 11977.69 3200 

 SD 14983 11741.60 17050.01 11977.69 3200 

 Time 208 178.75 1773 126.545 369.84 

TABLE 12
MEAN AND STANDARD DEVIATION (SD) OF THE ERRORS EXISTING OPTIMIZATION ALGORITHMS USING THE CEC2014 (D = 30). 

F Index Algorithms  

  ACS 2013 MultiVerse 2016 ABC2005 DE 1997 GWO-HS 

F1 Mean 68849 2463618 2.34 E7 3889379 413113 

 SD 68849 2463618 2.34 E7 3889379 413113 

 Time 273 174 113 449 60.163 

F2 Mean 200 1908 993 4.76 E8 18904 

 SD 200 1908 993 4.76 E8 18904 

 Time 147 97 32 163 20.395 

F3 Mean 300 374 1600.05 5684 5051 

 SD 300 374 1600.05 5684 5051 

 Time 161 95 38 197 25.632 

F4 Mean 400.42 470 500.03 512 439 

 SD 400.42 470 500.03 512 439 

 Time 172 99 43 198 25.033 

F5 Mean 520.01 520 520.01 520.81 520.00 

 SD 520.01 520 520.01 520.81 520.00 
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 Time 228 139 89 389 49.116 

F6 Mean 610.23 604.01 617.59 613 620.245 

 SD 610.23 604.01 617.59 613 620.245 

 Time 37222 16555 17323 84542 6312.374 

F7 Mean 700 700.01 700.11 706.74 700.01 

 SD 700 700.01 700.11 706.74 700.01 

 Time 235 207 110 451 52.229 

F8 Mean 800.91 868 800 856.48 800 

 SD 800.91 868 800 856.48 800 

 Time 162 165 12749 856.48 27.31 

F9 Mean 961 971 1039.01 993 1037 

 SD 961 971 1039.01 993 1037 

 Time 231 192 85 527 37.85 

F10 Mean 1000.49 2649.50 1000.08 1743 1001 

 SD 1000.49 2649.50 1000.08 1743 1001 

 Time 337 316 158 881 63.43 

F11 Mean 2899.09 4168.99 3536.66 6115 3793.02 

 SD 2899.09 4168.99 3536.66 6115 3793.02 

 Time 423 360 221 1103 97.10 

F12 Mean 1200.10 1200.16 1200.14 1201.50 1200.18 

 SD 1200.10 1200.16 1200.14 1201.50 1200.18 

 Time 4105 3451 3011 11534 1083.54 

F13 Mean 1300.29 1300.26 1300.22 1300.40 1300.55 

 SD 1300.29 1300.26 1300.22 1300.40 1300.55 

 Time 160 167 56 215 17.811 

F14 Mean 1685.39 1691 1685.39 1686.15 1685.40 

 SD 1685.39 1691 1685.39 1686.15 1685.40 

 Time 169 169 67 227 16.18 

F15 Mean 1505.86 1508.67 1516.61 1612.67 1537.52 

 SD 1505.86 1508.67 1516.61 1612.67 1537.52 

 Time 243 216 116 476 32.40 

F16 Mean 1609.12 1610.97 1610.11 1611.78 1610.51 

 SD 1609.12 1610.97 1610.11 1611.78 1610.51 

 Time 247 218 127 497 31.95 

F17 Mean 15909.63 68155 3051313 440195.74 58210.62 

 SD 15909.63 68155 3051313 440195.74 58210.62 

 Time 348 267 203 701 24.30 

F18 Mean 1970.31 3693 7320 3.09 E7 3523.70 

 SD 1970.31 3693 7320 3.09 E7 3523.70 

 Time 277 205 112 406 24.30 

F19 Mean 2538.04 2547.94 2538.38 2538.97 2539 

 SD 2538.04 2547.94 2538.38 2538.97 2539 

 Time 6847 3787 3944 14593 1046 

F20 Mean 2799 2227 22185.48 5931 15049.83 

 SD 2799 2227 22185.48 5931 15049.83 

 Time 246 221 118 434 49.09 

F21 Mean 7125.01 34062 658713 125970 61828 

 SD 7125.01 34062 658713 125970 61828 

 Time 314 275 160 593 63 

F22 Mean 2550.16 2475.32 2657.33 2486 2813 

 SD 2550.16 2475.32 2657.33 2486 2813 

 Time 721 611 503 1809 139.4 

F23 Mean 2615.24 2502 2617.83 2617.13 2500 

 SD 2615.24 2502 2617.83 2617.13 2500 

 Time 999 715 662 2406 173.45 

F24 Mean 2627 2600.60 2630 2646.36 2600 

 SD 2627 2600.60 2630 2646.36 2600 



2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2917803, IEEE Access

 

