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Abstract— Migrating Birds Optimization Algorithm 

(MBO) has gained popularity in solving various 

engineering problems because it yielded a good and 

consistent result. In this paper, we combined MBO and 

elitism to solve the Combinatorial Interaction Testing 

(CIT) problem i.e. to find a set of minimum test case which 

is an NP-Complete problem. This proposed strategy is the 

first to utilize population based metaheuristic algorithm i.e. 

MBO with elitism for solving CIT problem.  Elitism is a 

preservation method that preserves the best population and 

introduces it back into the next population. Here, we used 

elitism to preserve the best test cases in order to improve 

the effectiveness of MBO in generating the minimum set of 

test cases. This strategy is named as MBO Testing Strategy 

with elitism (MTS-e). As a comparison with the original 

MBO we also developed a strategy without elitism, namely 

MBO Testing Strategy (MTS). MTS yielded a comparable 

result to the benchmark strategies while MTS-e 

outperformed most of the benchmarked strategies. The 

experimental result shows that elitism enhanced the 

performance of MBO as the mean of the best generated test 

cases for MTS-e is better than the mean generated by 

benchmarked strategies. 

Keywords — MBO; elitism; CIT; MTS; MTS-e 

 

1.0  INTRODUCTION 

 

Software plays important role in our life today. 

Modern humans depend on software to operate many 

things such as household appliances, gadgetries, 

transportations, etc. Unfortunately, software has never 

been perfect and error prone. Software errors could lead 

to software failures that could cause loss of revenues and 

even life. Thus, it is important to release software with the 

most minimum error. In order to minimize software 

failures, software must be tested before released. There 

are many stages of software testing and the methods could 

differ in each stage. Here, we focus on the software test 

plan stage where we build strategies with Migrating Birds 

Optimization (MBO) to plan the test with Combinatorial 

Interaction Testing (CIT) technique. 

MBO is a population based nature-inspired meta-

heuristic algorithm that mimics the V-formation of 

migrating birds [1]. The V-formation has been proven by 

scientist [2-4] to save energy of birds as the energy can be 

shared among them. The unused neighbor sharing 

mechanism is unique to MBO and emulates the energy 

sharing mechanism of the V-formation [5]. 
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MBO Figure 1 starts with the random generation of n 

initial solutions i.e. the number of bird in the V-

formation. The best solution is chosen as a leader bird, α 

and the remaining follower birds, β are alternately 

distributed to the right and left side of the formation. 

Leader exchange is done by generating and evaluating the 

y neighbor’s solution for the follower birds. Each solution 

evaluates its (y-x) neighbors and x unused best neighbors 

from the bird in front. The best solution will become a 

new leader and the old leader will move to the end of the 

formation. When the iteration completed, MBO returns 

the best solution.  

 
 

Figure 1 The original MBO algorithm 

 

The original MBO has proven to produce good and 

consistent results in solving engineering problems [5-8]. 

The advantages of MBO are that it can enhance the 

exploration of the search space and offers parallel 

processing.  

The modified MBO has gained popularity since many 

researchers tried to adapt MBO to solve specific problem 

domains. These modifications had proven to improve 

MBO performance [9-14].  

Based on the advantages mentioned above, MBO has 

been chosen for our CIT strategies. Exhaustive testing is 

impossible due to the combinatorial explosion problem 

which occurs when the number of configuration and its 

settings increases, then the number of combinations to be 

tested also increase. CIT is a technique that tests only the 

selected number of combinations that are mathematically 

proven to represent and cover all configurations [15].  

Even though MBO has been known to produce good 

results, but it also has a weakness of early convergence 

[8]. Hence, elitism is incorporated into MBO to 

investigate its effectiveness in solving the early 

convergence problem in MBO. 

Elitism has been applied to numerous problems across 

various filed and had proven to be effective [16-20]. 

Elitism is a simple preserving mechanism where a 

number of the best solution from the previous population 

is carried forward into the next population. Due to its 

effectiveness, we incorporated elitism into our modified 

MBO strategy.  

In order to investigate the effectiveness of MBO in its 

original form and with modification, original MBO is 

implemented to MBO Testing Strategy (MTS) and 

modified MBO is implemented to MTS with elitism 

(MTS-e). 

This paper is organized as follows. In section 2, the 

MBO based strategies for CIT are given. In section 3, the 

parameter tuning of MTS and MTS-e testing strategies 

with Taguchi method is explained. In section 4, the MTS 

and MTS-e results are compared with other algorithms. 

