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Abstract. The investigation of the properties of the integro-differential operators will be carried out. 
Which generalizes the well-known Bavrin operators to the fractional value of the parameters. The 
properties of the defined operators are in the classes of the polyharmonic operators. It is established 
that the newly defined fractional operators map the polyharmonic functions on the ball to the 
polyharmonic functions. Also it is proposed that the inverse for the fractional operator and application 
of the integro-differential fractional operators to solve biharmonic problems with fractional boundary 
conditions. The sufficient condition for existence and uniqueness of the solution for biharmonic 
equation with fractional boundary conditions are obtained. The solution of the biharmonic equation is 
obtained by using the integro-differential fractional operator.  

1. Introduction 
The mathematical models of the various vibrating systems are partial differential equations and finding the 
solutions of such equations are obtained by developing the theory of eigenfunction expansions of differential 
operators. The biharmonic equation which is fourth order differential equation is encountered in plane 
problems of elasticity. It is also used to describe slow flows of viscous incompressible fluids. Many physical 
processes taking place in real space can be described using the differential operators, particularly biharmonic 
operator. Biharmonic equations appear in the study of mathematical models in several real-life processes as, 
among others, radar imaging [1] or incompressible flows [2]. Omitting a huge amount of works devoted to 
the study of this kind of equations, we refer some of them regarding to their used methods. Difference 
schemes and variational methods were used in the works [3, 4]. By using numerical and iterative methods, 
Dirichlet and Neumann boundary problems for biharmonic equations were studied in the papers [5, 6]. 

Let nn denotes n -dimensional Euclidean space. Throughout of the paper we assume that n is fixed 

and not less than 2. We let 1 2( , ,..., )� nx x x x  denote a typical point in n and let � �1/22 2 2
1 2| | ...� � � � nx x x x

denote the Euclidean norm of the .x  Next we define a harmonic function. Let D  be domain in n with the 
property that if �x D , then (1 )� � �tx t x D  for all , 0 1.� �t t  A twice continuously differentiable, 

complex-valued function ( )u x defined on D  is harmonic on D  if  

� � 0, ,	 � �u x x D  

where 
2

2
1�



	 �


�
n

k kx
-Laplace operator. Next, for given real positive numbers , 1,2,...,� �j j m  we use notation 

1 2( , ,..., )� � � �� m . The properties and applications of the integro-differential operators of the following 
form 
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and 

1 2

( )[ ]( ) [ [... [ ]...]]( ),� � � �   �
m

m u x u x   

1 1

( ) 1 1 1[ ]( ) [ [... [ ]...]]( )� � � �   
�

� � � ��
m m

m u x u x  

are investigated in [7].  
The main properties of the operators ( )

�
m  and ( )

�
�m  are given in the following 

Lemma 1. If the function ( )u x  is harmonic in the region D , then ( )[ ]( )�
m u x  and ( )[ ]( )�

�m u x  are also 

harmonic functions in the region D : 

� � ( ) ( )0 [ ]( ) 0 [ ]( ) .� �  �� � � �	 � �	 � � 	� � � �
m mu x u x u x  

 
Lemma 2. If the function ( )u x  is harmonic in the region D , then for all �x D  one has  

( ) ( )

( ) ( )

[ [ ]]( ) ( ),

[ [ ]]( ) ( ).

� �

� �

 

 

�

�

�

�

m m

m m

u x u x

u x u x
 

It is clear that from the statement of the Lemma 2 follows that the operators ( )
�

m  and ( )
�
�m  are inverse with 

respect to each other in the classes of harmonic functions in D . 
We note that the operator ( )

�
�m  can be represented as m  tuple iterated integrals. For certain partial 

cases of the parameters , 1,...,� �i i m  the operator ( )
�
�m  can be represented in more compact form. For 

example, in the case , 1,...,� �� �i i m   (we refer the readers to  [8] for details): 
11

( ) 1

0

1 1
[ ]( ) ln ( )

( 1)!
�

�
�

� � � �� � �� � ��
m

m u x t u tx dt
m t

.                          (1) 

Futhermore, if 1 2, 1,..., 1, 1� � � � � �� � � � � � �� � m m , then we have the presentation as follows (see [7] 
for details) 

� �
1

1( ) 1

0

1
[ ]( ) 1 ( ) .