17 
 

 Time 781 703 500 1761 127.97 

F25 Mean 2707.99 2700.08 2712 2711.38 2700 

 SD 2707.99 2700.08 2712 2711.38 2700 

 Time 1059 919 633 2227 172.26 

F26 Mean 2715 2700.34 2721 2725.87 2798.04 

 SD 2715 2700.34 2721 2725.87 2798.04 

 Time 26476 21762 21399 61044 11220.31 

F27 Mean 3124 2903.90 3168 3297.27 2900 

 SD 3124 2903.90 3168 3297.27 2900 

 Time 25270 21615 20556 48621 5419.98 

F28 Mean 3753 3017.05 4751 3913.60 3000 

 SD 3753 3017.05 4751 3913.60 3000 

 Time 1776 1831 1339 2895 344.37 

F29 Mean 3626.38 19816.49 4931 59318.770 3100 

 SD 3626.38 19816.49 4931 59318.770 3100 

 Time 6063 4775 4515 9249 1190.62 

F30 Mean 5500.63 5142.61 7907 7762.58 3200 

 SD 5500.63 5142.61 7907 7762.58 3200 

 Time 1403 1232 916 1876 369.84 

TABLE 13

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS HS VARIANTS 30D. 

Algorithms P-value R+ R- n/h/l/s 

GWO-HS vs EHS2011 0.0001 221 -52 24/21/1/2 
GWO-HS vs IGHS 2013 0.00022 276 0 24/24/0/0 
GWO-HS vs DHBest 2016 0.00782 217 -23 24/14/2/8 

GWO-HS vs HS-SA 2018 0.00614 254 -22 24/21/3/0 

 
TABLE 14

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS HS VARIANTS 50D. 

Algorithms P-value R+ R- n/h/l/s 

GWO-HS vs EHS2011 0.0001 208 -2 24/20/3/1 
GWO-HS vs IGHS 2013 0.0001 251 -21 24/22/2/0 
GWO-HS vs DHBest 2016 0. 02642 188 -29 24/13/3/8 
GWO-HS vs HS-SA 2018 0.0002 247 -6 24/21/3/0 

 
TABLE 15

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS OTHER METAHEURISTICS 30D. 

Algorithms P-value R+ R- n/h/l/s 

GWO-HS vs ACS 2013 0. 00374 225 0 24/21/0/3 
GWO-HS vs MultiVerse 2016 0. 00124 228 0 24/22/0/2 
GWO-HS vs ABC2005 0. 00078 213 -8 24/19/1/4 
GWO-HS vs DE 1997 0. 00044 228 0 24/22/0/2 

 
TABLE 16

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS OTHER METAHEURISTICS 50D. 

Algorithms P-value R+ R- n/h/l/s 

GWO-HS vs ACS 2013 0. 00214 231 -15 24/20/2/2 
GWO-HS vs MultiVerse 2016 0. 00086 240 -4 24/21/1/2 
GWO-HS vs ABC2005 0. 00034 249 -8 24/20/2/2 
GWO-HS vs DE 1997 0. 00038 256 -4 24/20/2/2 
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TABLE 17

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS HS VARIANTS CEC2014 30D. 

 P-value R+ R- n/h/l/s 

GWO-HS vs EHS2011 0.0002 414 -50 30/25/4/1 
GWO-HS vs IGHS 2013 0.01778 347 -117 30/19/-11/0 
GWO-HS vs DHBest 2016 0.00044 403 -62 30/24/6/0 
GWO-HS vs HS-SA 2018 0.00782 359 -103 30/22/8/0 

 
TABLE 18

WILCOXON SIGNED-RANK TEST RESULTS GWO-HS VS OTHER METAHEURISTICS CEC 2014 30D. 