Finally, this paper is concluded in section 5. 

 

2.0 EXISTING WORKS 

 

The number of configurations in software systems 

nowadays is huge. Thus, the numbers of configuration 

options expand in huge numbers and therefore, it is 

impossible to test exhaustively. Thus, there are no 

sufficient resources and time to test every combination’s 

possible option setting. CIT techniques use sampling 

method to test selected configurations where each 

combination’s possible option setting for every 

configuration options can be tested at least once [21]. 

Existing CIT strategies started with pure 

computational based approaches like Jenny [22], TConfig 

[23] and IPOG [24] before the emerging of AI-based 

approach that mostly used nature inspired metaheuristics 

algorithm. Nature inspire metaheuristic algorithm have 

been popular in solving myriad optimization problems in 

multiple fields such as engineering, networking, data 

mining and industrial[25]. 

Meta-heuristics has been popular in solving 

combinatorial optimization problems because of it’s 

produced a good result. However, according to the No 

Free Lunch Theorem (NFL) [26; 27] if an algorithm 

performs well on average for a particular class of 

problems then it must do worse on average over other 

classes of problems. This means that even though the 

meta-heuristics are meant to solve general purpose 

problems, they cannot perform well on most problems. 

Hence, there is the need for a problem-specific algorithm 

that can solve the problem at hand effectively. 

In the past 15 years, researchers in CIT have been 

using nature inspired algorithms in finding the minimum 

set of test cases. The first 10 years were focused on 

pairwise and 3-way data generation strategies to test on 

small size data; mostly with t ≤ 3 by implementing 

trajectory based algorithms such as Simulated 

Annealing(SA), Tabu Search(TS) and Hill Climbing(HC) 

and classics  population based algorithm such as Genetic 

Algorithm (GA) and Ant Colony Algorithm (ACA)[25]. 

In the previous 5 years, researchers have been 

innovatively trying to explore the higher strength (t > 6) 

data generation strategies. This was possible with the 

creation of new nature inspired algorithms that are mostly 

population based such as Artificial Bee Colony (ABC), 

Particle Swarm Optimization Algorithm (PSO), Bee 

Algorithm (BA) and Bat Algorithm [28]. Population 

based algorithms have a global exploration and local 

Input: n, k, x, m and K 

Output: the best solution, abest 

1. Generate random initial population (n) and put 

into an imaginary V-shaped structure 

2. iter = 0 

3. while(iter < K) 

4. for(j = 0; j < m; j++) 

5. Improves the leader bird(a) by using best y 

neighbor 

6. iter = iter + y 

7. for each follower birds solution, β  

8. Improve the β using the best (y-x) neighbor and x 

unused best neighbor 

9. iter = iter + (y-x) 

10. end for 

11. Forward one of  the β solution as leader, a 

12. end while 

13. end for 

14. Return abest 
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exploitation mechanism [29]. Hence, they yield a better 

result compared to trajectory based algorithms.  

 

3.0 THE MTS AND MTS-e STRATEGIES 

 

3.1 Covering Array (CA)  

 

Covering Arrays (CA) are mathematical notations 

that are applied in t-way testing faults were detected by 

the interaction of a number of parameters [30]. CA has 

been used for combinatorial testing for the last 20 years 

[31]. Uniform strength CA i.e. CA with the same number 

of configuration values can be represented as CA (N;t,vp) 

, where N is the final test suite size, t is  the interaction 

strength,  v is the uniform configuration value and  p is 

the number of parameters. Kuhn [15] demonstrated that 

70% failures could be discovered by 2-way CA and 

almost all failures could be discovered by 6-way CA. He 

also concluded that the appropriate t value is between 4 

and 6. 

CIT methods work by first defining a model of the 

system's configuration. It is typical for this kind of model 

to have a set of configuration settings with a small 

number of options and a set of constraints (if any). The 

CIT technique produced a set of test suite with the defined 

model where each combination of system’s configuration 

settings was covered at least once.  

Table 1 shows and example of a simple CIT system 

configuration model i.e. hotel room control system with 

the same number of configuration values. Table 2 shows 

the 3-way CA for the system. If we were to test the system 

exhaustively, there will be 16 number of combinations. 

