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Abstract
In this study, the mathematical modeling for stagnation point flow over a stretching
surface with convective boundary conditions is considered. The transformed
boundary layer equations are solved numerically using the shooting method.
Numerical solutions are obtained for the skin friction coefficient, the surface
temperature as well as the velocity profiles. The features of the flow and heat transfer
characteristics for various values of the Prandtl number, stretching parameter and
conjugate parameter are analyzed and discussed.
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1 Introduction
Problems related to convection boundary layer flows are important in engineering and
industrial activities. Such flows are applied to manage thermal effects in many industrial
outputs, for example, in electronic devices, computer power supply and also in an engine
cooling system such as a heatsink in a car radiator. Sakiadis [] was the first to study the
boundary layer flow on a continuous solid surface moving at a constant speed. Due to en-
trainment of the ambient fluid, this boundary layer flow is quite different from the Blasius
flow past a flat plate. Sakiadis’s theoretical predictions for Newtonian fluids were later cor-
roborated experimentally by Tsou et al. []. Flow of a viscous fluid past a stretching sheet
is a classical problem in fluid dynamics. Crane [] was the first to study the convection
boundary layer flow over a stretching sheet. The heat and mass transfer on a stretching
sheet with suction or blowing was investigated by Gupta and Gupta []. They considered
an isothermal moving plate and obtained the temperature and concentration distribu-
tions. Chen and Char [] studied the laminar boundary layer flow and heat transfer from
a linearly stretching, continuous sheet subjected to suction or blowing with prescribed
wall temperature and heat flux. Stagnation flow towards a shrinking sheet was then in-
vestigated by Wang [] who considered the prescribed wall temperature case. Ishak et
al. [–] studied the MHD stagnation point flow towards a stretching sheet, mixed con-
vection towards a vertical and continuosly stretching sheet and post stagnation-point to-
wards a vertical and linearly stretching sheet. This type of problem was then extended
to viscous fluids, viscoelastic fluids or micropolar fluids by many investigators by con-
sidering the usually applied boundary conditions, either prescribed wall temperature or
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prescribed wall heat flux. Recently, Mohamed et al. [] studied the stagnation point flow
over a stretching sheet and Hayat et al. [] investigated the flow of a second grade fluid
over a stretching surface with Newtonian heating.
On the other hand, Merkin [] has shown that in general, there are four com-

mon heating processes specifying the wall-to-ambient temperature distributions, namely
(i) constant or prescribed wall temperature; (ii) constant or prescribed surface heat flux;
(iii) Newtonian heating (NH); and (iv) convective/conjugate boundary conditions (CBC),
where heat is supplied through a bounding surface of finite thickness and finite heat ca-
pacity. The interface temperature is not known a priori but depends on the intrinsic prop-
erties of the system, namely the thermal conductivity of the fluid or solid. Recent demands
in heat transfer engineering have requested researchers to develop various new types of
heat transfer equipments with superior performance, especially compact and light-weight
ones. With the increasing need for small-size units, focus has been cast on the effects of
the interaction between developments of thermal boundary layers in both fluid streams
and of axial wall conduction, which usually affects the heat exchanges performance. Since
the early paper by Luikov et al. [], many contributions to the topic of conjugate heat
transfer have been made. The conjugate/convective boundary condition has been used
only quite recently by Aziz [] who studied the laminar thermal boundary layer over a
flat plate. This Blasius flowwith the conjugate boundary condition then has been revisited
by Rashidi and Erfani [] and Magyari []. Makinde and Aziz [] considered the hy-
dromagnetic heat and mass transfer over a vertical plate. Ishak et al. [, ] have studied
the thermal boundary layer flow on a moving plate (Sakiadis flow) with radiation effects.
Recently, Merkin and Pop [], Yao et al. [], Yacob et al. [] and Yacob and Ishak []
investigated the boundary layer flow past a shrinking/stretching sheet with convective
boundary conditions in a viscous fluid, nanofluid or micropolar fluid, respectively. Excel-
lent reviews of the topics of convective heat transfer problems can be found in the books
by Kimura et al. [] and Martynenko and Khramtsov [].
Motivated by the works of Wang [] and Yacob and Ishak [], we aim in this study

to investigate the problem of stagnation point flow over a stretching sheet with convec-
tive boundary conditions. The governing nonlinear partial differential equations are first
transformed into a system of ordinary differential equations by a similarity transformation
before being solved numerically using the shooting method (see Salleh et al. [] for more
details about this method).

