
International Journal of Software Engineering and Technology 03(1) 10-18

International Journal of
Software Engineering and Technology

Journal Website: http://ijset.fc.utm.my

10

ELITISM BASED MIGRATING BIRDS

OPTIMIZATION ALGORITHM FOR

COMBINATORIAL INTERACTION TESTING

Hasneeza Liza Zakaria1, Kamal Z. Zamli2

1School of Computer and Communication Engineering

Universiti Malaysia Perlis(UniMAP)

Kampus Pauh Putra

02600 Arau, Perlis, Malaysia

hasneeza@unimap.edu.my

2Faculty of Computer Systems and Software Engineering

Universiti Malaysia Pahang(UMP)

Kampus Gambang, Lebuhraya Tun Razak

26300 Kuantan, Pahang, Malaysia

kamalz@ump.edu.my

Abstract— Migrating Birds Optimization Algorithm

(MBO) has gained popularity in solving various

engineering problems because it yielded a good and

consistent result. In this paper, we combined MBO and

elitism to solve the Combinatorial Interaction Testing

(CIT) problem i.e. to find a set of minimum test case which

is an NP-Complete problem. This proposed strategy is the

first to utilize population based metaheuristic algorithm i.e.

MBO with elitism for solving CIT problem. Elitism is a

preservation method that preserves the best population and

introduces it back into the next population. Here, we used

elitism to preserve the best test cases in order to improve

the effectiveness of MBO in generating the minimum set of

test cases. This strategy is named as MBO Testing Strategy

with elitism (MTS-e). As a comparison with the original

MBO we also developed a strategy without elitism, namely

MBO Testing Strategy (MTS). MTS yielded a comparable

result to the benchmark strategies while MTS-e

outperformed most of the benchmarked strategies. The

experimental result shows that elitism enhanced the

performance of MBO as the mean of the best generated test

cases for MTS-e is better than the mean generated by

benchmarked strategies.

Keywords — MBO; elitism; CIT; MTS; MTS-e

1.0 INTRODUCTION

Software plays important role in our life today.

Modern humans depend on software to operate many

things such as household appliances, gadgetries,

transportations, etc. Unfortunately, software has never

been perfect and error prone. Software errors could lead

to software failures that could cause loss of revenues and

even life. Thus, it is important to release software with the

most minimum error. In order to minimize software

failures, software must be tested before released. There

are many stages of software testing and the methods could

differ in each stage. Here, we focus on the software test

plan stage where we build strategies with Migrating Birds

Optimization (MBO) to plan the test with Combinatorial

Interaction Testing (CIT) technique.

MBO is a population based nature-inspired meta-

heuristic algorithm that mimics the V-formation of

migrating birds [1]. The V-formation has been proven by

scientist [2-4] to save energy of birds as the energy can be

shared among them. The unused neighbor sharing

mechanism is unique to MBO and emulates the energy

sharing mechanism of the V-formation [5].

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

11

MBO Figure 1 starts with the random generation of n

initial solutions i.e. the number of bird in the V-

formation. The best solution is chosen as a leader bird, α

and the remaining follower birds, β are alternately

distributed to the right and left side of the formation.

Leader exchange is done by generating and evaluating the

y neighbor’s solution for the follower birds. Each solution

evaluates its (y-x) neighbors and x unused best neighbors

from the bird in front. The best solution will become a

new leader and the old leader will move to the end of the

formation. When the iteration completed, MBO returns

the best solution.

Figure 1 The original MBO algorithm

The original MBO has proven to produce good and

consistent results in solving engineering problems [5-8].

The advantages of MBO are that it can enhance the

exploration of the search space and offers parallel

processing.

The modified MBO has gained popularity since many

researchers tried to adapt MBO to solve specific problem

domains. These modifications had proven to improve

MBO performance [9-14].

Based on the advantages mentioned above, MBO has

been chosen for our CIT strategies. Exhaustive testing is

impossible due to the combinatorial explosion problem

which occurs when the number of configuration and its

settings increases, then the number of combinations to be

tested also increase. CIT is a technique that tests only the

selected number of combinations that are mathematically

proven to represent and cover all configurations [15].

Even though MBO has been known to produce good

results, but it also has a weakness of early convergence

[8]. Hence, elitism is incorporated into MBO to

investigate its effectiveness in solving the early

convergence problem in MBO.