CIT technique enabled us to test with only 8 test cases 

which is a 50% reduction. Therefore, a lot of time and 

money could be saved when testing a large system 

because the number of test cases is significantly reduced. 

 

Table 1 Hotel room control system 

  

Aut

o Lock 

Door 

Curtai

n  

Lightin

g  

Air 

Conditione

r 

On Open On High 

Off Close Off Low 

 

Table 2 CA(8;3,24)) for hotel control system 

 

Auto 

Lock Door 

Curtain  Light

ing  

Air 

Conditioner 

Off Open Off Low 

Off Close On Low 

Off Close Off High 

On Open Off High 

On Open On Low 

Off Open On High 

On Close On High 

On Close Off Low 

 

3.2 MTS and MTS-e 

The OTAT strategy has been popular in solving CIT 

problems [32]. The OTAT strategy aims to generate one 

test case at a time until the each combination of 

configuration settings is covered. The algorithm begins 

by initializing a set of target combinations of a 

configuration. A test case that covers as many target 

combinations i.e. has the maximum weight is generated. 

Then, the covered target combinations will be removed. 

The loop terminates when all test cases generated covers 

all target combinations. 

The MTS and MTS-e combines the OTAT strategy 

with MBO. Basically OTAT an interaction elements list 

(e-list) is constructed first by MTS. The exhaustive tuple 

combinations of each p-valued accepted input are stored 

in an interaction elements list (e-list). The current test 

case (cur_tc) is generated first, then the neighbor test case 

(nbr_tc) is generated as a local search test case by MBO. 

Both test cases weight are compared and the one with the 

largest weight will be selected as the best solution. The 

pair interactions of tuple combinations corresponding to 

the best test solution will be eliminated from the e-list. 

Lastly, the best solution will be inserted into the test suite. 

The OTAT based MTS/MTS-e strategy is depicted in the 

flowchart Figure 2. 

The MTS-e Figure 3 applied elitism to solve the quick 

convergence problem of MBO. Elitism is as a simple 

mean to preserve the best solutions from a population and 

then introduces them into the next population [33]. An 

elitist storage was created to keep the good solutions from 

the previous run. In the first iteration, the elitism 

algorithm run and save a certain percentage of good 

solutions into the elitist array. Afterward, in the second 

iteration, the elitist from the first run will be inserted into 

the next population. Then, the second elitists will be kept 

in the elitist array. This cycle continues until the 

algorithm completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The MTS-e algorithm 

 

Input: n, k, x, m and K 

Output: the best solution, abest 

1. Generate random initial population (n) and put into 

an imaginary V-shaped structure 

2. Generate a neighbor flock 

3. If(!initial flock) 

4.     Add elitist to the flock  

5. iter = 0 

6. while(iter < K) 

7. for(j = 0; j < m; j++) 

8. Improves the leader bird(a) by using best y neighbor 

9. iter = iter + y 

10. for each follower birds solution, β  

11. Improve the β using the best (y-x) neighbor and x 

unused best neighbor 

12. iter = iter + (y-x) 

13. end for 

14. Forward one of  the β solution as leader, a 

15. end while 

16. end for 

17. Send the remaining one third of the best solutions 

to the elitist storage 

18. Return abest 
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Figure 2 The OTAT based MTS/MTS-e flowchart

 

Yes

No

Yes

Start

Create empty test_suite

Create e_list

e_list is empty?

Generate cur_tc at random

Generate nbr_tc using MBO

If(nbr_tc  > cur_tc )

Eliminate best_tc corresponding 
pair from e_list

Put best_tc into test_suite

End

No

best_tc = nbr_tc

best_tc = cur_tc
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Elitism stores a number of the best test cases from a run. 

Then, these test cases were put back into the next run. Thus, 

introduce diversity of the best solutions into the population. 

Two random test cases were chosen from the population 

and the one with more weight is chosen as the best test case. 

This best test case will replace the poorest test case in the 

previous population. Then, the best test cases from the 

previous population were added to the elitist array. This 

increased the number of the best solutions in the population 

and increases the probability of getting better test cases. The 

addition of elitism mechanism into the original MBO is 

shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 The elitism algorithm for MTS-e 

 

3.3 Parameter Tuning of the MTS and MTS-e 

 

Taguchi method is often used in engineering field for 

parameter tuning [34-36]. It is also being applied to tune 

parameters for meta-heuristic algorithms such as Particle 

Swarm Optimization Algorithm (PSO) [37],  Simulated 

Annealing (SA) [38] and Genetic Algorithm (GA) [39]. We 

chose the Taguchi method to tune the parameters of the t-

way testing strategies with MBO as it is proven as a suitable 

method to tune MBO Algorithm by Niroomand et al. [12] 

in solving the closed looped layout problem in 

manufacturing systems.  

