Available online at www.sciencedirect.com

Engineering

Procedia

SciVerse ScienceDirect

Procedia Engineering 41 (2012) 951 — 957

www.elsevier.com/locate/procedia

International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012)

Asynchronous Particle Swarm Optimization for Swarm Robotics

Nor Azlina Ab Aziz**, Zuwairie Ibrahim"

“Faculty of Engineering and Technology, Multimedia University, Malaysia
bFaculty of Electrical and Electronics Engineering, University Malaysia Pahang, Malaysia

Abstract

In the original particle swarm optimization algorithm, particles’ update is done synchronously. The whole swarm fitness is evaluated first
before particle update process is conducted. Whereas in asynchronous update a particle is able to update its velocity and position after its
fitness is evaluated. This caused the particle’s search to be conducted with imperfect information. However, asynchronous update is
useful in field such as swarm robotics search problem, where the robots can move continuously based on the available information
without waiting for the whole swarm. Hence this paper looks into the differences between synchronous and asynchronous PSO and its
application in swarm robotics search.

© 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Centre of
Humanoid Robots and Bio-Sensor (HuRoBs), Faculty of Mechanical Engineering, Universiti Teknologi MARA.
Open access under CC BY-NC-ND license.

Keywords: Asynchronous, particle swarm optimization, swarm robotics, synchronous.

Nomenclature

cy cognitive learning factor

¢ social learning factor

d problem dimension

i is particle’s number

N number of particles in the swarm

P; the best position found so far by the particle

P, the best position found by the neighbouring particles

rand,() and rand,() two independent random numbers in the range of [0.0,1.0]
V; velocity of particle i [V, +Vmax]

w inertia weight

X position of particle i

1. Introduction

Swarm robotics refers to collective and distributed autonomous robotic systems [1]. Target search is one of the active
research areas in swarm robotics. An example of target search problem is a search for chemical leakage source by a swarm
of robots. A good search strategy allows the robots to perform the search collectively, yet independently of each other.

A swarm intelligence algorithm such as particle swarm optimization (PSO) is a good choice for swarm robotics search
problem. In PSO the particles move within search area to find for optimal solution by updating their velocity and position.

* Corresponding author. Tel.: +6-06-2523954; fax: +6-06-2316552.
E-mail address: azlina.aziz@mmu.edu.my

1877-7058 © 2012 Published by Elsevier Ltd. Open access under CC BY-NC-ND license
doi:10.1016/j.proeng.2012.07.268

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

952 Nor Azlina Ab Aziz and Zuwairie Ibrahim / Procedia Engineering 41 (2012) 951 — 957

PSO can be mapped to the swarm robotics search [2], where in swarm robotics instead of particles, robots with actual
velocity and physical position move around a search space to look for the target. However in the original PSO the particles
velocity and position update is done in synchronous fashion. This approach is not suitable for swarm robotics, as the robots
need to be paused until complete information of the whole swarm is obtained. Another update method known as
asynchronous update is believed to be a more suitable approach. Asynchronous update allows the update process to be done
using incomplete information. The asynchronous version is able to avoid the robots from being halted during their search
process.

In the following section the particle swarm optimization is studied and the difference between synchronous PSO (SPSO)
and asynchronous PSO (APSO) is discussed. The performance of SPSO and APSO is studied using three test functions in
section 3. Section 4 focuses on the works related to APSO for swarm robotics search. Finally is the conclusion.

2. Particle Swarm Optimization

Particle swarm optimization (PSO) was introduced by James Kennedy and Russell Eberhart in 1995. It is a swarm based
optimization algorithm that mimics the social behaviour of organisms like birds and fishes. This social behaviour is imitated
by PSO using swarm of agents called particles [3]. The interaction of the particles with their neighbours is the key to the
effectiveness of PSO.

A particle in PSO has a position (X;) and velocity (V;). The position represents a solution suggested by the particle while
velocity is the rate of changes of the next position with respect to current position. At the beginning of the algorithm these
two values (position and velocity) are randomly initialised. In the subsequent iterations the search process is conducted by
updating these values using the following equations:

V, = wx V,+cexrand()x (P, — X,) + c2x randz()x (P, = X.) (1)

X;=X;+V; 2)
where i is particle’s number (i = 1,..,N; N: number of particles in the swarm).