Elitism has been applied to numerous problems across

various filed and had proven to be effective [16-20].

Elitism is a simple preserving mechanism where a

number of the best solution from the previous population

is carried forward into the next population. Due to its

effectiveness, we incorporated elitism into our modified

MBO strategy.

In order to investigate the effectiveness of MBO in its

original form and with modification, original MBO is

implemented to MBO Testing Strategy (MTS) and

modified MBO is implemented to MTS with elitism

(MTS-e).

This paper is organized as follows. In section 2, the

MBO based strategies for CIT are given. In section 3, the

parameter tuning of MTS and MTS-e testing strategies

with Taguchi method is explained. In section 4, the MTS

and MTS-e results are compared with other algorithms.

Finally, this paper is concluded in section 5.

2.0 EXISTING WORKS

The number of configurations in software systems

nowadays is huge. Thus, the numbers of configuration

options expand in huge numbers and therefore, it is

impossible to test exhaustively. Thus, there are no

sufficient resources and time to test every combination’s

possible option setting. CIT techniques use sampling

method to test selected configurations where each

combination’s possible option setting for every

configuration options can be tested at least once [21].

Existing CIT strategies started with pure

computational based approaches like Jenny [22], TConfig

[23] and IPOG [24] before the emerging of AI-based

approach that mostly used nature inspired metaheuristics

algorithm. Nature inspire metaheuristic algorithm have

been popular in solving myriad optimization problems in

multiple fields such as engineering, networking, data

mining and industrial[25].

Meta-heuristics has been popular in solving

combinatorial optimization problems because of it’s

produced a good result. However, according to the No

Free Lunch Theorem (NFL) [26; 27] if an algorithm

performs well on average for a particular class of

problems then it must do worse on average over other

classes of problems. This means that even though the

meta-heuristics are meant to solve general purpose

problems, they cannot perform well on most problems.

Hence, there is the need for a problem-specific algorithm

that can solve the problem at hand effectively.

In the past 15 years, researchers in CIT have been

using nature inspired algorithms in finding the minimum

set of test cases. The first 10 years were focused on

pairwise and 3-way data generation strategies to test on

small size data; mostly with t ≤ 3 by implementing

trajectory based algorithms such as Simulated

Annealing(SA), Tabu Search(TS) and Hill Climbing(HC)

and classics population based algorithm such as Genetic

Algorithm (GA) and Ant Colony Algorithm (ACA)[25].

In the previous 5 years, researchers have been

innovatively trying to explore the higher strength (t > 6)

data generation strategies. This was possible with the

creation of new nature inspired algorithms that are mostly

population based such as Artificial Bee Colony (ABC),

Particle Swarm Optimization Algorithm (PSO), Bee

Algorithm (BA) and Bat Algorithm [28]. Population

based algorithms have a global exploration and local

Input: n, k, x, m and K

Output: the best solution, abest

1. Generate random initial population (n) and put

into an imaginary V-shaped structure

2. iter = 0

3. while(iter < K)

4. for(j = 0; j < m; j++)

5. Improves the leader bird(a) by using best y

neighbor

6. iter = iter + y

7. for each follower birds solution, β

8. Improve the β using the best (y-x) neighbor and x

unused best neighbor

9. iter = iter + (y-x)

10. end for

11. Forward one of the β solution as leader, a

12. end while

13. end for

14. Return abest

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

12

exploitation mechanism [29]. Hence, they yield a better

result compared to trajectory based algorithms.

3.0 THE MTS AND MTS-e STRATEGIES

3.1 Covering Array (CA)

Covering Arrays (CA) are mathematical notations

that are applied in t-way testing faults were detected by

the interaction of a number of parameters [30]. CA has

been used for combinatorial testing for the last 20 years

[31]. Uniform strength CA i.e. CA with the same number

of configuration values can be represented as CA (N;t,vp)

, where N is the final test suite size, t is the interaction

strength, v is the uniform configuration value and p is

the number of parameters. Kuhn [15] demonstrated that

70% failures could be discovered by 2-way CA and

almost all failures could be discovered by 6-way CA. He

also concluded that the appropriate t value is between 4

and 6.

CIT methods work by first defining a model of the

system's configuration. It is typical for this kind of model

to have a set of configuration settings with a small

number of options and a set of constraints (if any). The

CIT technique produced a set of test suite with the defined

model where each combination of system’s configuration

settings was covered at least once.