First, we identified the control factors and noise factors 

of the strategies. The control factors are the parameters that 

we can control and want to tune. Whereas the noise factors 

are the parameters that we cannot control and do not need 

to tune. Here, the control factors are n, k and m where n is 

the number of initial solutions, k is the number of neighbor 

solutions and m is the number of tours [12]. The other 

factors, i.e. x and K where x is the number of shared 

neighbor solutions and K is the number of iterations are 

treated as the noise factor by the following relations, x = k 

and K = knm. The x value is set to 1 as suggested by Duman 

[1]. Therefore the value of k should be set to 2x + 1 which 

is 3. Thus, the 2 control factors for MTS are n and m and 3 

control factors for MTS-e are m, n and elitism, e. 

The Degrees of Freedom (DOF) are computed for MTS 

and MTS-e before selecting a suitable orthogonal array. The 

total DOF for MTS is 7, which is (2x3)+1, where 1 is the 

DOF Mean Value. As for MTS-e, the total DOF is 9, which 

is (2x4)+1, where 1 is the DOF Mean Value. Thus, the most 

suitable orthogonal array for experimentation is L9 array as 

shown in Table 3. 

 

Table 3 L9 Orthogonal Array for MTS/MTS-e 

 

Experiment 

No. 

Control Factors for 

MTS/MTS-e 

n m e 

1 25 1 0.33 

2 25 3 0.50 

3 25 10 0.67 

4 51 1 0.67 

5 51 3 0.33 

6 51 10 0.50 

7 101 1 0.50 

8 101 3 0.67 

9 101 10 0.33 

 

Three representatives covering arrays are selected for 

parameter tuning i.e. CA(N;2,334252); CA(N;2,510) 

CA(N;3,47). Nine experiments were run for each covering 

arrays and each experiment was run 20 times.  

All test cases from the experiments are normalized in 

the range of [0, 1] since the size of test cases varies for 

different CA. Feature scaling was used for data 

normalization as in [40]. 

 

𝑋𝑖,0 𝑡𝑜 1 =   
𝑋𝑖− 𝑋𝑀𝑖𝑛

𝑋𝑀𝑎𝑥− 𝑋𝑀𝑖𝑛
                                                    (1) 

 

Where, 

Xi = each test case size generated 

XMin = the minimum test case size 

XMax = the maximum test case size 

Xi, 0 to 1 = normalized test case between 0 and 1 

 

 The mean of  CA(N;2,510), CA(N;3,47) and 

MCA(N;2,33,42,53) is then compared and analyzed to 

produce the main effects plot in Fig. 3 and Fig. 4. The loss 

function is a statistical method that calculates the losses 

incurred when the performance measured did not meet the 

target value [41]. The value of the loss function is measured 

in the form of signal-to-noise (SN) ratio. There are three 

types of SN ratio i.e. smaller-the-better, nominal-the-best 

and larger-the-better. In our case the smaller-the-better is 

chosen because the ideal target value should be as small as 

possible. 

 A larger SN ratio indicates a better performance. 

Referring to Figure 5 and Figure 6, the highest mean of the 

SN ratio for both MTS and MTS-e shows the best parameter 

settings to obtain the most minimum test case size. 

1. Specify the elitism percentage; e_percentage 

2. Declare and initialize the elitist array; elitist_array 

3. int i = 0; 

4. while(i < e_percentage) 

5. Get  2 random test case from population; a,b  and 

check their weight 

6. if(weight_a > weight_b) 

best test case = a; 

else 

best test case = b; 

7. Get the poorest test case from the previous 

population; m 

8. Check weight of m 

9. if(best test case weight > weight_m) 

best test case = m; 

10. Add best test case to elitist_array 

11. i++; 

12. end while 
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However, in order to reduce the long computational time, 

the e value of MTS-e is set to 0.33 instead of 0.67. Thus, 

the recommended parameter setting is as in Table 4. 

