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Abstract: In this study, a minimum-run resolution IV and central composite design have been
developed to optimize tetracycline removal efficiency over mesoporous carbon derived from the
metal-organic framework MIL-53 (Fe) as a self-sacrificial template. Firstly, minimum-run resolution
IV, powered by the Design–Expert program, was used as an efficient and reliable screening study
for investigating a set of seven factors, these were: tetracycline concentration (A: 5–15 mg/g), dose
of mesoporous carbons (MPC) (B: 0.05–0.15 g/L), initial pH level (C: 2–10), contact time (D: 1–3 h),
temperature (E: 20–40 ◦C), shaking speed (F: 150–250 rpm), and Na+ ionic strength (G: 10–90 mM)
at both low (−1) and high (+1) levels, for investigation of the data ranges. The 20-trial model was
analyzed and assessed by Analysis of Variance (ANOVA) data, and diagnostic plots (e.g., the Pareto
chart, and half-normal and normal probability plots). Based on minimum-run resolution IV, three
factors, including tetracycline concentration (A), dose of MPC (B), and initial pH (C), were selected to
carry out the optimization study using a central composite design. The proposed quadratic model
was found to be statistically significant at the 95% confidence level due to a low P-value (<0.05),
high R2 (0.9078), and the AP ratio (11.4), along with an abundance of diagnostic plots (3D response
surfaces, Cook’s distance, Box-Cox, DFFITS, Leverage versus run, residuals versus runs, and actual
versus predicted). Under response surface methodology-optimized conditions (e.g., tetracycline
concentration of 1.9 mg/g, MPC dose of 0.15 g/L, and pH level of 3.9), the highest tetracycline removal
efficiency via confirmation tests reached up to 98.0%–99.7%. Also, kinetic intraparticle diffusion and
isotherm models were systematically studied to interpret how tetracycline molecules were absorbed
on an MPC structure. In particular, the adsorption mechanisms including “electrostatic attraction”
and “π–π interaction” were proposed.
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1. Introduction

Among the most widely consumed antibiotics for infectious diseases, tetracycline (TCC) is
a promising candidate, mainly because it exhibits excellent performance as well as cost-effective
production [1–3] (its simulated molecular and main properties as shown in Figure 1, and Table S1).
This antibiotic compound is also used as a food additive for enhancing resistance and supporting
the immune system in livestock [4]. Like other antibiotics, TCC can be partly metabolized via
organisms, and is mainly excreted through urine [5,6]. Some studies have indicated that a wide range of
adverse effects towards both aquatic and soil environments could occur when TCC is released without
any pretreated measures [2,3]. For example, Sengelov et al. analyzed the tetracycline, macrolides,
and streptomycin contents in Danish farmland, and found a considerable increase in the resistance of
bacteria levels in manure and slurry [7]. Moreover, Kay et al. conducted the lysimeter experiments to
demonstrate that the fate and occurrence of veterinary antibiotics can derive from surface runoff and
leaching ways [8]. Therefore, the remediation techniques for TCC have been increasingly attracting
attention over the past years.
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The adsorbents with diverse functional groups and high-porosity properties can be used to cope
with the TCC antibiotic’s residue [3,9,10]. Zhang et al. proved the TCC removal efficiency (up to
99.8%) of multi-walled carbon nanotubes (MWCNTs) in water, reaching an amazingly high maximum
adsorption capacity (269.54 mg/g) at 20 ◦C [11]. Other carbonaceous sources (e.g., activated carbon) with
chemical modifications (e.g., alkaline pretreatment, metal doping, etc.) also brought many promising
uptake results for TCC treatment [12–14]. Recently, such mesoporous carbons (MPC) can be facilely
synthesized via the pyrolysis of metal–organic frameworks (MOFs) as self-sacrificial templates [15–18].
The MOFs are highly crystalline and porous materials, constructed by iron clusters and organic ligands,
giving them excellent tailorability and versatile functionalities [19–22]. Due to tailoring the electron-rich
functionalized adsorbents via these MOFs precursors, applications of MOFs-derived porous carbons
(PCs) have been widened, especially in the removal of antibiotics. For instance, Sung et al. utilized a
metal-azolate framework-6-derived porous carbon to remove emergent pharmaceutical and personal
care products such as ibuprofen, triclosan, oxybenzone, diclofenac sodium, and atenolol [23]. In the
same trend, our previous works have also reported the effective utilization of MPC from MIL-53 (Fe)
(MIL = Materials Institute Lavoisier) and Fe3O(BDC)3 (or MIL-88B) for the removal of ciprofloxacin and
chloramphenicol with high adsorption capacities [24,25]. As inspired by bifunctional MPC (magnetism
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for easy separation and efficient adsorbability towards antibiotics), we continued to shift its potential
applications to the removal of TCC in water.

Generally, the optimization procedure is vital to reach the best conditions in adsorption studies,
hence, influential factors (e.g., adsorbent dose, concentration, and solution pH) need to be investigated.
Unfortunately, there is an abundance of parameters for investigation, resulting in a large number
of experimental runs within the laboratory scale [26,27]. Screening studies, therefore, play a crucial
role in selecting significantly important parameters but also being eligible to remove insignificant
variables [28]. One of the most useful features of screening studies is to limit the actual runs, therefore
leading to a noticeable decrease in performance-related costs while the experiments still obtain a high
confidence level under standardized tests [29–31]. Indeed, these screening studies (e.g., minimum-run
resolution IV) are first conducted to shorten the number of factors and the optimization models (e.g.,
response surface methodology (RSM)) can then be applied for other factors.