( 1)!
�

�
�� �� �

� �
mm u x t t u tx dt

m
                           (2) 

Onwards, since ( 1)! ( ), 1� � � �m m m  , where ( )� �  - Gamma function, then it easy to see that the integrals 
(1) and (2) are defined for non-integer values of  0.�m  Therefore naturally we arrive to the problem of 
defining the inverse operator ( )

�
�m  for such defined  operator of fractional order m .  The mentioned 

problem of defining the inverse for fractional values of m is suggested in the papers [9,10], where it is shown 
that if ��m  for all values of 0 1�� � , then the operators 

11

1
0

1 ( ) ( )
[ ]( ) ln ( )

(1 )

�
� �
� �

� �
�

�

�

�� �� �� �� � � ��
u tx u x

D u x dt u x
t t

,                      (3) 

and 

� �
0

[ ]( ) ( )
(1 )

� �
�� �

�  
�

�
�� �

� � �
rr d

B u x r t t u t dt
dr

                             (4) 

are inverse operators of the (1) and (2), respectively. Moreover, the following identity holds:  
1 1 1[ ]( ) [ ]( ) [ ]( )� � �� �D u x B u x u x . 

We note that the operator (3) is connected with the order �  in Hadamard means, while the operator (4)  in 
Riemann-Liouville means. In the papers [9,10] the authors considered the application of the operators  

1 2

1 2

1 2

1 2

[ ]( ) [ ...[ [ ]]...]]( ),

[ ]( ) [ ...[ [ ]]...]]( ),

�� �
� � � �

�� �
� � � �

�
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m

m

m

m

m

m

D u x D D D u x

B u x B B B u x
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where 0 1,0 , 1,2,...,� �� � � �j j j m , to the problems of solvability of boundary problems. In general case 

when ( 1, ], 1,2,...,�� � �m m m  the inverse operator to the operator (2) is constructed in [11] and it is shown 
that the inverse differential operator can be represented as 

1

0

[ ]( ) ln [ ( )]
( )

��
� �
�  

�

� �� � � � �� � � � �� � � � � ��
m mrr r d dt

D u x t t u t
m t dt t

. 

Continuing research conducted in the works [9,10], in the current paper we construct the inverse operator of 
the (3), which is in general differential operator, i.e. for all ( 1, ], 1,2,...�� � �m m m . We show the 
application of the such operators to the problems of solvability of the boundary problems corresponding to 
Laplace operator. 
 Let !  be unit ball, and a function ( )u x  be smooth function in ,! | |, / | | � �r x x x . We consider 
the Riemann-Liouville operator of integration and differentiation of order  ( 1, ], 1,2,...,�� � �m m m  (see 
[12] for definition and properties) 

1

0

1
[ ]( ) ( ) ( )

( )
� �  

�
�� �

� �
r

I u x r t u t dt  ,  

1

0

1
[ ]( ) ( ) ( )

( )
� �  

�
� �� �

� �
rm

m
m

d
D u x r t u t dt

dr
. 

We introduce the following notations 
1 1

1 1

[ ]( ) ( ) ,

[ ]( ) ( ) .

� � � � �
�

� � � � �
�

� � � �

� � �

� �� � �
� �� � �

B u x r I r u x

B u x r D r u x
 

Since, 0 ( ) ( )�I u x u x , then for � �m  we obtain, 
1

1 1 1 1

0

[ ]( ) ( ) ( ) ( )
( )

�
� � �

�  
� �

� � � � � �� �� � �� � � �
rm

m m m mr
B u x r I r u x r t t u t dt

m
. 

