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Abstract 

Combustion pressure analysis is an important aspect to be studied in the research 

and development of internal combustion engines. However, measurements of in-

cylinder combustion pressure for a complete range of testing are time-consuming 

and costly, as it required high accuracy pressure sensor systems. Alternatively, a 

simulation model based on the computer program can be used to retrieve those 

parameters. This study focused on developing the prediction model to determine 

the combustion pressure of diesel engines by employing artificial neural network 

methods. Input data for training, testing, and validation of the model were 

obtained from laboratory engine testing. The biodiesel blends percentage, engine 

loads, engine speeds and crank angle position were selected as the input 

parameters. The performance of the ANN model was validated against the 

experimental data. The results show that the developed model successfully 

predicted the engine combustion pressure with a higher correlation coefficient 

(R-value) between 0.99968-0.99973, means that the model produces 99% of 

prediction accuracy. In addition, the prediction errors occurred within a small 

range of values. This study revealed that the neural network approach is able to 

predict the combustion pressure of the diesel engine with high accuracy. 

Keywords: Artificial neural network, Engine combustion pressure, Marine diesel 

engine, Palm biodiesel. 
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1.  Introduction 

Engine in-cylinder pressure data is an important parameter for combustion analysis 

of an internal combustion engine. Its magnitude relies on the correlation between 

several significant input parameters, such as fuel type, engine speed, engine load, 

and engine operating state. In general, engine testing is performed in laboratories 

to determine those parameters. This demands complex control, data acquisition 

systems and sensors. A complete range of engine testing is not only time-

consuming but also costly as a comprehensive testing plan is required prior to 

setting up such facilities. As an alternative, prediction models based on computer 

simulations can be used to identify the combustion parameters for the engine. In 

this case, the ANN model was employed as an effective solution because this 

method is applicable to both intricate and non-linear problems without 

incorporating mathematical differential equations. In addition, the ANN model was 

employed to evaluate the correlations between the various input variables to predict 

the output variables without demanding much information regarding its system. 

The study in the field of neural networks was initiated in 1943 when McCulloch 

and Pitts developed a computer model by applying the logical threshold algorithm 

[1]. This technique has been widely used in many areas, such as functional 

approximation, pattern recognition, identification, optimization, prediction, 

evaluation, classification, and control of complex systems. A substantial number of 

studies have estimated the performance of diesel engines fuelled by biodiesel using 

ANN models. Cirak and Demirtas [2] predicted the engine torque using the 

multilayer ANN model, where the R-values are close to one and the MSE value of 

0.007 proving that ANN model is a great tool for solving complex problems.  

Mohammadhassani et al. [3] utilized the combination of ANN and Ant Colony 

Optimization (ACO) algorithm, by employing a feed-forward multi-layer 

perceptron network for modelling and reducing diesel engine exhaust emissions. 

The obtained results reveal that the ANN can appropriately model the NOX and 

soot emissions with the R-values of 0.98 and 0.96, respectively. Dharma et al. [4] 

estimated the engine exhaust temperature, brake specific fuel consumption, torque, 

brake power, thermal efficiency and exhaust emissions using the back-propagation 

algorithm. The model provides an accurate result with the R2 is more than 98% for 

all parameters. They concluded that the ANN method has superb generalization 

capability and could predict the engine performance accurately. In addition, Rao et 

al. [5] employed the ANN model to evaluate diesel engine performance parameters 

fuelled by rice bran methyl ester biodiesel.  

The embedded back-propagation algorithm has been found to be the best 

technique for model training that results in higher correlation coefficients. Syed et 

al. developed ANN model to investigate the performance of hydrogen dual fuelled 

diesel engine [6]. The model was trained by the BFGS Quasi-Newton algorithm 

and tan-sig transfer function. The output results of RMSE and MAPE were between 

0.0055-2.8557 and 0.52-4.34%, respectively. The ANN prediction results precisely 

matched with the experimental data. Cay [7], Kapusuz et al. [8], and Kumar et al. 

[9] reported their engines study that employed an ANN-based modelling approach. 

Although many studies on diesel engines employ ANN models research that 

focuses on combustion characteristics prediction model is still lacking. In this 

study, engine-testing data using different palm biodiesel-diesel blends percentage 

had been used to train, test, and validate the developed models. The outcomes 
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derived from the ANN methods provide a good agreement with the experimental 

results. Finally, the prediction equations for engine combustion pressure are 

successfully generated from the simulation models. 

2.  Experimental Procedures  

The laboratory engine testing was performed on the Cummins diesel engine. Such an 

engine is commonly used as an electric power generator or auxiliary engine. The 

engine was completely instrumented and connected to the data acquisition system as 

shown in Fig. 1.  