Herein, we combined two consecutive procedures, including minimum-run resolution IV as a
screening study and central composite design based RSM to optimize the adsorption process of TCC
onto MPC. Four out of seven factors (concentration, dose, pH, contact time, temperature, shaking speed,
and ionic strength) were eliminated after applying a minimum-run resolution IV as a preliminary probe,
and the other factors continued to be optimized using the central composite design approach again.

2. Experimental Section

2.1. Chemicals, Analytical Instruments, and the Synthesis Procedure for MIL-53 (Fe) and MPC Materials

Chemicals, instruments, and the synthesis procedure for MIL-53 (Fe) and MPC materials are
described in the supplementary information (SI) materials. In addition, nonlinear adsorption kinetic,
isotherm equations, and the mathematical formula are addressed and explained in detail. Figure 2
illustrates the schematic route for the synthesis of MIL-53 (Fe) and MPC.
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Figure 2. Synthesis route of MIL-53 (Fe) and its pyrolysis product, mesoporous carbon (MPC).
The simulated structures of MIL-53 (Fe) and iron (III) clusters were reproduced from a reference [32].

2.2. Experimental Batches

Experimental batches were conducted using a shaking machine. For the screening study, seven
parameters, including concentration (5–15 mg/L), MPC dose (0.05–0.15 g/L), solution pH (4–8), contact
time (1–3 h), temperature (20–40 ◦C), shaking speed (150–250 rpm), and ionic strength (10–90 mM),
were selected to investigate.

For the adsorption kinetics, MPC (0.1 g/L) was poured into 50 mL of TCC solution (10–40 mg/L)
at pH 4, and then placed in the shaking tables (200 rpm) at room temperature (25 ± 2

◦

C). After the
regular time intervals (0, 10, 30, 60, 90, 120, 150, 180, and 240 min), the TCC samples were taken to
analyze the kinetic concentrations by UV-Vis spectroscopy.

For adsorption isotherms, a similar procedure was employed. A range of TCC concentrations
(10–40 mg/L) was investigated at room temperature (25 ± 2 ◦C) until reaching the equilibrium at
240 min. The formulas for removal Y (%) and adsorption capacity Q (mg/g) are listed in the SI material
(Equation S1, S2).
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2.3. Screening Study With Minimum-Run Resolution IV

The screening of the effects can initiate multivariate optimization, giving the purpose of selecting
the main factors [33]. Among screening studies, such as fractional factorial design (FFD), Taguchi
design (TD), and Plackett–Burman design (PBD), minimum-run resolution IV is of great importance in
experimental design to facilitate and accelerate the removal of antibiotics [34]. Herein, we determined
a set of seven factors (Table 1), which may affect the percentage of TCC, including concentration (A),
MPC dose (B), solution pH (C), contact time (D), temperature (E), shaking speed (F), and ionic strength
(G). Three levels (–1, 0, +1) were selected to investigate the effect of factors on the percentage of TCC
removal (Y). Based on the guides from a minimum-run resolution IV design, there were 20 trials
involving 16 factorial points and 4 central (repeated) points.

To ensure the randomization of each experiment, runs were independently conducted in a separate
block. The Design-Expert®Software, Version 10 (DX10), from Stat-Ease, Inc. (Minneapolis, MN, USA)
was used as a means of data analysis.

Table 1. Summary of influential variables with their levels.

No Parameter Unit Code
Level

Low (–1) Central (0) High (+1)

1 Tetracycline (TCC) concentration mg/L A 5 10 15

2 Mesoporous carbon (MPC) dose g/L B 0.05 0.1 0.15
3 Initial pH - C 2 6 10
4 Contact time h D 1 2 3
5 Temperature ◦C E 20 30 40
6 Shaking speed rpm F 150 200 250
7 Na+ ionic strength mmol/L G 10 50 90

2.4. Optimization Study With Central Composite Design

After applying the screening effects, the optimization study can be performed upon three of the
most influential variables, e.g., concentration (A), MPC dose (B), and solution pH (C). During this step,
the central composite design was used to design the space of the experiments (Table 2). According to
the guides from this procedure, the two-order polynomial equation needs to be established to show
the relationship between the response (Y) and the three variables (X), as in the following equation
(Equation 1) [35]:

Y = βo +
k∑

i=1

βiXi +
k∑

i=1

k∑
j=1

βi jXiX j +
k∑

i=1

βiiX2
i (1)

N = 2k + 2k + c (2)

where y is the predicted response, and xi and xj are the independent variables (i, j = 1, 2, 3, 4, . . . k).
The parameter βo is the model constant, βi is the linear coefficient, βii is the second-order coefficient,
and βij is the interaction coefficient. The total number of experiments is defined by Equation 2, and in
this circumstance, the figure is 20 for k = 3 (three variables investigated). The Design-Expert®Software,
Version 10 (DX10), from Stat-Ease, Inc. (Minneapolis, MN, USA) was again used as a means of
data analysis.

Table 2. List of variables for optimization of TCC removal.