Algorithms P-value R+ R- n/h/l/s 

GWO-HS vs ACS 2013 0. 03662 362 -103 30/22/8/0 
GWO-HS vs Multiverse 2016 0. 4965 267 -195 30/17/11/2 
GWO-HS vs ABC2005 0. 14706 300 -163 30/16/13/1 
GWO-HS vs DE 1997 0. 00128 389 -76 30/23/7/0 

 

 
FIGURE 2. CONVERGENCE CURVE FOR F1 

 

 

     FIGURE 3. CONVERGENCE CURVE FOR F4 
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FIGURE 4. CONVERGENCE CURVE FOR F6 

 

 

     FIGURE 5. CONVERGENCE CURVE FOR F7 

 
TABLE 19

FRIEDMAN TEST RESULTS GWO-HS VS HS VARIANTS. 

Algorithms Classical 30D Classical 50D CEC2014 30D 

EHS2011 2.8542 2.9583 4.0833 
IGHS 2013 4.1250 4.2083 2.6333 
DHBest 2016 2.9792 2.1875 3.6000 
HS-SA 2018 3.3750 4.1667 2.7000 
GWO-HS 1.6667 1.4792 1.9833 

 

TABLE 20
FRIEDMAN TEST RESULTS GWO-HS VS OTHER METAHEURISTICS. 

Algorithms Classical 30D Classical 50D CEC2014 30D 

ACS 2013 2.4792 2.5417 1.8667 
Multiverse 2016 3.1458 2.8750 2.6667 
ABC2005 3.6250 2.5417 3.4500 
DE1997 4.1875 3.9583 4.2333 
GWO-HS  1.5625 1.5000 2.7833 
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Table 4 shows that the best results for the hybrid algorithm are 

obtained using HMS = 5 and shows the fastest results obtained 

in most functions. Table 4 shows that increasing HMS does 

not improve the performance in most algorithms. Thus, a small 

HMS improves the update rate in HM for most cases. Table 5 

presents the results of running the hybrid algorithm with 

different HMCR values (i.e., 0.7, 0.8, 0.9, and 0.99). The 

obtained results show that the HMCR value has a high 

influence on the HS performance. A large HMCR value 

provides improved results. The best results are obtained using 

HMCR = 0.99 for most benchmark functions with the fastest 

convergence rate. Through the experiment of HMS values, we 

use HMCR = 0.99 and HMS = 5 to run the HMCR value 

experiment. 

B. EXPERIMENT 1 

In this part, we will analyze the experiment of the new hybrid 

algorithm compared with four recent HS variants and one 

hybrid algorithm (i.e., EHS 2011, IGHS 2013, DH/best 2016 

and HS-SA 2018). The parameter configurations for these 

variants are described in Table 4. The parameter values for the 

hybrid algorithm are the same as those listed in Table 2. First, 

we examine the hybrid algorithm together with four HS 

variants using 24 benchmark functions with 30 and 50 

dimensions, as described in Table 1.  

For both dimensions, as presented in Tables 7 and 8, the hybrid 

algorithm provides better results than the other HS variants in 

most cases. Second, we compare the hybrid algorithm with the 

recent variants of HS using 30 state-of-the-art CEC 

benchmark functions [45], with 30 dimensions. The results 

presented in Table 11 show that the new hybrid algorithm 

outperforms the recent variants in 20 out of the 30 test cases 

and provides highly competitive results. In terms of speed, the 

algorithm only outperforms the other variants in seven 

functions, but it provides high speed in all cases.  

Wilcoxon’s rank test was applied to the mean results of Tables 

7, 8, and 11 presented in Tables 13, 14, and 17 respectively. 

The p-value shows the significance of the results and 

performance improvement in comparison with other variants. 

A low p-value means high improvement. R+ presents the total 

ranks whenever the hybrid algorithm provides better results 

than the other variants, whereas R- provides the total ranks of 

lower results than the other variants. N is the total number of 

benchmark functions, l, h, and s indicate the total number of 

functions with higher, lower, or similar results of the hybrid 

algorithm compared with other variants. As presented in 

Tables 13, 14, and 17, the new hybrid algorithm outperforms 

all variants of HS with improved performance. Finally, to 

establish a comparative assessment, Friedman statistical test 

has been conducted based on the mean results of Tables 7, 8, 

and 11. The results presented in Table 19 confirm that the new 

hybrid algorithm outperforms all previous variants of HS 

because it provides the highest ranking. These results obtained 

the lowest value on the Friedman test, which shows a high 

ranking. The results contain classical 30D as classical 

benchmark functions with 30 dimensions, and classical 50D 

as classical benchmark functions with 50 dimensions, and 

finally the CEC2014 test cases with 30 dimensions. 