The V; value is clamped to £V, to prevent explosion. If the value of V,,,, is too large, the exploration range is too wide,
however if it is too small, particles will favour local search [4]. In equation (1), c; and ¢, are the learning factors that control
the effect of cognitive and social influence to a particle, typically both c; and ¢, are set to 2 [5]. rand,() and rand,() are two
independent random numbers in the range of [0.0,1.0]. The randomness terms provides energy to the particles. W is known
as inertia weight, a term added to improve PSO’s performance. The inertia weight controls particles momentum so that, they
can switch to fine tuning when a good area is found [6]. A time decreasing inertia weight is better than a fixed inertia weight
[4]. This is because larger inertia weight at the beginning helps to find good area through exploration and small inertia
weight towards the end — where typically a good area is already found — facilitates fine tuning. The small inertia weight at
the end of the search, reduce the global search activity during this period [7].This ensure convergence.

The success of an individual in PSO is affected not only by particle’s own effort and experience but also by the
information shared by its surrounding neighbours. The particle’s experience is represented in the equation by; P; — the best
position found so far by the particle, while the neighbours’ influence is represented by; P, — the best position found by the
neighbouring particles. P, value depends on the neighbourhood type. Particles neighbourhood in PSO had been studied from
two perspectives; global neighbourhood (gBes?) and local neighbourhood (/Best). In gBest the particles are fully connected
therefore the particles search is directed by the best particle of the swarm. While in /Best the particles are connected to their
neighbours only and their search is conducted by referring to the neighbourhood best.

The particle’s position is updated using equation (2) where the velocity is added to the previous position. This shows
how a particle next search is launched from its previous position and the new search is influenced by its pass search [8].
Typically X; is bounded so that the particles are not wasting search time in infeasible region [9]. The quality of X; is
evaluated by a problem-dependent fitness function. If the current solution is better than the fitness of Py or P; or both, the
new position value will replace P; or P, accordingly. This update process continues until stopping criterion is met, usually
when either maximum iteration is achieved or target solution is attained. When the stopping criterion is satisfied, the best
particle found so far is taken as the optimal solution (near optimal).

2.1. Neighbourhood

PSO does not need a large population to look for the optimal solution successfully. Typical range of neighbourhood size
is from 10 to 40 particles.

Originally PSO is a global neighbourhood; gBest, algorithm, where all particles in the swarm are fully connected.
However, it is believed that this type of neighbourhood is often trapped in local optima and converged too fast [10]. Hence,

Nor Azlina Ab Aziz and Zuwairie Ibrahim / Procedia Engineering 41 (2012) 951 — 957

[Best topology is adopted where the size of the neighbourhood is smaller. The information on the best solution found in
[Best topology travels slower [11]. Examples of /Best topologies are; circle/ring, wheel and random neighbourhood [12]. In
circle topology the particles are connected to their K immediate neighbours, with the smallest XK is two. The wheel topology
has a focal point where all particles are connected to it. Thus, the neighbour of non-focal point particles is just the focal
point, while focal point particle has the entire swarm as its neighbours. As for random neighbourhood the neighbours of a

particle are randomly selected.
(2) i z (b)

Fig. 1. (a)gBest topology (b)/Best topology; ring with K=2
2.2. Synchronous Update

In the original PSO, particles’ P; and P, update are done after all particles’ fitness has been evaluated, Fig. 2. This is
known as synchronous update. The synchronous update ensures all particles, perfect and complete information of its
neighborhood. According to study conducted by Vilela, et. al. [13], this is the best type of update process which gives good
result and convergence speed. However, synchronous update is a costly choice [14], as a particle need to wait for the whole
swarm to be updated before it can move to new position and continue its search. Hence the first particle evaluated is idle for
the longest time, waiting for the whole swarm to be updated.