After the transforming the variables t sr�  the latter integral we represent as follows 
11

1 1 1 1 ( )

0 0

1
( ) ( ) (1 ) ( ) ( )

( ) ( 1)!

�
� �

� 
� �

� � � � �� � � �
� �� �

rm
m m mr

r t t u t dt s s u sx ds u x
m m

. 

Similarly, we have 

1 1 1 1 1 1[ ]( ) ( ) ( ) ( )� � � � � � �
�

� � � � � � � � � �� � � � � �� � �� � � � � �
m m

m m m m m m
m m

d d
B u x r D r u x r I r u x r r u x

dr dr
. 

Let 1�m . Then one has 

1 1 1[ ]( ) ( ) ( ) ( )� �
� �� � � �� �� � � "� �� � � �

d d
B u x r r u x r u x u x

dr dr
. 

We proceed for the case 2�m , 
2

2 1 2 1 2 1 1 1 1
2

[ ]( ) ( ) ( ) ( 1) ( )� � � � � � �
� �� � � � � � �� �� � � �� � � � �� � � � # $� �

d d d
B u x r D r u x r r u x r r u x r

dr dr dr
 

             1 1 1
1 1( 1) ( ) [ ]( ) [ ]( )� � � � �

� �� �  � � �
� �

� �� � � �� � � � �� �# $ # $� � � �� �

d d d
r r r u x r r u x r u x

dr dr dr
 

            1
1 1 1 1[ ]( ) [ ]( ) [ ]( ) [ ] ( )�

� � � � ��  �   �
� � � �

� � � �� � � � �� � � �� �
d d

u x r r u x r u x u x
dr dr

. 

In general case using the methods of mathematical induction one can derive 

( )
1 1[ ]( ) 1 ... 1 ( ) ... ( ) ( )� � � � �� � �    � � �

� �� � � �� � � � � � � " "� �� � � �
� �� � � �

m m
m

d d d
B u x r r r m u x u x u x

dr dr dr . 
Consequently, in the case when parameters are not integer like the case of integer values of parameters �  

the operator B�
�  coincides with the operator (2) for 1 2, 1,..., 1, 1� � � � � �� � � � � � �� � m m . We 

constructed the fractional analogous of the operators ( )
�

m  and ( )
�
�m  for the case ( , 1,..., 1)� � � �� � � �m ,

1�m . 
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2. Properties of the operators  B�
�  and B �

�
� . 

In this section we investigate the properties of the operators B�
�  and B �

�
� . In the calculation here in we 

assume that 1 , 1,2,..., 0� �� � � � �m m m .  

Lemma 3. Let � �kH x  be homogeneous polynomial of degree % &0 0,1,...� �k N . Then one has 

                                       ' (� � � �, ,�
� �)� �k k kB H x H x                                                               (5) 

                                        ' (� � � �,1/ ,�
� �)�k k kB H x H x                                                                 (6) 

where ,

( )

( )�
�)

� �
� �

�
� � �k

k

k
. 

Proof.  Let prove the equation (5). From definition 

' (� � � � � � 11
1 1 1 1

0 0

( ) (1 )
( ) ( )

� �
� � � � �

�

  
� �

� �
� � � � � � � �� � � �

� �� �
r k

m k kk k
k

r H r H
B H x r t t dt s s ds  

 

                 
� � � � � �,

( ) ( ) ( )

( ) ( ) ( ) �

 � � � )
� � � � �

� � � � �
� � �

� � � � � � �

k
k

k k k

r H k k
H x H x

k k
. 