The details of engine specification are given in Table 1. The engine is coupled 

with the eddy-current dynamometer to give a certain braking load. The combustion 

cylinder pressure is instantaneously measured by using Optrand fibre-optic pressure 

transducer with a capacity that ranges between 0-200 MPa. The transducer was 

installed on the first cylinder of the test engine as illustrated in Fig. 2.  

An Optrand fibre-optic pressure sensor operates using the principle of light, 

reflection from a flexible metal diaphragm, which exposed to combustion pressure in 

the engine cylinder. The pressure transducer is coupled to the signal conditioner 

through the fibre-optic cable to convert input analogue into a digital signal. The signal 

from the pressure transducer cylinder and crankshaft encoder is sent to the amplifier 

before being transferred to the data acquisition system. 

Table 1. Engine specifications. 

Engine Model Cummins NT-855M 

Type Four strokes, 6 cylinders, DI 

Bore x stroke 139 mm × 152 mm 

Displacement 14 litre 

Maximum torque 1068 Nm @ 1500 rpm 

Maximum power 201 kW @ 1800 rpm 

Cooling system Water-cooled 

 

 

Fig. 1. Engine test setup. 
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Fig. 2. Pressure transducer. 

3.  Artificial Neural Network (ANN) Architecture 

ANN refers to a computational program that is inspired by the human brain systems 

[10]. The simplified neural network model is comprised of a group of artificial 

neurons that both interconnect and interact with each other, similar to the ways of 

the biological neural network [11], as illustrated in Fig. 3. On top of that, the 

weighted inputs in the ANN models are similar to dendrites in the biological neural 

networks. Besides, summation and activation function works as a cell body, which 

contains both summation and threshold units. Meanwhile, the output unit 

corresponds to the axon that generates an output signal to the synapses. 

The most widely used ANN type is the Feed-Forward Neural Network (FFNN) 

model, which consists of single or multiple hidden layer neurons between input and 

output layers. The input layer is comprised of artificial neurons that receive input 

data for the network learning process. On the other hand, the hidden layer neurons 

are connected to a previous layer through adaptable weights and bias. Neurons refer 

to the information processing units that are fundamental to the operation of nerve 

networks. Figure 4 presents a block diagram that illustrates a simple neuron. All 

neuron within the hidden layer decides the net input value based on their input 

connections. Subsequently, the net input value is calculated by multiplying the 

input product with the assigned weight. In addition, the bias parameter is included 

to generate an output with a non-zero value. The threshold, next, is set by the 

activation function to obtain the desired output. The weight of the 𝑖th neuron in 

connection to 𝑗th neurons is depicted as 𝑤𝑖𝑗. The summation of Netj value is 

calculated based on Eqs. (1) and (2) [13]. 

𝑁𝑒𝑡𝑗 = ∑ 𝑤𝑖𝑗 ∙ 𝑥𝑗 + 𝑏𝑁
𝑖=0                  (1) 

𝑌𝑗 = 𝜑(𝑁𝑒𝑡𝑗)                  (2) 

where net𝑗 is a linear combination of each input and weight value, 𝑥𝑖 refers to the 

input value, 𝑤𝑖𝑗 denotes weight value, b reflects constant bias value, 𝜑 is model 

activation function, Yj refers to the output signal, and N reflects the number of 

inputs value. 
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Several algorithms can be employed for network training. The most popular 

learning algorithm is known as back-propagation (BP) [14]. The learning process 

of BP is comprised of two stages, which are: feedforward and back-propagation. 

As for the feed-forward process, the input data are introduced to the network and 

their effects are transmitted through all the network layers. In this step, the 

generated network output value and the desired target are compared so as to identify 

the network error as illustrated in Fig. 5. On the other hand, at the back-propagation 

phase, the error is propagated backwards from the output layer to all neuron in the 

front layer. The weight of all neuron connections are renewed at each alteration 

until the convergence output value is attained. BP uses a gradient descent approach 

to decrease the error between the network output value and the target value. Such 

error is typically expressed by the statistical parameter of Mean Square Error 

(MSE) [6]. Nevertheless, the training process is discontinued when the MSE value 

begins to increase, instead of decreasing. 

 

Fig. 3. Biological neural network systems [12]. 

 

Fig. 4. Block diagram of a simple neuron model. 
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Fig. 5. Back-propagation learning process. 