Initialize particles population;
Do{
Calculate fitness values of each particles using fitness function;
Update piy if the current fitness value is better than pis;
Determine pqq : choose the particle position with the best fitness value of all the neighbours as the
Pgas
For each particle {
Update velocity and position;
}

} While maximum iteration or ideal fitness is not attained;

Fig. 2. Synchronous PSO (SPSO) Algorithm
2.3. Asynchronous Update

Asynchronous PSO (APSO) was first discussed in [14]. In APSO a particle’s P;, P,, velocity and position are updated
immediately after its fitness evaluation, Fig. 3. Therefore in this version a particle’s search is guided by partial or imperfect
information of its neighbourhood — some of the information is from current iteration while other from the previous iteration,
this contributes to diversity in the swarm, which is a desirable trait [15]. Due to the asynchronous update, even in gBest
topology, the value of P, use by each particle in the same iteration can be varied. Other than diversity, lack of synchronicity
in APSO solves the issue of idle particles faced in SPSO [16]. In several studies [14, 15, 17], APSO is claim to perform
better than SPSO. Mussi, et. al. [15] studied the performance of both SPSO and APSO in global and local neighbourhood
topology. It is shown in their work that in gBest topology, APSO outperform SPSO, while in /Best, the performance of both
version of PSO algorithms closely match each other. This is because diversity is preserved in /Best. Xue, et. al., reported in
their work that asynchronous update contributes to a lesser execution time [17]. The differences between APSO and SPSO
are highlighted in Table 1. Asynchronous update enable the particles update sequence to change dynamically or a particle to
be updated more that once [18, 16].

953

954

Nor Azlina Ab Aziz and Zuwairie Ibrahim / Procedia Engineering 41 (2012) 951 — 957

Dof

}

Initialize particles population;

For each particle {
Calculate particle’s fitness values using fitness function;
Update pis if the current fitness value is better than p;s;
Update py : if the current fitness value is better than pgq;
Update velocity and position;

} While maximum iteration or ideal fitness is not attained;

Fig. 3. Asynchronous PSO (APSO) Algorithm

Table 1. SPSO vs APSO

SPSO

APSO

Update

Information

gBest value

Synchronous — at the beginning of each iteration
update all particle

Complete information — all particles use

information from the same iteration

uniform — all particles are updated based on the
best of previous iteration

Asynchronous — update a particle as soon as its
fitness is evaluated

Partial — particles use combination of information
from current and previous iteration

varying — particles use information available at the
moment, better diversity

Table 2. Test Functions

De Jong’s n
¢ S(x)= daxxzd
Rosenbrock’s . n
7= £[00(r-23f
Rastigrin’s

O

£ =10n+ 3[4 ~10cos(27 x,))]
d=1

De Jong's functien

Rosenbrock’s function

6000

5000

4000

ness

1 = 3000

2000

1000

SPSO
---- APSO

40 60 80 100 120 140 160 180 200]
ileration (l))

Rastigrin's function
z00

100 120 140 160 180 200
ileration

©

Fig. 3. Result of (a) De Jong’s function (b) Rosenbrock’s function and (c) Rastigrin’s function

Nor Azlina Ab Aziz and Zuwairie Ibrahim / Procedia Engineering 41 (2012) 951 — 957

3. Results

In this section the performance of APSO is compare with SPSO using three test functions. The test functions used are
listed in Table 2. De Jong’s and Rosenbrock’s are unimodal functions whereas Rastigrin is a multimodal function. The
functions dimension used is 10 (n=10). The algorithms are implemented using MATLAB. The number of particles in both
SPSO and APSO is set to 10, while number of iteration is 200.

The results of the test are shown in Fig. 3. The results show that the performance of both version of particles update;
SPSO and APSO, closely match each other. This proves that asynchronous update is an option of particles update process
without compromising the performance of PSO. However the convergence rate of APSO is slower than SPSO. This is due
to the higher diversity in APSO, which allow the particles to carefully explore the search space before convergence. This
feature is not a disadvantage; rather it is a desirable trait as premature convergence is one of the problems faced by PSO
[10].