2 Mathematical formulation
A steady two-dimensional stagnation-point flow over a stretching/shrinking plate im-
mersed in an incompressible viscous fluid of ambient temperature T∞ is considered. It is
assumed that the external velocity ue(x) and the stretching velocity uw(x) are of the forms
ue(x) = ax and uw(x) = bx, where a and b are constants. The physical model and coordi-
nate system of this problem are shown in Figure . It is further assumed that the plate is
subjected to a conjugate boundary condition. The boundary layer equations are

∂u
∂x

+
∂v
∂y

= , ()

u
∂u
∂x

+ v
∂u
∂y

= ue
due
dx

+ ν
∂u
∂y

, ()
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Figure 1 Physical model and the coordinate system.

u
∂T
∂x

+ v
∂T
∂y

= α
∂T
∂y

()

subject to the boundary conditions (Salleh et al. [] and Aziz [])

u = uw(x), v = ,
∂T
∂y

= –hf T (NH), –k
∂T
∂y

(x, ) = hf
(
Tf – T(x, )

)
(CBC) at y =  ()

u = ue(x), T → T∞ as y→ ∞,

where u and v are the velocity components along the x and y directions, respectively. Fur-
ther, T is temperature, Tf is the temperature of the hot fluid, ν is the kinematic viscosity,
k is the thermal conductivity, α is the thermal diffusivity and hf is the heat transfer coef-
ficient.
We now introduce the following similarity variables (see Salleh et al. [] and Aziz []):

η =
(
ue
νx

)/

y, ψ = (νxue)/f (η),

θ (η) =
T – T∞
T∞

(NH) or θ (η) =
T – T∞
Tf – T∞

(CBC),
()

where ψ is the stream function defined as u = ∂ψ

∂y and v = – ∂ψ

∂x , which identically satisfies
Equation (). Thus, we have

u = axf ′(η), v = –(aν)/f (η), ()

where prime denotes differentiation with respect to η. Substituting () and () into Equa-
tions () and (), we obtain the following nonlinear ordinary differential equations:

f ′′′ + ff ′′ +  – f ′ = , ()

Pr

θ ′′ + f θ ′ = , ()
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where Pr = ν
α
is the Prandtl number. The boundary conditions () become

f () = , f ′() = ε,

θ ′() = –γ
(
 + θ ()

)
(NH) or θ ′() = –γ

[
 – θ ()

]
(CBC)

()

f ′(η) → , θ (η) →  as η → ∞, ()

where ε = b
a ≥  is the stretching parameter. Further, γ = hf ( ν

a )
/ (NH) or γ = hf ( ν

a )
/k–

(CBC) is the conjugate parameter for the convective boundary condition. It is noticed that
γ =  is for the insulated plate and γ → ∞ is when the surface temperature is prescribed.
The physical quantities of interest are the skin friction coefficient Cf and the local Nusselt
number Nux which are given by

Cf =
τw

ρue
, Nux =

xqw
k(Tw – T∞)

, ()

where ρ is the fluid density. The surface shear stress τw and the surface heat flux qw are
given by

τw = μ

(
∂u
∂y

)
y=

, qw = –k
(

∂T
∂y

)
y=

()

with μ = ρν and k being the dynamic viscosity and the thermal conductivity, respectively.
Using the similarity variables in () gives

Cf Re/x = f ′′(),
Nux
Re/x

= γ

(


θ ()
+ 

)
(NH),

Nux
Re/x

= γ

(


θ ()
– 

)
(CBC),

()

where Rex = uex
ν

is the local Reynolds number and Nux is the local Nusselt number.

3 Numerical method
The system of boundary value problem (BVP) ()-() was solved numerically via the
shooting technique [–] by converting it into an equivalent initial value problem (IVP).
In this technique, we choose a suitable finite value of η∞ (where η∞ corresponds to
η → ∞) which depends on the values of the parameters considered. First, the system of
equations () and () is reduced to a first-order system (by introducing new variables) as
follows:

f ′ = p, p′ = q, q′ + f q +  – p = , ()

θ ′ = r,

Pr

r′ + fr =  ()

with the boundary conditions

f () = , p() = ε,

r() = –γ
[
 + θ ()

]
(NH) or r() = –γ

[
 – θ ()

]
(CBC),

p(η∞) = , θ (η∞) = .

()
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Now, we have a set of ‘partial’ initial conditions

f () = , p() = ε, q() = α, θ () = α,

r() = –γ [ + α] (NH) or r() = –γ [ – α] (CBC).

The Runge-Kutta-Fehlberg method will be adopted to solve the applicable initial value
problem. In order to integrate Equations () and () as an IVP, we require a value for
f ′′() and θ (), i.e., α and α respectively. Since these values are not given in the bound-
ary conditions (), suitable guess values for f ′′() and θ () are made and integration is
carried out. Then, we compare the calculated values for f ′(η) and θ (η) at η∞ with the
given boundary conditions f ′(η∞) =  and θ (η∞) =  respectively and adjust the estimated
values of f ′′(), θ () and η∞ to give a better approximation for the solution. This compu-
tation is done with the aid of shootlib file in Maple software. In this study, the boundary
layer thickness η∞ between  and  was used in the computation, depending on the values
of the parameters considered so that the boundary condition at ‘infinity’ is achieved.