Table 1 shows and example of a simple CIT system

configuration model i.e. hotel room control system with

the same number of configuration values. Table 2 shows

the 3-way CA for the system. If we were to test the system

exhaustively, there will be 16 number of combinations.

CIT technique enabled us to test with only 8 test cases

which is a 50% reduction. Therefore, a lot of time and

money could be saved when testing a large system

because the number of test cases is significantly reduced.

Table 1 Hotel room control system

Aut

o Lock

Door

Curtai

n

Lightin

g

Air

Conditione

r

On Open On High

Off Close Off Low

Table 2 CA(8;3,24)) for hotel control system

Auto

Lock Door

Curtain Light

ing

Air

Conditioner

Off Open Off Low

Off Close On Low

Off Close Off High

On Open Off High

On Open On Low

Off Open On High

On Close On High

On Close Off Low

3.2 MTS and MTS-e

The OTAT strategy has been popular in solving CIT

problems [32]. The OTAT strategy aims to generate one

test case at a time until the each combination of

configuration settings is covered. The algorithm begins

by initializing a set of target combinations of a

configuration. A test case that covers as many target

combinations i.e. has the maximum weight is generated.

Then, the covered target combinations will be removed.

The loop terminates when all test cases generated covers

all target combinations.

The MTS and MTS-e combines the OTAT strategy

with MBO. Basically OTAT an interaction elements list

(e-list) is constructed first by MTS. The exhaustive tuple

combinations of each p-valued accepted input are stored

in an interaction elements list (e-list). The current test

case (cur_tc) is generated first, then the neighbor test case

(nbr_tc) is generated as a local search test case by MBO.

Both test cases weight are compared and the one with the

largest weight will be selected as the best solution. The

pair interactions of tuple combinations corresponding to

the best test solution will be eliminated from the e-list.

Lastly, the best solution will be inserted into the test suite.

The OTAT based MTS/MTS-e strategy is depicted in the

flowchart Figure 2.

The MTS-e Figure 3 applied elitism to solve the quick

convergence problem of MBO. Elitism is as a simple

mean to preserve the best solutions from a population and

then introduces them into the next population [33]. An

elitist storage was created to keep the good solutions from

the previous run. In the first iteration, the elitism

algorithm run and save a certain percentage of good

solutions into the elitist array. Afterward, in the second

iteration, the elitist from the first run will be inserted into

the next population. Then, the second elitists will be kept

in the elitist array. This cycle continues until the

algorithm completed.

Figure 3 The MTS-e algorithm

Input: n, k, x, m and K

Output: the best solution, abest

1. Generate random initial population (n) and put into

an imaginary V-shaped structure

2. Generate a neighbor flock

3. If(!initial flock)

4. Add elitist to the flock

5. iter = 0

6. while(iter < K)

7. for(j = 0; j < m; j++)

8. Improves the leader bird(a) by using best y neighbor

9. iter = iter + y

10. for each follower birds solution, β

11. Improve the β using the best (y-x) neighbor and x

unused best neighbor

12. iter = iter + (y-x)

13. end for

14. Forward one of the β solution as leader, a

15. end while

16. end for

17. Send the remaining one third of the best solutions

to the elitist storage

18. Return abest

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

13

Figure 2 The OTAT based MTS/MTS-e flowchart

Yes

No

Yes

Start

Create empty test_suite

Create e_list

e_list is empty?

Generate cur_tc at random

Generate nbr_tc using MBO

If(nbr_tc > cur_tc)

Eliminate best_tc corresponding
pair from e_list

Put best_tc into test_suite

End

No

best_tc = nbr_tc

best_tc = cur_tc

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

14

Elitism stores a number of the best test cases from a run.

Then, these test cases were put back into the next run. Thus,

introduce diversity of the best solutions into the population.

Two random test cases were chosen from the population

and the one with more weight is chosen as the best test case.

This best test case will replace the poorest test case in the

previous population. Then, the best test cases from the

previous population were added to the elitist array. This

increased the number of the best solutions in the population

and increases the probability of getting better test cases. The

addition of elitism mechanism into the original MBO is

shown in Figure 4.