4. Asynchronous PSO and Swarm Robotics Search Problem

A swarm robotics search problem’s objective is to guide the swarm of robots to look for a target or multiple targets in a
search area. According to Hereford and Siebold [19], swarm robotics search problem requires a search algorithm with the
following characteristics;

e Distributed — each robots has its own processor to execute the algorithm on its own, thus a distributed
algorithm ensures a single robot failure won’t interrupt the whole swarm.
e Computationally simple — the robots are equipped with simple processor with limited memory and battery
capacity, therefore the algorithm shouldn’t be too complex
e Scalable — the swarm size varies from a small number of robots to a large swarm, the algorithm should be able
to handle every cases.
e Contiguous movement — the robots have to move continuously until the target is reached.
Based on these characteristics, PSO is a suitable algorithm for the search problem. In [2], the authors had mapped the key
elements of swarm robotics search to PSO, Table 3. According to this the robots act as particles and their fitness is
evaluated based on the strength of the signal from the target to the robots. In original PSO, neighbourhood is usually
predefined, but in swarm robotics the neighbourhood is based on the relative distance of the robots to each other.

Table 3. Mapping swarm robotics search to PSO

Swarm Robotics Search PSO
Robots Particles
Signal detection Fitness evaluation
Relative localization Absolute localization
Path planning - Particle update
Continuous control Iteration
Local communication — based on physical Global communication — based on fixed
distance neighborhood

In this study, it is believed that the PSO with asynchronous update is a better choice for swarm robotics in contrast to
synchronous update. Asynchronous allows efficient usage of robots processor so that they won’t be idle for a long time,
therefore the robots can move continuously until target is found. It is also a good candidate for parallel implementation.
Asynchronous parallel PSO (APPSO) [20], is chosen for swarm robotics search in [2&17]. APPSO allows the robots to
efficiently utilize their individual processing power by searching for target asynchronously and simultaneously. APPSO
allows the particles (i.e., robots) to evaluate their own fitness individually without the need to wait for others -
parallelization. The velocity and position update in APPSO is a centralized process; the robots report their fitness to a
master which performs the update process asynchronously. A centralized update does not use the robots processing
capability to the fullest, hence a decentralized asynchronous PSO is proposed in [21]. This algorithm allows each particle to
update their own velocity and position, making it more robust and scalable algorithm even in the event of failure among the
swarm members. This algorithm also enables the swarm to have dynamic neighbourhood and variety of search tendency
among the particles.

A physically embedded PSO (pePSO) is proposed in [19]. In pePSO, each robots acts as a particle where the robot
movement is calculated based on PSO velocity and position equations. It is found that larger number of robots increases the

955

956 Nor Azlina Ab Aziz and Zuwairie Ibrahim / Procedia Engineering 41 (2012) 951 — 957

number of successful search with lesser search time. In [22] a distributed PSO (dPSO) is introduced. The algorithm
introduced uses asynchronous update, according to the author, this approach prevents the robots to stall during the search for
target.

A work conducted by Doctor, et. al., [23], focuses on finding optimal PSO’s parameters in collective search. Augmented
Lagrangian PSO with velocity limits (VL-ALPSO) is discussed in [24], the algorithm is a decentralized and it takes the
physical conditions of the search space into consideration

5. Conclusion

Target search is an important research problem in swarm robotics. A good search algorithm that is distributive, scalable,
simple and allow robots’ continuous movement is desired. PSO is suitable for this task due to its low computational cost and
scalability. It is also easy to implement PSO in a distributed manner. However the synchronous nature of the original PSO
does not ensure continuous and unhalted robots movement. Therefore this paper looks into the usage of asynchronous
update in swarm robotics search. From the study conducted, it can be seen that asynchronous update is more suitable choice
to ensure unhalted movement. In addition to that, asynchronous update is also suitable for parallel PSO implementation.
Parallelization contributes to a more efficient usage of the robots processing capabilities.

Acknowledgements

This project is funded by the Malaysian Ministry of Higher Education under its fundamental research grant scheme
(FRGS). We would like to thank MOHE for their support. The authors also want to thank the reviewers for their invaluable
reviews and comments.

References

[1] Beni, G. 2004 “From Swarm Intelligence to Swarm Robotics, In Proceedings of International Conference on Swarm Robotics, pp.: 1-9

[2] Xue, S., Li, J.,Zeng, J., He, X., and Zhang, G. 2011. Synchronous and Asynchronous Communication Modes for Swarm Robotic Search, in
“Mobile Robots — Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training”, J. Bedkowski, Editor,
Intech (http://www.intechopen.com/)

[3] Kennedy, J., and Eberhart, R. C., 1995. “Particle swarm optimization”, In Proceedings of IEEE International Conference on Neural Networks.
pp.:1942-1948.