No Independent Factors Unit Code
Levels

–α −1 0 +1 +α

1 Initial concentration mg/L A 1.6 5 10 15 18.4

2 MPC dose g/L B 0.016 0.05 0.1 0.15 0.184
3 Solution pH - C 2.6 4 6 8 9.4
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3. Results and Discussion

3.1. Characterization of MIL-53 (Fe) and MPC

The crystalline patterns of MIL-53 (Fe) and MPC materials are shown in Figure S1 (see the
Supplementary Materials document file). As can be seen in Figure S1a, three typical peaks presented at
around 9.6

◦

(101), 18.6
◦

(002), and 28.1◦ (302), presenting for the MIL-53 (Fe) was mostly commensurate
with our previous study and several recent works [36–38]. This result indicated the successful synthesis
of MIL-53 (Fe) via the solvothermal method. Figure S1b displayed an emergent peak at around 45

◦

(110) and a narrow peak at around 35.5
◦

(100), confirming the presence of zero-valent Fe (JCPDS
No. 65–4899) in the inherent structure of MPC [39]. More specifically, the broadband between 20

◦

and
30
◦

may be attributable to graphitic carbon formed by the pyrolysis of MIL-53 (Fe) [40]. The Raman
spectra in Figure S2 show more identification of MIL-53 (Fe) and MPC. Functional groups are shown
in Figure S2a: C-H (615, 875 cm−1) and C-C bonds (1160 cm−1) of benzene rings, O-C-O bonds (1450,
1504 cm−1) of acid groups support the structural consolidation of MIL-53 (Fe), which is generated
by Fe clusters and C6H4(COOH)2 ligands [24]. Meanwhile, the exposure of two bands (D and G) in
Figure S2b also indicated the existence of graphitic carbon in MPC.

To gain more understanding about the intrinsic structure of MIL-53 (Fe) and MPC, scanning
electron microscope (SEM) and transmission electron microscopy (TEM) images can be solid evidence.
As shown in Figure 3a,b, MIL-53 (Fe) crystals were observed like microsphere (100–150 nm in diameter)
with a highly smooth surface. By contrast, MPC morphology exposed a relatively defective and
amorphous nature, along with the presence of dark spots collapsed in opaque regions. This phenomenon
may be because of Fe nanoparticles under magnetic aggregation embedded in carbon [24]. Moreover,
the N2 adsorption/desorption isotherm plots in Figure S3 give more information about the porosity
of MIL-53 (Fe) and MPC. It is evident that MIL-53 (Fe) had a non-porous structure with a Type IV
(IUPAC)-like pattern, as shown in Figure S3a, while a hysteresis loop at a higher-relative pressure
(P/P

◦

> 0.5) assumed a Type II (IUPAC) pattern with a mesoporous structure. Generally, a huge
distinction in structure was observed between MIL-53 (Fe) and MPC upon the effect of pyrolysis.
MPC material with a more porous structure (surface area by Brunauer–Emmett–Teller (BET) was
approximately 225 m2/g) may provide a better advantage in the sorption of TCC. Therefore, we used
MPC as an adsorbent for the TCC adsorption investigation.Molecules 2019, 24, x FOR PEER REVIEW 6 of 21 
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3.2. Screening Study

In the screening study, the possible parameters consisted of the initial TCC concentration (A),
the dose of MPC (B), initial pH levels (C), contact time (D), temperature (E), shaking speed (F), and Na+

ionic strength (G), as shown in Table 1. In addition, the parameters were represented at three levels,
including low (−1), central (0), and high (+1) points (Table 1). Thus, there were 16 preliminary
experiments (entries 1–16, Table 3) with a duplicate for each (n = 2). To assess the potential curvature,
four central points were repeated (entries 17–20, Table 3). The response (Y) was denoted for the removal
percentage of TCC using the MPC as an adsorbent. Each experiment of TCC adsorption was separately
conducted based on the guides of minimum-run resolution IV.

Table 3. Twenty-trial minimum-run resolution IV screening design for seven actual values with their
observed and predicted values.

Run
Experimental Values TCC Removal (%)

A B C D E F G Observed Predicted

1 5 0.05 10 3 20 250 10 90.2 87.8
2 5 0.15 2 3 20 150 90 83 82.0
3 5 0.15 10 3 40 150 10 95.5 95.9
4 5 0.15 2 1 40 250 10 70.3 75.6
5 5 0.05 2 3 40 250 90 63.2 65.6
6 15 0.15 2 3 20 250 10 80.1 74.3
7 5 0.15 10 1 20 250 90 85.7 90.9
8 15 0.15 10 3 40 250 90 85.2 81.3
9 15 0.15 2 1 40 150 90 55.7 57.3

10 15 0.05 10 1 40 250 10 60.2 63.1
11 15 0.05 2 1 20 250 90 52.7 49.2
12 15 0.05 10 3 20 150 90 60.3 69.5
13 15 0.15 10 1 20 150 10 81 79.5
14 5 0.05 10 1 40 150 90 80.6 70.8
15 15 0.05 2 3 40 150 10 53 54.2
16 5 0.05 2 1 20 150 10 63.7 63.8
17 10 0.1 6 2 30 200 50 80.6 72.5
18 10 0.1 6 2 30 200 50 80.3 72.5
19 10 0.1 6 2 30 200 50 82.6 72.5
20 10 0.1 6 2 30 200 50 79.4 72.5

By establishing the two-level factorial interaction regression (2FI) with the DX10 program,
the ANOVA table allows the observed and predicted data to be analyzed [41,42]. In detail, according
to Table 4, estimated effects and their coefficients for two models were listed to find out the significance
of parameters at three states, including a significant positive effect at P < 0.05, a significant negative
effect at P < 0.05, and not significant at P < 0.05. Apparently, there were four parameters, concentration
(A), dose (B), pH (C), and contact time (D), along with a response variable (Y), which were statistically
significant, while the other three parameters, temperature (E), shaking speed (F), and Na+ ionic strength
(G), were not statistically significant (Table 4). Therefore, the latter factors can be eliminated in the
next investigation. Moreover, among the four significant parameters, concentration (A) was the only
significantly negative effect at P < 0.05, while the others, along with the response variable (Y), were the
significantly positive effects, indicating that decreasing the concentration, and rising the dose (B),
pH (C), and contact time (D) tended to improve the removal percentage of TCC. Moreover, Figure S4
was also constructed to support the high compatibility of the 2FI model [41]. While the residuals
against runs plot suggested a random distribution without any patterns, as shown in Figure S4a,
the actual and predicted results were mostly distributed in a straight line, as shown in Figure S4b.
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Table 4. Estimated effects and their coefficients for TCC models.