C. EXPERIMENT 2 

To investigate the capability of the hybrid algorithm, we 

evaluate it with other state-of-the-art metaheuristic algorithms 

from different families, as follows: artificial cooperative 

search (ACS 2013) [46], (multi-verse 2016) [47], artificial bee 

colony (ABC 2005)[48], and differential evolution (DE 1997) 

[49]. The parameter characteristics of these algorithms are 

shown in Table 3 as used in this experiment. 

In Table 9, we compare the hybrid algorithm with other 

metaheuristics using classical benchmark functions as 

described in Table 1. These functions have 30 dimensions. The 

hybrid algorithm provides the best results in all test functions, 

except for F5 and F13. The hybrid algorithm provides the 

second-best results. Table 10 presents the mean, and the SD of 

the hybrid algorithm with other metaheuristics by using 50 

dimensions for the classical benchmark functions. The hybrid 

algorithm outperforms other metaheuristics in all test 

functions, except for F5, F13, and F16; the hybrid algorithm 

provides the second-best result. Finally, we compare the 

hybrid algorithm with other metaheuristics in Table 12 using 

30 state-of-the-art benchmark functions from CEC 2014. The 

results of mean and standard deviations and running time show 

that the hybrid algorithm provides the highest speed in all the 

30 cases. Moreover, this algorithm outperforms all other 

metaheuristics in 12 cases, as presented in Table 12. Overall, 

according to the results shown in Tables 9 and 10, the hybrid 

algorithm provides a competitive result compared to other 

metaheuristic algorithms in terms of efficiency.  

Similar to the previous section, we conducted Wilcoxon’s rank 

test and Friedman statistical test based on the mean results of 

Tables 9, 10, and 12. The Wilcoxon’s rank test results 

presented in Tables 15, 16, and 18 were derived from 30, 50 

dimensions of classical benchmark functions, and CEC2014 

test cases, respectively. 

 As shown in Tables 15 and 16, the hybrid algorithm provides 

very small p-values. Therefore, it outperforms all other 

metaheuristic algorithms and provides very high significant 

improvement. Table 18 shows the results based on CEC2014 

experiment results presented in Table 12. The hybrid 

algorithm provides high significance results against two 

algorithms, namely, ACS and DE. 

 For the Friedman test, Table 20 presents a full overview of the 

classical benchmark functions with two dimensions, 30 and 

50, and the CEC test cases. As seen in the classical 

experiments, the hybrid algorithm has the lowest value on 

Friedman test, which means it has the highest ranking among 

other metaheuristics. For the CEC2014 experiment, the hybrid 

algorithm has the second raking following ACS algorithm. 

To provide insight into the hybrid algorithm convergence rate, 

we run experiment using four benchmark functions. Two 

functions with unimodal optimum (F1, F4), and two functions 

with multimodal optimum (F6, F7). Figures (2 - 5) illustrate 

the best score obtained so far of the hybrid algorithm and other 

HS variants versus the iteration. 

 
 

VII. CONCLUSION 

This paper presents a new hybrid algorithm of the HS 

algorithm with the GWO algorithm called GWO-HS 

algorithm for the global continuous optimization problem. The 
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new hybrid algorithm solves the parameter selection problem 

of the HS algorithm by using another algorithm, namely, 

GWO, to modify the values of the PAR and BW parameters 

as a self-adaptive process. Another modification is performed 

to harmonize search by applying the modified opposition 

technique to the search result and improving the obtained 

results. The GWO-HS convergence is very high compared to 

the existing HS variants due to the opposition technique, and 

GWO-HS can reach the optimum results with less iterations. 

The new hybrid algorithm can cover different types of 

problems with the same parameter setting, which makes it a 

better version of HS than the original one. Two groups of 

evaluation tests are used to examine the new algorithm 

performance. First, we compare the hybrid algorithm with the 

recent variants of the HS algorithm using different types of 

optimization functions, namely, 24 classical and 30 CEC2014 

benchmark functions. The results show that the hybrid 

algorithm is better than the previous variants in terms of 

accuracy and provides competitive time consumption. 

Additionally, the algorithm has been evaluated with well-

known metaheuristics from different families. The hybrid 

algorithm shows improved results and speed compared with 

these algorithms. The new hybrid algorithm shows high 

performance, which is essential in solving real-world 

optimization. Therefore, we recommend using a new 

algorithm to solve real-world problems. The current 

experiment focuses on continuous benchmark functions. 

Future work could utilize the new hybrid algorithm in discrete 

optimization problems.   
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