Figure 4 The elitism algorithm for MTS-e

3.3 Parameter Tuning of the MTS and MTS-e

Taguchi method is often used in engineering field for

parameter tuning [34-36]. It is also being applied to tune

parameters for meta-heuristic algorithms such as Particle

Swarm Optimization Algorithm (PSO) [37], Simulated

Annealing (SA) [38] and Genetic Algorithm (GA) [39]. We

chose the Taguchi method to tune the parameters of the t-

way testing strategies with MBO as it is proven as a suitable

method to tune MBO Algorithm by Niroomand et al. [12]

in solving the closed looped layout problem in

manufacturing systems.

First, we identified the control factors and noise factors

of the strategies. The control factors are the parameters that

we can control and want to tune. Whereas the noise factors

are the parameters that we cannot control and do not need

to tune. Here, the control factors are n, k and m where n is

the number of initial solutions, k is the number of neighbor

solutions and m is the number of tours [12]. The other

factors, i.e. x and K where x is the number of shared

neighbor solutions and K is the number of iterations are

treated as the noise factor by the following relations, x = k

and K = knm. The x value is set to 1 as suggested by Duman

[1]. Therefore the value of k should be set to 2x + 1 which

is 3. Thus, the 2 control factors for MTS are n and m and 3

control factors for MTS-e are m, n and elitism, e.

The Degrees of Freedom (DOF) are computed for MTS

and MTS-e before selecting a suitable orthogonal array. The

total DOF for MTS is 7, which is (2x3)+1, where 1 is the

DOF Mean Value. As for MTS-e, the total DOF is 9, which

is (2x4)+1, where 1 is the DOF Mean Value. Thus, the most

suitable orthogonal array for experimentation is L9 array as

shown in Table 3.

Table 3 L9 Orthogonal Array for MTS/MTS-e

Experiment

No.

Control Factors for

MTS/MTS-e

n m e

1 25 1 0.33

2 25 3 0.50

3 25 10 0.67

4 51 1 0.67

5 51 3 0.33

6 51 10 0.50

7 101 1 0.50

8 101 3 0.67

9 101 10 0.33

Three representatives covering arrays are selected for

parameter tuning i.e. CA(N;2,334252); CA(N;2,510)

CA(N;3,47). Nine experiments were run for each covering

arrays and each experiment was run 20 times.

All test cases from the experiments are normalized in

the range of [0, 1] since the size of test cases varies for

different CA. Feature scaling was used for data

normalization as in [40].

𝑋𝑖,0 𝑡𝑜 1 =
𝑋𝑖− 𝑋𝑀𝑖𝑛

𝑋𝑀𝑎𝑥− 𝑋𝑀𝑖𝑛
 (1)

Where,

Xi = each test case size generated

XMin = the minimum test case size

XMax = the maximum test case size

Xi, 0 to 1 = normalized test case between 0 and 1

 The mean of CA(N;2,510), CA(N;3,47) and

MCA(N;2,33,42,53) is then compared and analyzed to

produce the main effects plot in Fig. 3 and Fig. 4. The loss

function is a statistical method that calculates the losses

incurred when the performance measured did not meet the

target value [41]. The value of the loss function is measured

in the form of signal-to-noise (SN) ratio. There are three

types of SN ratio i.e. smaller-the-better, nominal-the-best

and larger-the-better. In our case the smaller-the-better is

chosen because the ideal target value should be as small as

possible.

 A larger SN ratio indicates a better performance.

Referring to Figure 5 and Figure 6, the highest mean of the

SN ratio for both MTS and MTS-e shows the best parameter

settings to obtain the most minimum test case size.

1. Specify the elitism percentage; e_percentage

2. Declare and initialize the elitist array; elitist_array

3. int i = 0;

4. while(i < e_percentage)

5. Get 2 random test case from population; a,b and

check their weight

6. if(weight_a > weight_b)

best test case = a;

else

best test case = b;

7. Get the poorest test case from the previous

population; m

8. Check weight of m

9. if(best test case weight > weight_m)

best test case = m;

10. Add best test case to elitist_array

11. i++;

12. end while

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

15

However, in order to reduce the long computational time,

the e value of MTS-e is set to 0.33 instead of 0.67. Thus,

the recommended parameter setting is as in Table 4.