4.  Results and Discussion 

The combustion pressure prediction model was developed by employing the 

MATLAB software. The structure of an ANN architecture is illustrated in Fig. 6, 

which presents four input and one output parameters in the model. The input 

variables refer to the percentages of palm biodiesel, engine load, and crank angle 

position; whereas the output variable was the combustion pressure. The accuracy 

of the network was determined by the parameters of MSE and the coefficient of 

correlation (R-value). The R-value is an indicator of the correlation between output 

and target. If R is equivalent to 1, an exact linear relationship is displayed between 

output and target. On the other hand, when R is close to zero, no linear relationship 

is exhibited between output and target. Both the MSE and the R-values can be 

identified by using Eqs. (3) and (4), respectively. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑖 − 𝑜𝑖)2𝑁

𝑖=1                  (3) 

𝑅 = √1 −
∑ (𝑡𝑖−𝑜𝑖)2𝑁

𝑖=1

∑ (𝑡𝑖−𝑡̅)2𝑁
𝑖=1

                 (4) 

where t denotes the target value, 𝑡̅ is the target mean value, o refers to the output 

value, and N reflects the total number of data. 

 

Fig. 6. Structure of artificial neural network prediction model. 
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The number of neuron embedded in the hidden layer has been determined by 

the trial-and-error procedure in order to identify the optimum network architecture. 

When too many neurons are employed, the network generalisation may decrease, 

while too few neurons may reduce the ability of the network to accurately learn the 

pattern. Therefore, the number of neurons in the hidden layer was varied between 

2-18 neurons. The model training results illustrated in Fig. 7 indicates that the 

network accuracy increases when the neurons were increased. Nevertheless, when 

the number of neuron exceeded 16 neurons, MSE values were noted to rise. On top 

of that, the R-value was also optimized at that amount of neurons. The proposed 

ANN network has one hidden layer due to its adequate capability to train the input 

data. The ANN model having 4-16-1 architecture was selected for modelling as 

they provide the best learning capability with the minimum errors. 

The data input for ANN models were derived from the results of the laboratory 

diesel engine test by employing varied ratios of palm biodiesel-diesel blends. 

Seventy percent of the data were selected for network training, while the remaining 

30% were applied for testing and validation of the simulation model. The network 

has been trained by the Levenberg-Marquardt algorithm, since they have been 

acknowledged to be the fastest supervised algorithm in generating a moderate-sized 

feedforward model [15], even though it demands more computer memory, in 

comparison to other algorithms. The details of the ANN training configuration are 

illustrated in Fig. 8. As for the training process, both weights and biases were 

adjusted by the model to optimize the performance of the network based on the 

gradient descent technique. In addition, the tangent-sigmoid and the pure-linear 

were applied as a transfer function in hidden and output layers, respectively. The 

huge variances between the input and target values were eliminated by normalizing 

them in the range between −1 and +1 prior to the training process. The related 

tangent-sigmoid function can be derived according to Eqs. (5) and (6).  

The weight and bias values between input and hidden layers for all prediction 

parameters are tabulated in Table 2. 

𝐹𝑗 =
2

1+𝐸𝑥𝑝
(−2𝑁𝐸𝑇𝑗) − 1                 (5) 

𝑁𝐸𝑇𝑗 = (𝑤1𝑖 × 𝐹𝑢𝑒𝑙 𝑏𝑙𝑒𝑛𝑑) + (𝑤2𝑖 × 𝐸𝑛𝑔𝑖𝑛𝑒 𝑙𝑜𝑎𝑑) + (𝑤3𝑖 ×

𝐸𝑛𝑔𝑖𝑛𝑒 𝑠𝑝𝑒𝑒𝑑) + (𝑤4𝑖 × 𝐶𝑟𝑎𝑛𝑘 𝑎𝑛𝑔𝑙𝑒) + 𝑏1𝑖              (6) 

where w is the weight value and b is the bias value of the prediction model. 

 

Fig. 7. Performance of trained artificial neural network model. 
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Fig. 8. Artificial neural network training configuration. 

Table 2. Weight and bias of the prediction model. 

i w1i w2i w3i w4i bi 

1 19.32932 -0.05087 -1.74473 17.45133 -22.17653 

2 0.17414 -0.09740 -0.07928 12.12394 -0.24941 

3 -0.01196 0.36006 -0.04379 3.42552 -0.54531 

4 0.00165 -0.01461 -0.14898 35.40187 -0.94912 

5 -0.01269 0.42544 -0.02356 3.39657 -0.44622 

6 -8.23658 -13.27445 10.02614 -9.40579 8.27650 

7 27.59197 -0.03815 0.27466 18.25848 -5.54902 

8 0.03378 0.07207 -0.00700 21.03447 -2.47785 

9 0.00336 -0.00278 0.14753 -35.59790 0.92134 

10 -0.32745 0.09911 0.07932 -12.65669 0.17750 

11 0.06035 -0.26686 -0.10013 12.48774 -0.79994 

12 -0.49760 13.87262 -2.20122 -6.53331 -4.27400 

13 -0.06191 0.18445 0.09272 -12.07641 0.66094 

14 28.99197 -0.03118 0.29243 18.70664 -5.79685 

15 -0.21668 0.24002 0.02438 -1.01150 0.70035 

16 -0.01288 0.52007 -0.00113 3.43850 -0.34383 

The performance curve of the prediction model is as illustrated in Fig. 9. The 

model had successfully trained the input data, as indicated by train curve. The 

validation and the test curves that appear similar to the end of alteration dismiss the 