 

 
Figure 5 SN plot for MTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 SN plot for MTS-e 

 

Table 4 The recommended parameter settings 

 

 n m k e 

MTS 101 3 3 - 

MTS-e 101 3 3 0.33 

 

 

4.0  RESULT AND DISCUSSION 

 

Several experiments were conducted to find the 

effectiveness of incorporating elitism into MBO by 

benchmarking MTS-e with several popular strategies 

alongside MTS. Those strategies are PSO, IPOG, TVG, 

PICT, TConfig and Jenny. 

Due to the long execution time, we were experimenting 

only with strength 3 and 4 only. In order to measure 

effectiveness, each experiment is performed 20 times. 

Then, the best test case (minimum test case) and its mean 

are reported for some of the experiments. The experiments 

were run on a Pentium i7 Core processor 3.40 GHz, 4.00 

GB Ram and on Windows 8. 

Table 5 presents the result for CA(N;3,3p) for different 

strategies where p varies from 4 to 10 and also for CA(N;4, 

3p) where p varies from 5 to 10. The best test case size of 

all strategies was compared. The result marked in bold 

signified the best result for a particular strategy. 

The first thing that can be observed in Table 5 is that the 

metaheuristics strategies i.e. PSO, MTS and MTS-e 

managed to outperform the computational based strategies. 

MTS-e produce smaller size test case than the other 

benchmarked strategies in almost all configurations. Some 

of their means also smaller compared to the other strategies. 

Statistical analyses were also conducted to see the paired 

significant difference of benchmarked strategies against 

MTS and MTS-e. 

The effectiveness of a method can be verified using 

statistical analysis of two and multiple method’s 

comparisons over multiple data sets [42]. Statistical 

analyses were conducted for all the obtained results in Table 

5 based on multiple pairwise comparisons with 95% 

confidence level (i.e. α = 0.05) to find the significant 

difference of the strategies. The non-parametric Friedman 

test and Wilcoxon Rank-Sum test were used. The non-

parametric methods were chosen because the results are not 

normally distributed and the sample size was small [43]. 

IBM SPSS Statistics 22 was used to run the statistical 

analysis. 

Friedman test was conducted to find the mean rank of 

the strategies. The test rendered a chi-square (χ2) value of 

80.121 with p < 0.001. Table 10 shows the mean rank of 

each strategy and MTS-e proven to have the smallest mean 

rank. Thus, MTS-e outperformed the other strategies with 

the minimum mean rank of 1.23. MTS came in second with 

a mean rank of 2.00. 

 

Table 10 The Friedman’s Mean Rank 

 

Strategies Mean Rank 

Jenny 5.08 

TConfig 5.42 

PICT 5.46 

TVG 6.15 

IPOG 7.88 

PSO 2.77 

MTS 2.00 

MTS-e 1.23 

 

 

The Wilcoxon Rank-Sum test was run to see the detail 

comparison of each paired strategies. The null hypothesis 

(H0) suggested the best test case size of MTS and MTS-e 

with the best test case size of the benchmarked strategies do 

not have any significant differences. The alternative 

hypothesis (H1) is that there is a significant difference 

between their mean. The H0 is rejected when the sum of the 

negative ranks (P-) is less than or equal to the critical value 

of Wilcoxon signed-rank test (Pα) i.e. P- ≤ Pα.  
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Table 5 Result for CA(N;3,3p)and CA(N;4,3p) with varying p values 
 

t p Jenny TConfig PICT TVG IPOG PSO Mean MTS Mean MTS-e Mean 

 

 

 

 

3 

4 34 32 34 34 39 27 29.3 29 31.20 28 31.65 

5 40 40 43 41 43 39 41.37 38 40.35 38 40.95 

6 51 48 48 49 53 45 46.76 43 45.90 42 45.00 

7 51 55 51 55 57 50 52.2 49 50.75 48 50.80 

8 58 58 59 60 63 54 56.76 52 54.60 52 54.35 

9 62 64 63 64 65 58 60.3 57 58.55 56 57.85 

10 65 68 65 68 68 62 63.95 60 61.50 59 61.20 

 

 

 

4 

5 109 97 100 105 115 96 97.83 96 100.15 94 99.85 

6 140 141 142 139 181 133 135.31 132 135.35 132 135.70 

7 169 166 168 167 185 155 158.12 155 157.20 154 157.00 

8 187 190 189 192 203 175 176.94 174 175.90 172 175.57 

9 206 213 211 215 238 195 198.72 191 194.30 190 193.14 

10 221 235 231 233 241 210 212.71 208 210.00 208 208.75 

 