Figure 5 SN plot for MTS

Figure 6 SN plot for MTS-e

Table 4 The recommended parameter settings

 n m k e

MTS 101 3 3 -

MTS-e 101 3 3 0.33

4.0 RESULT AND DISCUSSION

Several experiments were conducted to find the

effectiveness of incorporating elitism into MBO by

benchmarking MTS-e with several popular strategies

alongside MTS. Those strategies are PSO, IPOG, TVG,

PICT, TConfig and Jenny.

Due to the long execution time, we were experimenting

only with strength 3 and 4 only. In order to measure

effectiveness, each experiment is performed 20 times.

Then, the best test case (minimum test case) and its mean

are reported for some of the experiments. The experiments

were run on a Pentium i7 Core processor 3.40 GHz, 4.00

GB Ram and on Windows 8.

Table 5 presents the result for CA(N;3,3p) for different

strategies where p varies from 4 to 10 and also for CA(N;4,

3p) where p varies from 5 to 10. The best test case size of

all strategies was compared. The result marked in bold

signified the best result for a particular strategy.

The first thing that can be observed in Table 5 is that the

metaheuristics strategies i.e. PSO, MTS and MTS-e

managed to outperform the computational based strategies.

MTS-e produce smaller size test case than the other

benchmarked strategies in almost all configurations. Some

of their means also smaller compared to the other strategies.

Statistical analyses were also conducted to see the paired

significant difference of benchmarked strategies against

MTS and MTS-e.

The effectiveness of a method can be verified using

statistical analysis of two and multiple method’s

comparisons over multiple data sets [42]. Statistical

analyses were conducted for all the obtained results in Table

5 based on multiple pairwise comparisons with 95%

confidence level (i.e. α = 0.05) to find the significant

difference of the strategies. The non-parametric Friedman

test and Wilcoxon Rank-Sum test were used. The non-

parametric methods were chosen because the results are not

normally distributed and the sample size was small [43].

IBM SPSS Statistics 22 was used to run the statistical

analysis.

Friedman test was conducted to find the mean rank of

the strategies. The test rendered a chi-square (χ2) value of

80.121 with p < 0.001. Table 10 shows the mean rank of

each strategy and MTS-e proven to have the smallest mean

rank. Thus, MTS-e outperformed the other strategies with

the minimum mean rank of 1.23. MTS came in second with

a mean rank of 2.00.

Table 10 The Friedman’s Mean Rank

Strategies Mean Rank

Jenny 5.08

TConfig 5.42

PICT 5.46

TVG 6.15

IPOG 7.88

PSO 2.77

MTS 2.00

MTS-e 1.23

The Wilcoxon Rank-Sum test was run to see the detail

comparison of each paired strategies. The null hypothesis

(H0) suggested the best test case size of MTS and MTS-e

with the best test case size of the benchmarked strategies do

not have any significant differences. The alternative

hypothesis (H1) is that there is a significant difference

between their mean. The H0 is rejected when the sum of the

negative ranks (P-) is less than or equal to the critical value

of Wilcoxon signed-rank test (Pα) i.e. P- ≤ Pα.

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

16

Table 5 Result for CA(N;3,3p)and CA(N;4,3p) with varying p values

t p Jenny TConfig PICT TVG IPOG PSO Mean MTS Mean MTS-e Mean

3

4 34 32 34 34 39 27 29.3 29 31.20 28 31.65

5 40 40 43 41 43 39 41.37 38 40.35 38 40.95

6 51 48 48 49 53 45 46.76 43 45.90 42 45.00

7 51 55 51 55 57 50 52.2 49 50.75 48 50.80

8 58 58 59 60 63 54 56.76 52 54.60 52 54.35

9 62 64 63 64 65 58 60.3 57 58.55 56 57.85

10 65 68 65 68 68 62 63.95 60 61.50 59 61.20

4

5 109 97 100 105 115 96 97.83 96 100.15 94 99.85

6 140 141 142 139 181 133 135.31 132 135.35 132 135.70

7 169 166 168 167 185 155 158.12 155 157.20 154 157.00

8 187 190 189 192 203 175 176.94 174 175.90 172 175.57

9 206 213 211 215 238 195 198.72 191 194.30 190 193.14

10 221 235 231 233 241 210 212.71 208 210.00 208 208.75

Table 6 Result of Wilcoxon signed-rank test for MTS when t = 3

MTS vs. Jenny MTS vs. PICT MTS vs. Tconfig MTS vs. IPOG MTS vs. PSO MTS vs. MTS-e