Let prove second equation (6). Using the definition of the operator B�
�  we derive 

' (� �
1

1 1 1 1

0

( ) ( ) ( )
( )

�
� � � � � � � �
�  

�

�
� � � � � � �� �� � �� � � � �

rm
m

k k km

r d
B H x r D r H x r t t H t dt

m dr
 

                  
� � � � � �

11 1
1 1 1 1 1

0 0

( ) (1 )
( ) ( )

� �
� � � � � � �  

� �

� �
� � � � � � � � � � � � �� � � �

� � � �� �
rm m

m k m k k mk k
m m

r H r Hd d
r t t dt s s ds r

m dr m dr
 

    
� �1

1( ) ( )
( 1)( 2)...( )

( ) ( )

�
� � � � � � �

� �

�
� �� � � � �

� � � � � � � �
� � � � �

kkr H m k
k m k m k r

m m k
 

                  � � � �( ) ( )

( ) ( )

� � � � 
� �

� � � � � �
� �

� � � �
k

k k

k k
r H H x

k k
. 

Lemma 4. Let  � �kH x  be harmonic polynomial of degree 0�k N . Then one has 

                                       � � � �2 2
2 ,| | | | ,�

� �)�
�� � �� �

j j
k k j kB x H x x H x                                                (7) 

                                         ' (� � � �2
2 ,1/ | |�

� �) �� j
k k j kB H x x H x  .                                                         (8) 

The proof of the Lemma 4 can be conducted by similar way as in the proof of the Lemma 3. 
Consequence 1. Let  � �kH x  be harmonic polynomial of degree 0�k N . Then we have 

� � � � � �2 2 2[| | ] [| | ] | |� � � �
� � � �
� �� � � �� �� � � �

j j j
k k kB B x H x B B x H x x H x .         (9) 

Lemma 5. If � �u x is polyharmonic function in the domain ! , then functions ' (� ��
�
�B u x  and ' (� ��

�B u x   are 

also polyharmonic functions in the domain ! .  
Proof. Let � �u x  be polyharmonic function in the domain ! . Using the theorem of Almanzi ([13], p.208) 

we conclude that there exist a harmonic functions � �ju x , 0,1,..., 1� �j m   in the domain !  such that � �u x  

is represented in the following form  

� � � � � � � � � �2 12
0 1 1| | ... | | �

�� � � � m
mu x u x x u x x u x                         (10) 

The harmonic functions � �ju x  have a representation  

� � � � � � � �,
0 1

*

� �

���
kh

i i
j k j k

k i

u x u H x ,                                       (11) 

where � � � �% &, 1,�i
k kH x i h -is a complete system of the harmonic polynomials of degree 0�k N , we denote by 

� �
,
i

k ju  coefficients of the expansion (10). It is well known that (see [14], p.489), that the series (10) absolutely 
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and uniformly convergent for all : 1+� �x x . From the representation (10) and (11) it follows that � �u x  

can be represented in the form  

� � � � � � � �
1

2

,
0 0 1

� *

� � �

����
khm

ji i
k j k

j k i

u x u x H x                                                   (12) 

By applying to (10) the operator �
�
�B  taking the account (7) and (8) we obtain 

' (� � � � � � � � � �
1 1

2 2

2 , ,
0 0 1 0

�
� �)

� * �
�

�
� � � �

� �� �� �
khm m

j ji i
k j k j k j

j k i j

B u x x u H x x w x , 

where 

� � � � � � � �2 , ,
0 1

.�)
*

�
� �

���
kh

i i
j k j k j k

k i

w x u H x                                              (13) 

Using the asymptotical estimation 
� �1

( 1 )
�

�
� �

� � �
�p

p
p

, ,*p  we obtain that 2 ,lim 1.�) �,*
�k

k j
k

 Then we 

conclude that the radius of convergent of the series (13) and (11) are same, therefore functions � �jw x  are 

harmonic in the region !  for every 0,1,..., 1.j m� �   Applying Almanzi theorem we derive that the 

function  ' (� ��
�
�B u x  is polyharmonic in ! . Similarly, we can show that the function  ' (� ��

�B u x  is also 

polyharmonic in ! . The proof of Lemma 5 is completed. 
 