Parameters Code Effect
Estimate

Coefficient
Estimate

Standard
Error F-value P-value

Response Y - - 1.37 12.79 0.0002 a

Concentration A −13.0 −6.5 1.37 22.55 0.0006 b

Dose B 14.1 7.1 1.37 26.44 0.0003 a

pH C 14.6 7.3 1.37 28.54 0.0002 a

Contact time D 7.6 3.8 1.37 7.66 0.0183 a

Temperature E −4.1 −2.1 1.37 2.27 0.1600 c

Shaking speed F 1.9 0.9 1.37 0.46 0.5131 c

Na+ ionic strength G −3.5 −1.7 1.37 1.59 0.2336 c

a Significantly positive effect at P < 0.05. b Significantly negative effect at P < 0.05. c Not significant at P < 0.05.

The diagnostic plots also supported the evidence of the significance of the selected factors.
For half-normal and normal probability plots for the seven factors (Figure 4), statistically insignificant
factors are those that have linear lines near effects, and statistically significant factors are those whose
effects are considerably escaped from linear lines [43,44], which were determined to be concentration
(A), dose (B), pH (C), and contact time (D). Meanwhile, a Pareto chart of the standardized effects
(Figure 5), and a residuals versus runs for the models (Figure 3) shows that the t-values of effects
(concentration, dosage, and pH) are higher than the “Bonferroni limit” and higher than those of other
effects (contact time, temperature, shaking speed, and Na+ ionic strength), suggesting that the most
influential factors were concentration, dosage, and pH for the proposed 2FI model [45,46]. Based on
the above analysis, the three most influential factors, TCC concentration (A), dose (B), and pH (C),
were selected for the further optimization studies using a central composite design, while the other
insignificant parameters were neglected.
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3.3. Optimization Study

After eliminating four factors using the screening study, a central composite design analysis
was used to make the experimental space with three factors, TCC concentration (A: 1.6–18.4 mg/L),
MPC dose (B: 0.016–0.184 g/L), and pH (C: 2.6–9.4), as shown in Table 2. By establishing the quadratic
regression model, the second-order polynomial equation can be generated to evaluate the interactive
effect of factors, and then optimize the conditions for the removal of TCC. Under optimized conditions,
a confirmation test was performed to check the suitability of the proposed model. All steps for
optimization study were taken as follows.

More specifically, Table S2 lists the twenty-trial actual and predicted values for the TCC removal.
The highest percentage of TCC removal was 93.0% (entry 3), while the lowest was only 53.0% (entry 14)
and the average six trials were 79.8% (entries 15–20). The empirical relationships between the response
(Y) and the significant factors (A, B, and C) were achieved from using a central composite design via
the Design-Expert®Software [47]:

Y (%) = 79.83 − 3.35A + 7.17B − 8.82C + 1.38AB + 0.125 AC − 2.38BC + 0.41A2

− 3.31B2
− 3.66C2

(3)

Based on these inputs, significant coefficients such as P values, R2 coefficients, and AP ratios can
be determined from the ANOVA data (Table 5) [48,49]. Generally, a quadratic model is considered
statistically significant at a confidence level of 0.95, if it meets the following conditions as closely as
possible: P values for models and factors are lower than 0.05, the coefficient of determination (R2) is
closer to 1.0, and the AP ratio is higher than 4.0 [50]. By comparing the values obtained from Table 5
with the above standards, it is evident that the proposed model was statistically significant with the
confidence level at 95%.
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Table 5. ANOVA data for the TCC removal model.

Source Sum of
Squares

Degree of
Freedom

Mean
Square F-value Prob. > F Comments

Model 2311.79 9 256.87 10.94 0.0004 s SD = 4.85
A 153.72 1 153.72 6.55 0.0284 s Mean = 75.35
B 701.27 1 701.27 29.87 0.0003 s CV (%) = 6.43
C 1061.60 1 1061.60 45.22 <0.0001 s R2 = 0.9078

AB 15.12 1 15.12 0.6443 0.4408 n AP = 11.4
AC 0.1250 1 0.1250 0.0053 0.9433 n

BC 45.13 1 45.13 1.92 0.1957 n

A2 2.37 1 2.37 0.1012 0.7570 n

B2 157.55 1 157.55 6.71 0.0269 s

C2 193.04 1 193.04 8.22 0.0167 s

Residuals 234.76 10 23.48 - -
Lack-of-fit 212.76 5 42.55 9.67 0.0132 s

Pure error 2311.79 9 256.87 10.94 0.0004 s

Note: s significant at P < 0.05; n not significant at P > 0.05, SD: standard deviation, CV: coefficient of variation, AP:
Adequate precision, R2: determination of coefficient.