 
Table 6 Result of Wilcoxon signed-rank test for MTS when t = 3 

 

MTS vs. Jenny MTS vs. PICT MTS vs. Tconfig MTS vs. IPOG MTS vs. PSO MTS vs. MTS-e 

Reject H0 with 

 P- = 0, Pα = 3 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 3 

P- ≤ Tα 

Reject H0 with  

P- = 0, Pα = 3 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 3 

P- ≤ Pα 

Cannot Reject H0 

with P- = 4, Pα = 3 

P- > Pα 

Cannot Reject H0 

with P- = 15,  

Pα = 0 

P- > Pα 

 

 
Table 7  Result of Wilcoxon signed-rank test for MTS-e when t = 3 

 

MTS-e vs. Jenny MTS-e vs. PICT MTS-e vs. Tconfig MTS-e vs. IPOG MTS-e vs. PSO MTS-e vs. MTS 

Reject H0 with  

P- = 0, Pα = 3 

P- ≤ Tα 

Reject H0 with  

P- = 0, Pα = 3 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 3 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 3 

P- ≤ Pα 

Reject H0 with  

P- = 1, Pα = 3 

P- ≤ Pα 

Cannot Reject H0 

with P- = 15, Pα = 0 

P- > Pα 

 

 
Table 8 Result of Wilcoxon signed-rank test for MTS when t = 4 

 

MTS vs. Jenny MTS vs. PICT MTS vs. Tconfig MTS vs. IPOG MTS vs. PSO MTS vs. MTS-e 

Reject H0 with  

P- = 0, Pα = 2 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 2 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 2 

P- ≤ Pα 

Reject H0 with 

 P- = 0, Pα = 2 

P- ≤ Pα 

Not enough data 

for MTS 

Not enough data 

for MTS 

 

 
Table 9 Result of Wilcoxon signed-rank test for MTS-e when t = 4 

 

MTS-e vs. Jenny MTS-e vs. PICT MTS-e vs. Tconfig MTS-e vs. IPOG MTS-e vs. PSO MTS-e vs. MTS-e 

Reject H0 with  

P- = 0, Pα = 2 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 2 

P- ≤ Pα 

Reject H0 with 

P- = 0, Pα = 2 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 2 

P- ≤ Pα 

Reject H0 with  

P- = 0, Pα = 2 

P- ≤ Pα 

Not enough data 

for MTS 
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The results of Wilcoxon signed-rank test in Tables 6 through 

Tables 8 show that the MTS and MTS-e outperformed the 

computational based strategies in all cases i.e. Jenny, PICT, 

TConfig, TVG and IPOG. On the other hand, the result for the 

PSO is better than MTS when t=3, contrary to MTS-e because it 

is better than PSO when t=3. It is also the same when t=4, where 

MTS-e is better than PSO. MTS and MTS-e were also compared 

for t=3 and MTS-e outperformed MTS. Unfortunately, the 

sample size is too small to compare PSO with MTS when t=4. 

The MTS and MTS-e also cannot be compared when t=4 

because of the same reason.  

This MTS-e’s result shows that elitism did a great job in 

enhancing the number of the best solutions to be chosen in the 

population and produced smaller test cases compared to the 

benchmarked strategies. The mean of test cases after 20 runs 

also better than the benchmarked strategies.  

 

 

5.0 CONCLUSION  

 

In this paper, we analyzed the effectiveness of incorporating 

elitism into MBO in CIT strategy, denoted as MTS-e. It is 

achieved by preserving 33 percent of the best test cases from the 

previous population and then introduced them back again into 

the next population. We compared MTS-e with the original 

MBO for CIT, denoted MTS and also with a few other 

benchmark strategies i.e. Jenny, TConfig, PICT, TVG, IPOG 

and PSO. The result shows MTS-e produced a better result 

compared to the other strategies. This proves that elitism helps 

in enhancing the capability of MBO by improving the next 

population with the best solutions from the previous population. 

However, the limitation of these strategies is that they are slower 

than the computational based strategies. This problem can be 

rectified if they were run on a faster computer. Researches in 

nature inspired metaheuristic algorithms are very promising and 

as part of future work, the MTS and MTS-e could be enhanced 

to support constraint CIT or sequence based strategy. 
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