Using the equations (12) and (9) we obtain: 

Lemma 6. Let � �u x be polyharmonic function in the domain ! , then for every �!x  one has  

' ( � � ' ( � � � �� � � �
� � � �
� �� � � �� �� � � �B B u x B B u x u x .                          (14) 

It follows that the operators �
�
�B  and �

�B  are inverse to each other in the class of polyharmonic operators in 

the ball. The following is the more general statement on the mentioned relation between the operators �
�
�B  

and �
�B . 

 
Lemma 7. Let � �u x  be a smooth function in the domain ! . Then for all x�!  the equalities (14) hold. 

Proof. From the definition of the operator �
�
�B  we obtain 

' ( � � ' (
1

1 1

0

( ) ( )
( )

� �
� � � � �

� � �  
�

� �
� � �� � � �� � � �

rr
B B u x r t t B u t dt . 

It is not difficult to show that 

' ( ' (
1

1 1 1 1

0 0

1 ( )
( ) ( ) ( )

( ) ( )

� � �
� � � � � � �

� �  
� � �

� �
� � � � �- .�

� � / 0� �1 2
� �
r rr d r t

r t t B u t dt r t B u t dt
dr

 

                                                                   ' (
1

1 1

0

1 ( )
... ( )

( ) ( 1)...( 1)

�
� � � �

�  
� � � �

� �
� � �- .�

� � / 0� � � �1 2
�
rm m

m

d r t
r t B u t dt

dr m
. 

Then by using the definition of the operator �
�B  we conclude that 

' ( � �
1 1 1

1 1 1

0 0

( )
( ) (s )

( ) ( 1)...( 1) ( )

� � � �
� � � � � �

� �  
� � � � �

� � � � �
� � � � � �� ��� � � �� �� � � � � � � �� �

� �
r tm m m

m
m m

r d r t t d
B B u x t t s s u ds dt

dr m m dt
1       

               
1 1

1 1

0 0

1 ( )
( ) ( )

( ) ( ) ( 1)...( 1)

� � �
� � �  

� � � � �

� � � �
� � � ��

� �
� � � � � �� �

r tm m m
m

m m

r d r t d
t s s u s dsdt

m dr m dt
. 

If we denote  

1 1

0

1
( ) ( ) ( )

( )
� � �  

�
� � � �� �

� � �
t

mw t t s s u s ds
m

, 

then after integrating by parts m times and using the identities ,� ��� � �m m m mI I I D I E one has
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' ( � �
1

1 1 1

0

( ) ( ) [ ] ( )
( )

� �
� � � � � � � � �

� �  
�

� �
� � � � � � �� � � �� � �� � � �� �

rm m
m

m m

r d d
B B u x r t w t dt r I I t u x

dr dr
 

        1 1 1 1[ ]( ) ( ) ( )� � � � � � � �� � � � � � � �� � �
m

m
m

d
r I t u x r r u x u x

dr
, 

which proves first equality in (14). The following proves the second equality in (14):  

' ( � � 1 1 1 1 1 1( ) ( ) ( )� � � � � � � � � � � � � �
� �

� � � � � � � � � � �� � � �� � � � � �� � � �� � � � � �� � � �

m m
m m

m m

d d
B B u x r I r r I r u x r I I r u x u x

dr dr
. 

The proof of the Lemma 7 is completed. 
Lemma 8. Let 0 1, 0� �� � �  and � � � �,	 � �!u x f x x , where � � �f x smooth function in ! . Then for 

all �!x  one has 

' (� � ' (� � � �2 ,� �
� �
� �

�	 � � �!B u x B f x u x x , 

' (� � ' (� � � �2 ,� �
� ��	 � � �!B u x B f x u x x . 

Proof. We note that the function [ ]( )�
�
�B u x can be represented as follows 

1
1 1

0

1
[ ]( ) (1 ) ( )

( )
� � �

� �
� � �� �

� �B u x t t u tx dt . 