Moreover, the residual analysis was also used to confirm the assumption of significance for the
proposed model with the three factors (Figures S5–S8). More specifically, the normal plot of residuals
in Figure S5a tends to be an “S-shape” rather than linear or a normal line. Nevertheless, Grace et al.
indicated that this plot might supply a better analysis with a transformation of the response, meaning
that the residuals have been divided by the estimated standard deviation of each particular residual [51].
The predicted versus residuals plot in Figure S5b shows a random scatter, hence, the variance is a
constant against the residuals’ variables. This analysis was highly suitable for the residual plot in
Figure S6. Accordingly, Figure S6a diagnosed a random distribution without any patterns or trends,
while the actual and predicted data in Figure S6b had high-compatibility because these points were
randomly scattered along the 45-degree line. Also, Cook’s distance in Figure S7a was used to record any
changes made by the quadratic model in the case of deleting or omitting any data point [52]. Although
the Cook’s distance of two points was found to be larger than 1.0, which may lead to a lack of their
accuracy, the others (18 data points) were lower than 1.0, meaning that omitting one of them is highly
unlikely to vary the estimate of the regression coefficients [53]. The Box-Cox plot for power transforms
in Figure S7b implies that the current transformation (blue line) was not in the range of the best lambda
value (red line), indicating that the current transformation is not required [54]. Figure S8a shows
leverage versus run values at two sides with upper and lower the average leverage (0.5), but close to
zero, revealing that the clustering of points may be acceptable [51]. Meanwhile, DFFITS is a factor that
allows for the determining of significant runs in Figure S8b. Generally, most of the points were inside
two limits (±2.12132), indicating an insignificant difference in fitness [51]. Consequently, with the
above analysis, the model for TCC removal over MPC reached a high-compatibility with the actual
data at the 95% confidence level and could be used to assess the interaction among factors.

Three-dimensional (3D) response surface plots, which described the effect of two factors (another
was kept at zero-level) on the removal percentage of TCC, are presented in Figure 6. All of the figures
show the significant interactions of the factors and led to changes in TCC removal efficiency.
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In detail, Figure 6a indicates the effect of concentration (A) and dose (B) on the removal of TCC
over MPC. An increase in dose and a decrease in concentration is likely to enhance the overall removal
yield. Meanwhile, pH is the most influential factor in Figure 6b, with the best conditions for the removal
of TCC being at a low level of pH. Indeed, it is observed that the optimum pH level was in the range
from 2.6–6.0, while the effect of concentration is negligible. Liang et al. also reported the same effect of
pH on the TCC removal efficiency by organic acid-coated magnetic nanoparticles [55]. In the opposite
trend, Figure 6c shows that both dose and pH factors had a strong interaction together, and their
resonance vales could bring the best removal efficiency. At a high dose (e.g., 0.184 g/L), and a low pH
level (e.g., 4.0), nearly 100% of the TCC could be removed by MPC. For further analysis, the optimized
conditions were recommended via a central composite design powered by the DX10, which listed
the best options along with the respective desirability values to obtain the highest percentage of
TCC removal. Indeed, Table S3 lists three independent runs according to the proposed conditions.
It is evident that all of the confirmation tests gave the actual results as equivalent to the proposed
ones, with very low errors, again indicating the excellent compatibility between the proposed and
the actual model [56]. Nearly 100% of the TCC was eliminated under the optimized conditions
(entries 1–3, Table S3). These results proved the promising application of MPC for the separation of
TCC from wastewater.

3.4. Proposed Adsorption Mechanism

According to the screening (e.g., the Pareto chart) and optimization (e.g., response surfaces)
studies, pH was the most influential factor affecting the adsorption of TCC, and thus, the investigation
of pH solution was required to gain more insight into how the TCC molecules are absorbed on the
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MPC surface. Firstly, we fluctuated the pH values (adjusted by using HCl and NaOH solutions) in the
wide range from 2 to 11 to observe the change in TCC adsorbed by MPC material, as shown in Figure 7.
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The results shown in Figure 7a reveal that the adsorption capacity of the TCC antibiotic reached
a peak of 82.4 mg/g at pH 4, while the lowest value was found to be 21.1 mg/g at pH 2. Generally,
the adsorption of TCC tended to deplete, thereby increasing the pH solution from 3 to 10. It is also
observed that this uptake seemed to be conducive in weak acidic media (3 ≤ pH ≤ 6) rather than
in neutral or weak basic solutions (pH ≥ 7). These results were highly in-line with the optimized
conditions obtained by the RSM model and confirmation tests (Table S3), as well as with recent
publications [57–59].

To propose a plausible mechanism of how TCC molecules are adsorbed on the surface of MPC,
we determined the effect of pH on the zeta potential of the adsorbent. According to the Figure 7b,
increasing the pH level of the solution would lead to a decrease in the magnitude of the zeta potential.
Especially at around pH 6, the zeta potential of MPC reached a zero-value or an isoelectric point
(IEPMPC = 6), which means that the surface of the MPC tended to be negatively charged under the
condition at pH > IEPMPC = 6, and it charged positively at pH < 6. Adsorption of TCC on the surface
of MPC may be contributed to by several factors, including electrostatic interaction, hydrogen bonds,
and π–π interaction.

It was reported that TCC molecules have three values of acid dissociation constant with pKa1 = 3.3,
pKa2 = 7.7, and pKa3 = 9.7 (Table S1). Notably, owing to the protonation or deprotonation process
in water, it can exist in various states of ionic species at different pH points [60,61]. Kang et al.
demonstrated that TCC molecules (H2TCC) at pH values from 1 to 14 can present a wide range of ionic
or neutral states as cations (H3TCC+), zwitterions (H2TCC), and anions (HTCC- and TCC2−) [62].