4 Results and discussion
Equations () and () subject to the boundary conditions () and () were solved numer-
ically using the shooting method with three parameters considered, namely the Prandtl
number Pr, the conjugate parameter γ and the stretching parameter ε. From the numer-
ical solution, it is known that the boundary layer thicknesses η∞ from  to  is suitable
to provide accurate numerical results. Due to the decoupled boundary layer equations
() and (), for ε = , it has been found that there is a unique value of the skin friction
coefficient, f ′′() = ., which is in very good comparison with the classical value
f ′′() = . reported by Hiemenz []. Table  presents the comparison between the
present results with the previously reported results byWang [] and Yacob and Ishak []
for various values of the stretching parameter ε. It has been found that they are in good-
agreement. We can conclude that this method works efficiently for the present problem,
and we are also confident that the results presented here are accurate.
Figure  illustrates the variation of the surface temperature θ () with ε when Pr = .

and γ = ., , and .. To get a physically acceptable solution, ε must be greater than or
equal to a critical value, say εc, i.e., ε ≥ εc. It can be seen from this figure that θ () bounded
to  as ε approaches the critical value εc � –..
Figure  shows the variation of the surface temperature θ () with the Prandtl number

Pr, when ε =  and γ = .,  and .. It is noticed that the increasing value of the Prandtl
number caused the decrease of surface temperature θ (). From Figures  and , the same
trend is observed for the variation of the surface temperature, i.e., the surface temperature
increases as γ increases.

Table 1 Comparison for the values of f ′′(0) with previously published results

ε Wang [6] Yacob and Ishak [23] Present
f ′′(0)

2 –1.88731 –1.887307 –1.8873066
1 0 0 0
0.5 0.71330 0.713295 0.7132949
0 1.232588 1.232588 1.2325877
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Figure 2 Variation of the plate temperature θ (0) with ε when Pr = 0.72 and γ = 0.1, 1, 1.5.

Figure 3 Variation of the plate temperature θ (0) with Prandtl number Pr when ε = 1 and
γ = 0.1, 1, 1.5.

Figure  presents the temperature profiles for various values of Pr. It has been found that
as Pr increases, the temperature in the boundary layer decreases, and the thermal bound-
ary layer thickness also decreases. This is because for small values of the Prandtl number,
the fluid is highly thermal conductive. Physically, if Pr increases, the thermal diffusivity
decreases, and this phenomenon leads to the decreasing of energy ability that reduces the
thermal boundary layer.
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Figure 4 Temperature profiles θ (η) for various values of Pr when γ = 1 and ε = 1 (CBC).

Figure 5 Temperature profiles θ (η) for various values of ε when γ = 1 and Pr = 0.72 (CBC).

The temperature profiles with various values of ε are presented in Figure , and it has
been found again that as ε increases, the temperature decreases, and the thermal boundary
layer thickness also decreases, similar to the results presented in Figure . The tempera-
ture profiles presented in Figure  show that the temperature increases as the conjugate
parameter increases, in contrast with the results presented in Figures  and  for the vari-
ation of Pr and ε.
Lastly, Figure  shows the velocity profiles for different values of ε which produce f ′() =

ε and f ′(η) =  as η → ∞. When ε > , the flow has an inverted boundary layer structure
and the thickness of the boundary layer decreases with ε. On the other hand, when ε < ,
the flow has a boundary layer structure, which results from the fact that when b/a < , the
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Figure 6 Temperature profiles θ (η) for various values of γ when ε = 1 and Pr = 0.72 (CBC).

Figure 7 Velocity profiles f ′(η) for various values of ε.

external velocity ax of the surface exceeds the velocity bx of the stretching sheet. For this
case, the thickness of the boundary layer increases with the increase of ε.

5 Conclusion
In this paper, we have theoretically and numerically studied the problem of stagnation
point flow over a stretching sheet with the convective boundary condition. It is shown
how the Prandtl number Pr, stretching parameter εand conjugate parameter γ affect the
values of the surface temperature θ () and skin friction coefficient f ′′().

http://www.boundaryvalueproblems.com/content/2013/1/4
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We can conclude that the thermal boundary layer thickness depends strongly on these
three parameters. Further, it is seen that an increase in the Prandtl number Pr and stretch-
ing parameter εresults in a decrease of the temperature. The reason is that smaller values
of Pr are equivalent to increasing thermal conductivity and therefore, heat is capable of
diffusing away from the heated wall more rapidly than at higher values of Pr. However, the
increase of conjugate parameter γ leads to an increase of the surface temperature θ ().
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