Reject H0 with

 P- = 0, Pα = 3

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 3

P- ≤ Tα

Reject H0 with

P- = 0, Pα = 3

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 3

P- ≤ Pα

Cannot Reject H0

with P- = 4, Pα = 3

P- > Pα

Cannot Reject H0

with P- = 15,

Pα = 0

P- > Pα

Table 7 Result of Wilcoxon signed-rank test for MTS-e when t = 3

MTS-e vs. Jenny MTS-e vs. PICT MTS-e vs. Tconfig MTS-e vs. IPOG MTS-e vs. PSO MTS-e vs. MTS

Reject H0 with

P- = 0, Pα = 3

P- ≤ Tα

Reject H0 with

P- = 0, Pα = 3

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 3

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 3

P- ≤ Pα

Reject H0 with

P- = 1, Pα = 3

P- ≤ Pα

Cannot Reject H0

with P- = 15, Pα = 0

P- > Pα

Table 8 Result of Wilcoxon signed-rank test for MTS when t = 4

MTS vs. Jenny MTS vs. PICT MTS vs. Tconfig MTS vs. IPOG MTS vs. PSO MTS vs. MTS-e

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Reject H0 with

 P- = 0, Pα = 2

P- ≤ Pα

Not enough data

for MTS

Not enough data

for MTS

Table 9 Result of Wilcoxon signed-rank test for MTS-e when t = 4

MTS-e vs. Jenny MTS-e vs. PICT MTS-e vs. Tconfig MTS-e vs. IPOG MTS-e vs. PSO MTS-e vs. MTS-e

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Reject H0 with

P- = 0, Pα = 2

P- ≤ Pα

Not enough data

for MTS

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

17

The results of Wilcoxon signed-rank test in Tables 6 through

Tables 8 show that the MTS and MTS-e outperformed the

computational based strategies in all cases i.e. Jenny, PICT,

TConfig, TVG and IPOG. On the other hand, the result for the

PSO is better than MTS when t=3, contrary to MTS-e because it

is better than PSO when t=3. It is also the same when t=4, where

MTS-e is better than PSO. MTS and MTS-e were also compared

for t=3 and MTS-e outperformed MTS. Unfortunately, the

sample size is too small to compare PSO with MTS when t=4.

The MTS and MTS-e also cannot be compared when t=4

because of the same reason.

This MTS-e’s result shows that elitism did a great job in

enhancing the number of the best solutions to be chosen in the

population and produced smaller test cases compared to the

benchmarked strategies. The mean of test cases after 20 runs

also better than the benchmarked strategies.

5.0 CONCLUSION

In this paper, we analyzed the effectiveness of incorporating

elitism into MBO in CIT strategy, denoted as MTS-e. It is

achieved by preserving 33 percent of the best test cases from the

previous population and then introduced them back again into

the next population. We compared MTS-e with the original

MBO for CIT, denoted MTS and also with a few other

benchmark strategies i.e. Jenny, TConfig, PICT, TVG, IPOG

and PSO. The result shows MTS-e produced a better result

compared to the other strategies. This proves that elitism helps

in enhancing the capability of MBO by improving the next

population with the best solutions from the previous population.

However, the limitation of these strategies is that they are slower

than the computational based strategies. This problem can be

rectified if they were run on a faster computer. Researches in

nature inspired metaheuristic algorithms are very promising and

as part of future work, the MTS and MTS-e could be enhanced

to support constraint CIT or sequence based strategy.

Acknowledgement

This work is funded by the ERGS Grant entitled: A

Computational Strategy for Sequence based t-way Testing.

References

[1] Duman, E., Uysal, M., and Alkaya, A. F. 2012. Migrating

birds optimization: A new metaheuristic approach and its

performance on quadratic assignment problem.

Information Sciences 217: 65-77.

[2] Voelkl, B., Unsöld, M., Usherwood, J. R., and Wilson, A.

M. 2015. Matching times of leading and following suggest

cooperation through direct reciprocity during v-formation

flight in ibis. Proceedings of National Academy of

Sciences of the United States of America. 17 February

2015. 2115 – 2120.

[3] Cutts, C. J., and Speakman, J. R. 1994. Energy savings in

formation flight of pink-footed geese. Journal of

Experimental Biology 189: 251-61.