At pH < pKa1 = 3.3, the surface of MPC becomes charged positively due to pH < IEPMPC, thus TCC
molecules are immediately protonated to form the cations (TCCH3

+), leading to an opposite charge
between adsorbent and adsorbate [63]. As a result, both components possibly appear in an “electrostatic
repulsion” force [64], preventing the contact between TCCH3

+ ions and MPC material, and finally,
causing a considerable decrease in the adsorption capacity. Supporting this trend, Figure 7a shows a
low TCC adsorption capacity (21.1 mg/g) at pH 2, but when the pH values rose, the adsorbability of the
MPC towards the TCC molecules increased noticeably. For example, the highest adsorption capacity
(82.4 mg/g) in this case was found at pH 4. This phenomenon may be attributable to the fact that TCC
molecules are partly deprotonated for the first ionization (TCCH2

±) at pKa1 < pH < IEPMPC, leading to
the generation of an electrostatic attraction between the deprotonated TCC and the MPC surface and
boosting the adsorption capacity, as reported by Liu et al. [65]. Marzbali et al. also explained that when
a negatively charged adsorbent surface increases gradually, the “electrostatic interaction” becomes
stronger, resulting in intermolecular hydrogen bond forces, and increasing adsorption capacity [63].
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When the pH gradually reached IEPMPC (pH 6), the surface of the MPC became more neutral,
whereas there was no tetracycline ionization (zwitterions) at pH levels between 5 and 6, as reported by
Kang et al [62]. As a result, the effect of the “electrostatic interaction” tended to be negligible, causing a
noticeable depletion in the TCC adsorption capacity. However, it was observed that the adsorption
capacity still remained very high, for example, approximately 80 mg/g of TCC was adsorbed on the
MPC at pH 6. Therefore, other main factors can play a crucial role in maintaining the adsorbability of
MPC at the pH levels 5–6. Accordingly, both the TCC molecules and the MPC surface own π electrons
on the benzene rings, generating the same type of intermolecular electron “donor–acceptor” interaction
(or called the π–π interaction) as was reported by Esra et al. and Marzbali et al. [63,66]. The nature
of this force relies on a non-hydrophobic interaction between electron-rich benzene rings in the TCC
structure and the polarized aromatic rings in the carbonaceous adsorbent [63], which are driving
forces for the TCC antibiotic adsorption on MPC materials. Ghadim et al. also interpreted the same
enhancement in adsorbability towards nonionic TCC at such a pH region, via the π-π interaction [67].

Under basic solutions, there was a downward trend in the adsorption capacity, probably
due to “electrostatic repulsion”, which was formed between the negatively charged MPC surface
(pH > IEPMPC) and the TCC anions (HTCC- and TCC2−) [63]. This hypothesis was consolidated based
on the results from Figure 7b, which shows lower-capacity values than those at the acidic region.

3.5. Adsorption Kinetics

According to the screening study, the Pareto chart in Figure 5 indicated that contact time is the
fourth most influential factor among the seven surveyed factors, so the effect of contact time on the
adsorption kinetic needs to be investigated. In addition, based on investigating the effect of pH in
Figure 7a, the solutions for the kinetic experiments were adjusted at an optimized pH 4. To begin,
finding out the relationship between contact time and kinetic adsorption capacity can be achieved
by placing the experiments at four concentrations (10, 20, 30, and 40 mg/L) and determining the TCC
concentration by UV-Vis spectroscopy at regular periods.

In the present study, we selected the intervals (0, 10, 30, 60, 90, 120, 150, 180, and 240 min) under
the constant temperature. According to Figure 8a–d, boosting the contact time led to an increase in
adsorption capacity for all plots. Moreover, larger adsorption capacities can be obtained under higher
concentrations. Typically, the first 60-minute stage witnessed a sharp rise in the adsorption capacity.
Next, the plots tended to reach a steadily and slowly increasing process, and finally, obtained an
equilibrium-nature within 240 minutes. Therefore, further experiments could be conducted during
this period. To describe the adsorption laws, we applied four non-linear kinetic models consisting of
pseudo first-order, pseudo second-order, Elovich and Bangham equations.

Note that the mathematical description for these four models and error functions (R2, MRE,
and SSE) are available in the Supplementary Materials document file. Theoretically, any model which
obtained the standards: (1) most R2 values close to 1 (adjusted R2 > 0.9), and/or (2) MRE (%) values
decrease to zero (MRE < 10%), and/or (3) obtain the lowest SSE values, is mathematically well-fitted,
can reflect the relationship between the actual and the proposed data.

According to Table 6, all nonlinear models obtained the excellence-of-fitness based on the adjusted
determination of coefficients (adjusted R2). Indeed, the adjusted R2 values (0.9079–0.9996) reached close
to 1.0, along with lower MRE (0.54–8.46) and SSE values. Pseudo first-order models may be unsuitable
for describing the actual data because of their lowest adjusted R2 (0.9079–0.9770), and greatest MRE
(4.23–8.46) and SSE (410.98–1205.53) values. These results were highly agreeable with previous
works [55,57,68–70]. The others reflected better compatibility based on the error functions. However,
the adsorption of TCC over MPC at various concentrations obeyed the Elovich model due to obtaining
the highest adjusted R2 (0.9839–0.9996), and the lowest MRE (0.54–3.85%) and SSE (11.71–72.06) among
these kinetic models. These results were also commensurate with a recent study on the adsorption of
TCC onto NaOH-activated carbon derived from macadamia-nut shells [60]. Therefore, adsorption of
TCC adheres to a heterogeneous mechanism, which is neither the desorption or interactions between
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adsorbed species at low surface coverage [60]. Clearly, according to the Elovich equation, the adsorption
rates (α = 536.46–3503.35 mg/g min) were far higher than the desorption rates (β = 0.05–0.12 g/mg),
reflecting the absolute dominance of TCC adsorption over MPC.Molecules 2019, 24, x FOR PEER REVIEW 13 of 21 
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Table 6. Kinetic constants for the TCC adsorption over MPC material at various concentrations.