occurrence of data overfitting. In fact, the best validation performance was attained 

at epoch 563 with a minimum mean square error value of 0.0000546. Meanwhile, the 

error distribution of the training, the validation, and the test are presented in Fig. 10. 

Bars that appear blue, green, and red represent training, validation, and testing data, 

respectively. The training errors occurred within the range between −0.028 and 
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+0.025, while errors for validation and test ranged from −0.016 to +0.013. Most of 

the prediction errors occurred within a relatively small range of values. 

The regression plot that displays the correlations between the model outputs and 

the corresponding targets for training, validation, test, and overall datasets are 

shown in Fig. 11. The dashed line in each plot represents the perfect result between 

output and target. Meanwhile, the solid line reflects the best fit of the linear 

regression line between output and target datasets. The prediction results exhibited 

a good agreement with the experimental data, as indicated by the R-value that is 

close to unity. Indeed, the values of R for training, validation, test, and overall are 

0.99972, 0.99973, 0.99968 and 0.99972, respectively. Based on these values, the 

developed ANN model is able to generate 99% of prediction accuracy. 

The combustion pressure prediction formula generated from the ANN model is 

given in Eq. (7). The F1 to F16 parameters can be calculated based on sigmoid-

tangent transfer function, as specified in Eq. (5). This equation can be used to 

calculate the engine combustion pressure by incorporating related input data. The 

validation of ANN predicted results against the experimental data are portrayed in 

Fig. 12. The curve of the ANN prediction appears to be almost identical to the 

experimental data as indicate by the blue colour line. Besides, the ANN model 

offers the best fit to the experimental data points, apart from generating the best 

prediction for the combustion pressure exerted by the diesel engine 

𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =  −(0.01048 × 𝐹1) + (10.00582 × 𝐹2) −
(4.39712 × 𝐹3) − (7.85022 × 𝐹4) + (7.27446 ×
𝐹5) − (0.00212 × 𝐹6) − (3.19503 × 𝐹7) +
(0.12672 × 𝐹8) − (7.57291 × 𝐹9) + (4.41841 ×
𝐹10) + (5.19709 × 𝐹11) + (0.00374 × 𝐹12) +
(10.66395 × 𝐹13) + (3.19013 × 𝐹14) −
(0.006474 × 𝐹15) − (2.87810 × 𝐹16) − 0.94756  

 (7) 

 

 

Fig. 9. Artificial neural network model performance curve. 
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Fig. 10. Error distribution histogram. 

 

Fig. 11. Regression plot between model output and target data. 
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Fig. 12. Validation of artificial neural  

network results against the experimental data. 

5.  Conclusions 

The diesel engine combustion pressure model was successfully developed by using 

the ANN-based method. The data from engine testing fuelled by different palm 

biodiesel blends was used as the model input. The Levenberg-Marquardt was 

adopted as a training algorithm, while tangent-sigmoid and pure-linear were 

applied as a transfer function. Several concluding observations from the 

investigation are given below. 

 ANN architecture with 16 neurons in the hidden layer appears to be the best 

setup for the prediction in this study. 

 The prediction results of ANN model provides a close agreement to the 

experimental data as indicated by higher R-value, between 0.99968-0.99973.  

 ANN model is a powerful prediction tool and suitable to be applied in non-

linear scenarios with high accuracy. 
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Nomenclatures 
 

b Bias value 

N Number of inputs value 

o Output value 

R Correlation coefficient 
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R2 Coefficient of determination 

t Target value 

𝑤 Weight value 

𝑥 Input value 

Y Output signal 
 

Greek Symbols 

Σ Summation of input parameters 

𝜑 Activation function 
 

Abbreviations 

ACO Ant Colony Optimization 

ANN Artificial Neural Network 

BFGS Broyden-Fletcher-Goldfarb-Shanno 

BP Back-propagation 

CP Cylinder Pressure 

DI Direct Injection 

FFNN Feed-Forward Neural Network 

MAPE Mean Absolute Percentage Error 

MSE Mean Square Error 

RMSE Root Mean Square Error 
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