[4] Shi, Y., and Eberhart, R. C. 1998. “Parameter selection in particle swarm optimization”, In Proceedings of the 7th International Conference on
Evolutionary Programming pp.: 591 — 600

[5] Kennedy, J., Eberhart, R. and Shi, Y. 2001. Swarm Intelligence, Morgan Kaufmann, US.

[6] Shi, Y., and Eberhart, R. C., 1998. “A modified particle swarm optimizer”, In Proceedings of IEEE International Conference on Evolutionary
Computation. pp.: 69-73.

[7] Shi, Y., and Eberhart, R.C. 1999. “Empirical Study of Particle Swarm Optimization”, In Proceedings of the IEEE Congress on Evolutionary
Computation, pp.:1945-1950

[8] Kennedy, J. 2005 “Why Does It Need Velocity?”, In Proceedings of Swarm Intelligence Symposium. pp.: 38 — 44

[9] Eberhart, R.C. and Shi, Y. 2000. “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization”, In Proceedings of the
Congress on Evolutionary Computation Vol. 1. pp.: 84-88

[10] Shi, Y. 2004 Particle Swarm Optimization, IEEE Neural Networks Society, pp.8-13

[11] Vesterstrom, J. and Riget, J. 2002. Particle Swarms: Extension for improved local, multi-modal and dynamic search in numerical optimization,
Master Thesis submitted at the Department of Computer Science, University of Aarhus

[12] Kennedy, J. 1999 “Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance” In proceedings of the
Conference on Evolutionary Computation. pp.:1931-1938

[13] Vilela, J.R., Zhang, M. and Seah, W. 2011 “A Performance Study on Synchronous and Asynchronous Updates in Particle Swarm Optimization”
In GECCO’11, pp.:21-28

[14] Carlisle, A. and Dozier, G. 2001. “An off-the-shelf PSO”, In Workshop on Particle Swarm Optimization, pp.:1-6

[15] Mussi, L., Cagnoni, S., and Daolio 2009. “Empirical Assessment of the Effects of update synchronization in Particle Swarm Optimization”, In
Proceeding of the AT*IA Workshop on Complexity, Evolution and Emergent Intelligence, pp.:1-10

[16] Vilela, J.R., Zhang, M. and Seah, W. 2011. “Random Asynchronous PSO”, In Proceeding of 5" International Conference on Automation,
Robotics and Applications, pp.: 220-225

Nor Azlina Ab Aziz and Zuwairie Ibrahim / Procedia Engineering 41 (2012) 951 — 957

[17] Xue, S., Zeng, J., and Zhang, J. 2009. Parallel Asynchronous Control Strategy for Target Search with Swarm Robots, International Journal of
Bio-Inspired Computation, Vol. 1, No. 1, pp.:151-163

[18] Diosan, L. and Oltean, M. 2008. What Else is the Evolution of PSO Telling Us? Journal of Artificial Evolution and Application, Vol. 2008, 12
pages

[19] Hereford, J.M., and Siebold, M.A. 2010. Bio-Inspired Search Strategies for Robot Swarms, in “Swarm Robotics from Biology to Robotics”,
E.M. Martin, Editor, Intech (http://www.intechopen.com/)

[20] Venter, G. and Sobieski, J.S. 2005 A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluation, Journal of
Aerospace Computing, Information and Communication, no. 3, pp.:123-137

[21] Akat, S.B., and Gazi, V., 2008. “Decentralized Asynchronous Particle Swarm Optimization”, In Proceedings of IEEE Swarm Intelligence
Symposium, pp.:1-8

[22] Hereford, J.M 2006. “A Distributed Particle Swarm Optimization Algorithm for Swam Robotic Applications”, In Proceedings of IEEE
Congress on Evolutionary Computation, pp.:1678-1685

[23] Doctor, S., Venayagamoorthy, G.K, and Gudise, V.G, 2004. “Optimal PSO for Collective Robotic Search Applications”, In Proceedings of
IEEE Congress on Evolutionary Computation, pp.:1390-1395

[24] Tang, Q. and Eberhard, P. 2011 A PSO Based Algorithm Designed for a Swarm of Mobile Robots, Struct. Multidisc Optim. 44, pp.:483-498

957