Kinetic Models Equation Parameters
TCC Concentrations

10 mg/L 20 mg/L 30 mg/L 40 mg/L

Pseudo
first-order

Qt = Q1.(1− exp(−k1t))

k1 (min-1/(mg/L)1/n) 0.1449 0.0878 0.1079 0.1336
Q1 (mg/g) 73.25 121.71 153.03 189.56
MRE (%) 8.46 6.96 4.23 5.14

SSE 410.98 572.74 430.34 1205.53
(Radj)2 0.9079 0.9583 0.9770 0.9641

Pseudo
second-order

Qt =
t

1
k2Q2

2
+ t

Q2

H = k2. Q2
2

k2 (g/(mg.min)) 0.0027 0.0010 0.0011 0.0011
Q2 (mg/g) 77.80 131.01 162.16 199.57

H 16.22 16.97 28.40 44.21
MRE (%) 7.04 3.62 1.86 3.01

SSE 179.58 147.66 72.01 318.46
(Radj)2 0.9496 0.9904 0.9961 0.9889
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Table 6. Cont.

Kinetic Models Equation Parameters
TCC Concentrations

10 mg/L 20 mg/L 30 mg/L 40 mg/L

Elovich Qt =
1
β ln(1 + αβt)

α (mg/(g.min)) 536.46 196.76 991.85 3503.35
β (g/mg) 0.12 0.06 0.06 0.05
MRE (%) 3.85 1.25 1.81 0.54

SSE 72.06 18.12 73.43 11.71
(Radj)2 0.9839 0.9976 0.9961 0.9996

Bangham Qt = kB.tαB

kB (mL/(g/L)) 40.33 57.96 84.84 113.06
αB 0.13 0.15 0.12 0.11

MRE (%) 3.03 1.93 2.32 0.67
SSE 53.86 43.67 120.34 17.69

(Radj)2 0.9879 0.9948 0.9936 0.9994

3.6. Intraparticle Diffusion

To gain insight into the actual rate-controlling step for the TCC adsorption model, the Weber–Morris
intraparticle diffusion equation, which assumes that the mechanism for TCC adsorption occurs in the
bulk external-mass transfer, or the diffusion of TCC molecules through the micropores of MPC material
and chemical reactions (adsorption/desorption) in heterogeneous phrases, could be adopted [60].
Herein, Figure 9 describes the intraparticle diffusion plots for TCC adsorption over MPC at various
concentrations (10–40 mg/L)
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According to the Weber–Morris plots at four concentrations (10–40 mg/L) in Figure 9,
the intraparticle diffusion of TCC over MPC could be divided into three stages. The first stage
(0–30 min) is the most rapid adsorption stage, which may be due to the diffusion of the TCC
molecules into the external surface or peripheral layers of the MPC materials. The high values of
Kid,1 (11.0891–30.9549 mg/g min1/2) in Table 7 indicate the enormous rate of the adsorption process.
The second stage describes the gradual adsorption during the next 60-min period (from 60 to 120
min) [69]. The high R2 values (0.9058–0.9891) obtained by the second stage of the Weber–Morris
equation (Table 7) demonstrated that the intraparticle diffusion at the second stage was the rate-limiting
step. The final stage (150–240 min) tended to reach the equilibrium-nature with the slow intraparticle
diffusion, mainly because of the shallow concentration of TCC remaining in the solution and a large
amount of TCC molecules loaded on the micropores of the MPC. This stage had the lowest adsorption
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rates (Kid,3 = 0.5728–2.6756 mg/g min1/2) (Table 7) and its model intercepts were found to be as unequal
as zero, indicating that the rate-limiting step was dominant not due to intraparticle diffusion solely [71].

Table 7. Parameters of the intraparticle diffusion model with three stages.

Parameters
TCC Concentrations

10 mg/L 20 mg/L 30 mg/L 40 mg/L

Kid,1 (mg/g min1/2) 11.0891 18.7447 24.9274 30.9549
Ci,1 (mg/g) 6.9320 5.6518 8.0132 13.7884

R2 0.9058 0.9755 0.9728 0.9487
Kid,2 (mg/g min1/2) 1.2510 3.4347 1.9758 5.0471

Ci,2 (mg/g) 58.4464 84.1640 130.9694 137.9451
R2 0.9161 0.9891 0.9815 0.9717

Kid,3 (mg/g min1/2) 1.7464 0.5728 2.6756 2.6560
Ci,3 (mg/g) 56.374 121.3084 122.9612 162.9612

R2 0.9394 0.9043 0.9750 0.9510

3.7. Adsorption Isotherms

The nonlinear isotherm models, including Langmuir, Freundlich, Temkin,
and Dubinin-Radushkevich (D–R), could be used to better understand the adsorption mechanism and
behaviors of TCC over MPC. Note that the mathematical description for their respective parameters
and error functions (R2, MRE, and SSE) are available in the Supplementary Materials file. Moreover,
based on the investigation of the effect of pH in Figure 7a, the solutions for the isotherm experiments
were adjusted to an optimized pH 4. Figure 10 describes the effect of concentration (10–40 mg/L) on
the equilibrium adsorption capacities (Qe, mg/g), which increased the concentration resulting in an
improvement in the Qe values.
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The isotherm parameters obtained from the equations were summarized in Table 8. Naturally,
all models showed excellent fitness, based on the adjusted R2 (0.8982–0.9933), and the relatively low
MRE (2.95–11.82%) and SSE (124.19–1900.35) values. According to the analysis of these error functions,
the order-of-fitness for models is obeyed: Freundlich > Temkin > Langmuir > D–R, suggesting that
the mechanism for TCC adsorption over MPC adhered to the Freundlich model, which assumes that
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multilayer adsorption behavior may be prevalent in this case. Moreover, the exponent value (1/n),
which was determined by the Freundlich model, was found to be 0.37, and the RL constant, which was
determined by the Langmuir model, was found to be 0.15, suggesting that the adsorption of the TCC
molecules over MPC was a favorable process.