[4] Bajec, I. L., and Heppner, F. H. 2009. Organized flight in

birds. Animal Behaviour 78(4): 777-89.

[5] Makas, H., and Yumusak, N. 2016. System identification

by using migrating birds optimization algorithm: A

comparative performance analysis. Turkish Journal of

Electrical Engineering & Computer Sciences 24:1879 –

900.

[6] Tongur, V., and Ülker, E. 2014. Migrating birds

optimization for flow shop sequencing problem. Journal

of Computer and Communications 2(4):142-47.

[7] Ramanathan, L., and Ulaganathan, K. 2014. Nature-

inspired metaheuristic optimization technique-migrating

bird ’ s optimization in industrial scheduling problem.

SSRG International Journal of Industrial Engineering

(SSRG-IJIE) 1(3):1-6.

[8] Duman, E., Buyukkaya, A., and Elikucuk, I. 2013. A novel

and successful credit card fraud detection system

implemented in a turkish bank. 2013 IEEE 13th

International Conference on Data Mining Workshops.

Dallas, Texas. 7-8 December 2013.162-171.

[9] Soto, R., Crawford, B., Almonacid, B., and Paredes, F.

2016. Efficient parallel sorting for migrating birds

optimization when solving machine-part cell formation

problems. Scientific Programming, Hindawi Publishing

Corporation:1-39.

[10] Shen, L. W., and Asmuni, H. 2015. Migrating birds

optimization in solving university timetabling problem.

Jurnal Teknologi 72(1): 89–96.

[11] Pan, Q.-K., and Dong, Y. 2014. An improved migrating

birds optimisation for a hybrid flowshop scheduling with

total flowtime minimisation. Information Sciences 277:

643-655.

[12] Niroomand, S., Hadi-Vencheh, A., Şahin, R., and Vizvari,

B. 2015. Modified migrating birds optimization algorithm

for closed loop layout with exact distances in flexible

manufacturing systems. Expert Systems with Applications

42: 6586-6597.

[13] Makas, H., and Yumusak, N. 2013. New cooperative and

modified variants of the migrating birds optimization

algorithm. International Conference on Electronics,

Computer and Computation, at Ankara, Turkey. 7-9

November 2013. 176-179.

[14] Lalla-ruiz, E., Exp, C., and Armas, J. D. 2014. Migrating

birds optimization for the seaside problems at maritime

container terminals. Journal of Applied Mathematics:1-21.

[15] D. Richard Kuhn, Wallace, D. R., and Jr., A. M. G. 2004.

Software fault interactions and implications for software

testing. IEEE Transactions on Software Engineering 30

(6): 1-3.

[16] Moreto, R. A. d. L., Gimenez, S. P., and Thomaz, C. E.

2013. Analysis of a new evolutionary system elitism for

improving the optimization of a cmos ota. 2013 BRICS

Congress on Computational Intelligence & 11th Brazilian

Congress on Computational Intelligence. Recife, Brazil. 8

– 11 September 2013. 628-637.

[17] McLaughlin, M., and Wineberg, M. 2014. The effects of

elitism on spatial coevolutionary gas. ALIFE 14:

Proceedings of the Fourteenth International Conference

on the Synthesis and Simulation of Living Systems. New

York, NY, USA. 30 July – 2 August 2014. 924-931.

H.L. Zakaria, K.Z. Zamli / IJSET Vol. 3, No. 1 (2017)

18

[18] Nayeem, M. A., Rahman, M. K., and Rahman, M. S. 2014.

Transit network design by genetic algorithm with elitism.

Transportation Research Part C 46: 30-45.

[19] Wu, M.-S. 2014. Particle swarm optimization based on

elitism for fractal image compression. In Lecture notes in

electrical engineering, edited by J. J. e. al. Switzerland:

Springer International Publishing.

[20] Xiang, Y., Zhou, Y., and Liu, H. 2015. An elitism based

multi-objective artificial bee colony algorithm. European

Journal of Operational Research 245: 168-93.

[21] Yilmaz, C., Fouch, S., x00E, Cohen, M. B., Porter, A.,

Demiroz, G., and Koc, U. 2014. Moving forward with

combinatorial interaction testing. Computer 47 (2):37-45.

[22] B.Jenkins. Jenny test tools. Available from

http://www.burtleburtle.net/bob/math/jenny.html.