In fact from definition of the operator B �
�
�  we see that 

1
1 1 1 1

0

[ ]( ) ( ) ( ) ( )
( )

� �
� � � � � � �

�  
�

� �
� � � � � �� �� � �� � � �

rr
B u x r I r u x r s s u s ds , 

where after using the substitution s rt�  we have the following presentation for the function [ ]( )B u x�
�
�    

1
1 1

0

1
[ ]( ) (1 ) ( )

( )
� � �

� �
� � �� �

� �B u x t t u tx dt . 

Thus we have 

' (� � � � ' (� �
1

1 2
2

0

1
1 ( )

( )
�� � � �

� ��
�� � � �

�	 � � "
� �B u x t t f tx dt B f x . 

By similar method we can obtain representation for the function ' (� �B u x�
�    

' (� � � � � �
11 1

1 1

0 0

( ) 1 ( )
(1 ) (1 )

� �
� �� � � � � �

� 3 3 3 3
� �

� �
� �� � � �� �

� � � �# $� � � � � �
� �
rr d r d

B u x r u d r s s u sx ds
dr dr

 

       � � � �
1 11

1 1 1

0 0

1 ( ) 1 ( )
(1 )

�
� �� � � � � ��

�

�
� �� � � � �

� �� �
� � � �# $� �� � # $� �� �

� �
r d

r s s u sx ds r s s u sx ds
dr

 

                             
� �
� � � �

1
1

0

1

1

�
� ��

�

�
� ��� �� �� � � �� � �

sd
r s u sx ds

dr
. 

Furthermore, since ( ) 2 ( )� � � �	 � �� � � �
� � � �

d d
r v x r v x

dr dr
 and ( ) ( )	 �u x f x  , then 

' (� � � �
� � � �

1
1

0

1
2

1

�
� � �
� �

�

�
� ��� �	 � � �� � � �� ��

sd
B u x r s f sx ds

dr
. 

After the substitution 14��s r  we have 

� � � � � � � �
1

1 1 ( 2)

0 0

1
� �� � � � �4 4 4 4� �� � � � � �� � � �� �

r

s s f sx ds r f d r . 

Consequently  

' (� � � � � � � �( 2) 1

0

1
2

1
�� � � �

� � 4 4 4 4
�

�� � � �� �� �	 � � � � �# $� �� � � � � �
�
rd

B u x r r r f d
dr
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� � � � � �
� � � �( 2) ( 2) 1

0

2 2
1

�
� � � �4

� � 4 4 4
�

�
� � � � � ��

� �� � � � �� � � ��
r r

r r f d  

    
� �
� � � �( 1) 1 ( 1) 1

0

( )
1

�
� � � � � � �4

4 4 4
�

�
� � � � � � � ��

� �� � � �� ��
r rd

r f d r D r f x
dr

 

1 ( 2) ( 2) 1
2( ) [ ]( )� � � � �

�
� � � � �

�� �� "� �r D r f x B f x . 

The proof of the Lemma 8 is completed. 
Consequence 2.3. Let 0 1, 0� �� � �  and � � � �, , 2	 � �! �mu x f x x m , where � � �f x smooth function 

in ! . Then for all �!x  we have 

' (� � ' (� � � �2 ,� �
� �
� �

�	 � � �!m
mB u x B f x u x x ,                          (15) 

 

' (� � ' (� � � �2 ,� �
� ��	 � � �!m

mB u x B f x u x x .                          (16) 

 
3. Boundary problems for biharmonic equations 
In this section, we investigate the boundary problems for the biharmonic equations with fractional operators 
on the boundary. 
Theorem. Let 0 1, 0� �� � � , 1( ), ( )f x g x  and 2( )g x  are sufficiently smooth functions. Then the solution 
of the biharmonic equation  

2 ( ) ( ),	 � �!u x f x x ,                                                       (17) 

in the class 4( ) ( )! 5 !C C , such that [ ]( ), [ ]( ) ( )� �
� �



� !



B u x r B u x C

r
, satisfying the boundary conditions 

  

1[ ]( ) ( ),�
� � �
!B u x g x x ,                                                      (18) 

 

2[ ]( ) ( ),�
�



� �
!