Table 8. Isotherm constants for the TCC adsorption over MPC material.

Kinetic Models Equation Parameters Value

Langmuir
Qe =

QmKLCe
1+KLCe

RL = 1
1+KLCo

kL (L/mg) 0.27
Qm (mg/g) 224.0

RL 0.15
MRE (%) 9.55

SSE 671.97
(Radj)2 0.9640

Freundlich Qe = KFCe
1/n

kF (mg/g)/(mg/L)1/n 65.96
1/n 0.37

MRE (%) 2.95
SSE 124.19

(Radj)2 0.9933

Tempkin Qe = BT ln(kTCe)
BT = RT

b

kT (L/mg) 3.17
BT 46.22

MRE (%) 6.23
SSE 366.49

(Radj)2 0.9804

D-R

Qe = Qm exp
(
−Bε2

)
ε = RT ln

(
1 + 1

Ce

)
E = 1

√
2B

B (kJ2/mol2) 0.61
Qm (mg/g) 174.0
E (kJ/mol) 0.91
MRE (%) 11.82

SSE 1900.35
(Radj)2 0.8982

3.8. Comparative Adsorption Capacity

From the Langmuir equation, the maximum TCC adsorption capacity Qm (mg/g) was calculated as
being at 224.0 mg/g. To compare the adsorption capacity obtained by this work with that of other works,
we summarized the maximum TCC adsorption capacities of the various materials. The comparative
result indicated that the Qm from the present study was considerably higher than those reported from
many previous studies (Table 9). Thus, it is recommended that the use of MPC for the adsorption of
the TCC antibiotic in water may be a feasible approach.

Table 9. Comparative maximum TCC adsorption capacity (Qm) using various materials.

No. Adsorbents Qm (mg/g) Ref.

1 MIL-53-derived mesoporous carbon (MPC) 224.0 This study (*)
2 Nanocrystalline cellulose 13.2 [57]
3 Alkali biochar 58.8 [69]
4 Pumice stone 20.0 [68]
5 g-C3N4 granules 70.0 [72]
6 Organic Acid-Coated Magnetic NPs 117.7 [55]
7 Ferric-activated SBA 87.9 [73]
8 Nanoscale zero-valent iron (nZVI) 105.5 [74]
9 Pumice modified nZVI 115.1 [74]

10 Carbons@carboxymethylcellulose 136.9 [75]
11 Reduced graphene oxide (RGO) 44.2 [70]
12 RGO-decorated Fe2O3 NPs 18.47 [70]
13 Biocomposites 11.2–18.3 [76]
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4. Conclusions

The present study successfully synthesized the novel MIL-53(Fe)-derived mesoporous carbon by
the pyrolysis of MIL-53 (Fe) and characterized it structurally. The screening study using minimum-run
resolution IV was systematically investigated for seven factors, including initial TCC concentration (A),
a dose of MPC (B), initial pH (C), contact time (D), temperature (E), shaking speed (F), and Na+ ionic
strength (G). The results indicated that the most influential factors on the percentage of TCC removal
were concentration, MPC dose, and pH solution, based on the ANOVA analysis and diagnostic plots
(e.g., the Pareto chart). Next, these factors were used to optimize the percentage of TCC removal
through using a central composite design and response surface methodology. It was presented that the
proposed quadratic regression model was statistically significant at the 95% confidence level. Under
optimized conditions (e.g., TCC concentration of 1.9 mg/g, MPC dose of 0.15 g/L, and pH 4.0), TCC
can be eliminated up to 98.0%–99.7%. The results of kinetic and isotherm studies revealed that the
adsorption of the TCC drug adhered to the heterogeneous mechanism (Elovich model) and multilayer
adsorption behavior (Freundlich model), while intraparticle diffusion of TCC over MPC asserted that
the rate-limiting step was not dominant only due to intraparticle diffusion. Under the effect of pH more
specifically, the adsorption mechanism, including “electrostatic attraction” and the “π–π interaction”,
was proposed in detail. Compared with the other adsorbents, the adsorption of the TCC antibiotic in
wastewater by the utilization of MPC can be a feasible approach with the high-maximum adsorption
capacity (224 mg/g).

Supplementary Materials: 1. Chemicals and instruments; 2. Mathematical formula; 3. Synthesis of MIL-53 (Fe)
and MPC material; 4. Determination of pHpzc (pH point of zero charges); 5. Error analysis; 6. Kinetic models;
7. Intraparticle diffusion; 8. Isotherm models; Figure S1. XRD diffraction MIL-53 (Fe) (a) and MPC (b); Figure S2.
Raman spectra of MIL-53 (Fe) (a) and MPC (b); Figure S3. N2 adsorption/desorption measurement plots of MIL-53
(Fe) (a) and MPC (b); Figure S4. Actual versus predicted (a) and residuals versus runs (b) plots; Figure S5. Normal
plot of residuals (a) and predicted values versus residuals (b) for the model of TCC removal; Figure S7. Cook’s
distance (a) and Box-Cox plot for power transforms (b); Figure S8. Leverage versus run (a) and EFFITS versus run
(b) plots; Table S1. Several properties of the TCC antibiotic (Source: Drugbank); Table S2. Matrix of observed and
predicted values; Table S3. Confirmation test.
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