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ABSTRACT

The seafood processing industry in New Zealand and worldwide generates a large amount of
shell waste and currently the shell waste under-utilized. The possibility of producing a useful
product from this shell wastes will greatly enhance and ensure sustainable economic
development as well as the associated waste management problems. Therefore, as one possible
solution, the overall objective of this study was to investigate the feasibility of mussel shells
waste for the synthesis of hydroxyapatite, Caio(PO4)s(OH)2 (denoted as HAP) and other
derivatives from mussel shells to act as photocatalyst in degradation of methylene blue and

dehydroabietic acid in aqueous media via photocatalysis.

In this study, a novel pyrolysis-wet slurry precipitation process from Perna Canaliculus (green-
lipped mussel) shells without pH and temperature control has been developed. The process of
HAP synthesis involved crushing, calcination of shells into calcium oxide followed by a slurry
wet precipitation method, where an aging time of five hours under nitrogen atmosphere was
applied. Three different types of HAPs were produced in this study (As-HAP800, calcined at
800 °C, no post heat treatment; As-HAP900, calcined at 900 °C, no post heat treatment; Ht-
HAP, calcined at 900°C, post heat treatment at 900 °C) and were compared to a commercial
HAP from Sulzer Metco (Com-HAP). HAP with purity comparable to the commercial sample
were obtained, as confirmed by X-ray Diffraction (XRD), Fourier Transform Infrared
Spectroscopy (FTIR), Electron Dispersive X-ray Analysis (EDS) and Inductive Couple Mass
Spectroscopy (ICP-MS). The results showed that the as-synthesised HAPs (As-HAP800 and
As-HAP900) contained calcium carbonate (calcite) impurity which was mainly caused by
incomplete calcinat@on of the.mussel shells. This impurity can be removed or reduced by the

subsequent heat treatment of the HAP.

The HAP synthesised in this work was used as a photocatalyst, testing two model wastewaters
containing methylene blue and dehydroabietic acid respectively in a batch reactor. The effects
of different HAP material properties (surface area, band gap energy and the existence of calcite
impurities resulting from different calcination temperatures) on the photocatalytic activity and
reaction mechanism were investigated for these model wastewaters. The methylene blue
degradation pathway was found to be the same as that reported for other semiconductor
photocatalysts, indicating that photocatalysis is most likely occurring with the HAP. Among
the different forms of HAP studied, As-HAP800 showed the highest overall reaction rate (per
unit mass of catalyst) followed by As-HAP900, Com-HAP and Ht-HAP. It was also found that




the degradation rates for reaction at UV irradiation of 254 nm showed higher overall reaction
rates per unit mass of catalyst compared to the UV irradiation at 340 nm, which is likely due
to the higher energy associated with the 254 nm UV irradiation. The kinetics for the reactions
using As-HAP800 and As-HAP900 were well described by three first order reactions in series
while Com-HAP and Ht-HAP followed a two-step series of first order kinetics.

To determine the effect of residual unconverted raw materials in the HAP photocatalysts, the
photocatalytic degradation of methylene blue using other calcium compounds derived from
mussel shells was investigated. Raw shell powder (RS) and calcite (CS540: Calcined mussel
shell powder at T=540 °C) were found to be able to degrade methylene blue but at a lower
degradation rate compared to the HAP. The overall degradation rate showed by CaO (CS900:
Calcined mussel shell powder at T=900 °C) was two orders of magnitude higher than those
obtained using RS and CS540. However, it was found that the reaction with CS900 was not
due to a photocatalytic reaction, but was caused by an oxidation reaction that was highly

accelerated in the alkaline conditions during the dark period.

For the photocatalytic degradation of dehydroabitic acid, three reaction intermediates were
identified which were 7-hydroxy-dehydroabietic acid, abietic acid and pimaric acid. The
kinetics for the reactions were found to fit a pseudo-first-order reaction rate for both batch and
annular reactors for all the HAP. A comparison of batch and annular reactors for the
degradation of dehydroabietic acid showed that the overall reaction rates and photonic
efficiency for the annular reactor was an order magnitude larger than the batch reactor which
indicates that the annular reactor was more efficient at utilizing the UV light. However, there
were no apparent differences in the mechanism of degradation. It was also found that in annular
reactor, higher flow rate resulted in a higher reaction rate. Through this study, it was also found
that the stability of the as-synthesised HAP was low which was due to to the dissolution of the
HAP especially in the reaction with methylene blue. Therefore, the study on increasing the
stability of HAP to act as a good photocatalyst was one of the recommendations to be included

in the future work.

Overall, it has been demonstrated that the new process of producing HAP used in this study
therefore unlocks a route for recovering and recycling waste shells into HAP and other calcium
compounds and its further application for environmental remediation — a potentially ‘green’

photocatalytic process.
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