B u x g x x

r
,                                                      (19) 

 exists, unique and is represented in the following form 
( ) [ ]( )�

�
��u x B v x ,                                                      (20) 

where ( )v x  is the solution of the Dirichlet problem: 
2

4

1 2

( ) [ ]( ),

( )
( ) ( ); ( )

�
�

6

�


!

!

-	 � �!
7
/ 


� �7 
1

v x B f x x

v x
v x g x g x

                                                (21) 

Note that in the case 1� �  and 0� �  this result is similar to the third boundary problem for biharmonic 
equation. Therefore in the general case we have fractional analogue of the Roben problem for non 
homogeneous biharmonic equation. Note that some boundary problems for the biharmonic equation with 
boundary operators of fractional order were investigated in the works [15,16]. 
Proof of the Theorem. First, we assume that the solution of the biharmonic equation (17) satisfying the 
boundary conditions (18), (19) exists in the class 4( ) ( )! 5 !C C  exists.  Let denote it by ( )u x . We note that 

[ ]( ) ( )�
� � !B u x C and [ ]( ) ( )�

�



� !



r B u x C
r

. We use notation ( ) [ ]( )�
��v x B u x , then it is easy to see that 

2 2
4( ) [ ]( ) [ ]( )� �

� ��� �	 � 	 �� �v x B u x B f x . 

In addition, from the boundary conditions (18) and (19) it is followed that 

1( ) [ ]( ) ( )�
�
! 
!

� �v x B u x g x  

and 

2

[ ]( )( )
( )

�
�


! 
!




� �


 

B u xv x

g x
r r

. 
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So if the function ( )u x is the solution of the biharmonic equation (17) with boundary conditions (18), (19), 

then the function ( ) [ ]( )�
��v x B u x  is the solution of the Dirichlet problem (21).  It is well known that if the 

functions 1( ), ( )f x g x  and 2( )g x  are sufficiently smooth, then the solution of the Dirichlet problem exists 

and unique. By applying the inverse operator �
�
�B  to the equation ( ) [ ]( )�

��v x B u x  we see that 

[ ]( ) [ ] ( ) ( )� � �
� � �
� � � �� �� �B v x B B u x u x , which proves the representation for the solution of the biharmonic 

equation (17) satisfying the boundary conditions (18) and (19).  
Let now assume that the function ( )v x  is the solution of the Dirichlet problem (21). Consider a 

function ( ) [ ]( )�
�
��u x B v x . We show that the such defined function ( )u x satisfies all conditions of the 

theorem. Indeed, using the properties in (15) and (14) for all x�!  we obtain  
2 2

4 4( ) [ ]( ) [ [ ]]( ) ( )� � �
� � �
� �

� �	 � 	 � �u x B v x B B f x f x , 

i.e. the function ( ) [ ]( )�
�
��u x B v x  satisfies the equation (17). After application of the operator �

�B  to 

( ) [ ]( )�
�
��u x B v x . By virtue of the second equation (14) we obtain, [ ]( ) [ ] ( ) ( )� � �

� � �
�� �� �� �B u x B B v x v x . 

Then, 1[ ]( ) ( ) ( )�
� 
!
!

� �B u x v x g x  and  2

( )
[ ]( ) ( )�

�

! 
!


 

� �


 

v x

B u x g x
r r

, which proves that the boundary 

conditions also are satisfied. The uniqueness of the solution can be derived from the uniqueness of the 
solution of the Dirichlet problem. The proof of the Theorem is completed. 
 
4.  Conclusion 
The obtained properties of the integro-differential operators are very important in application to the theory 
fractional differential equations. One of the interesting findings of the paper is that the newly defined 
fractional operators, which are generalization of the Bavrin operators to the fractional value of the 
parameters, map a class of polyharmonic functions on the ball to the class of polyharmonic functions. As an 
application of the obtained properties of the fractional integro-differential operators, it is shown that the 
solution of the biharmonic equation with fractional boundary conditions exists and unique.  
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