[23] Williams, A. 2016. Tconfig]. Available from

http://www.site.uottawa.ca/~awilliam/.

[24] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence,

J. 2007. Ipog: A general strategy for t-way software

testing. Paper read at Proceedings of the International

Symposium and Workshop on Engineering of Computer

Based Systems.

[25] Zamli, K. Z. 2015. Software testing inspiration from

nature. Kuantan, Pahang: Penerbit Universiti Malaysia

Pahang.

[26] Wolpert, D. H., and McReady, W. G. 2007. No free lunch

teorem for optimization. IEEE Transactions on

Evolutionary Computing 1 (1).

[27] Wolpert, D. H. 2012. What the no free luch theorems really

mean: How to improve search algorithms. Santa Fe

Institute.

[28] Xing, B., and Gao, W.-J. 2014. Intelligent systems

reference library 62 innovative computational intelligence

: A rough guide to 134 clever algorithms. Switzerland:

Springer International Publishing.

[29] Beheshti, Z., Mariyam, S., and Shamsuddin, H. 2013. A

review of population-based meta-heuristic algorithm.

International Journal of Advances in Soft Computing and

its Applications 5 (1):1-35.

[30] Colbourn, C. J. 2011. Covering arrays and hash families.

In Information security, coding theory and related

combinatorics. IOS Press.

[31] Zhang, J., Zhang, Z., and Ma, F. 2014. Automatic

generation of combinatorial test data. London: Springer-

Verlag.

[32] Zamli, K. Z., Othman, R. R., and Zabil, M. H. M. 2011.

On sequence based interaction testing. IEEE symposium

on computers & informatics. Kuala Lumpur, Malaysia. 20-

23 March 2011. 662-667.

[33] Jong, D. 1975. Analysis of the behaviour of a class of

genetic adaptive systems. PhD thesis, University of

Michigan, Ann Anbor.

[34] Turning, W., and Steel, E. N. 2013. Taguchi method and

anova: An approach for process parameters optimization

of wet turning operation while turning en 353 steel.

International Journal of Advanced Research in

Engineering and Technology (IJARET):1-7.

[35] Shirazi, A. N., B, Y., Gholamian, S. A., and S, R. 2013.

Application of taguchi experiment design for decrease of

cogging torque in permanent magnet motors. International

Journal on Computational Science & Applications 3: 31-

38.

[36] Panda, A. K., and Singh, R. K. 2013. Optimization of

process parameters by taguchi method : Catalytic

degradation of polypropylene to liquid fuel. International

Journal of Multidisciplinary and Current Research 2(4):

50-58.

[37] Wang, H., Geng, Q., and Qiao, Z. 2016. Parameter tuning

of particle swarm optimization by using taguchi method

and its application to motor design. 2014 4th IEEE

International Conference on Information Science and

Technology (ICIST). Shenzen, Guandong, China. 26-28

April 2014. 722 – 726.

[38] Sadeghi, A., Alem-Tabriz, A., and Zandieh, M. 2011.

Product portfolio planning: A metaheuristic-based

simulated annealing algorithm. International Journal of

Production Research 49(8): 2327-50.

[39] Candan, G., and Yazgan, H. R. 2015. Genetic algorithm

parameter optimisation using taguchi method for a flexible

manufacturing system scheduling problem. International

Journal of Production Research 53(3): 897-915.

 [40] Wu, H., Nie, C., Kuo, F.-C., Leung, H., and Colbourn, C.

J. 2015. A discrete particle swarm optimization for

covering array generation. IEEE Transactions on

Evolutionary Computation 19 (4): 575 - 591.

[41] McConnell, J., Nunnally, B. K., and McGarvey, B. 2011.

Meeting specifications is not good enough—the taguchi

loss function. Journal of Validation Technology:38-42.

[42] García, S., Fernández, A., Luengo, J., and Herrera, F.

2009. Advanced nonparametric tests for multiple

comparisons in the design of experiments in computational

intelligence and data mining: Experimental analysis of

power. Information Sciences 180:2044–64.

[43] Derrac, J., García, S., Molina, D., and Herrera, F. 2011. A

practical tutorial on the use of nonparametric statistical

tests as a methodology for comparing evolutionary and

swarm intelligence algorithms. Swarm and Evolutionary

Computation 1 (1):3-18.

