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Abstract: In this study, an alternative fuel for compression ignition (CI) engines called tri-fuel
emulsion was prepared using an ultrasonic emulsifier. The objective of the study is to investigate
the effect of emulsifying settings and formulation ratio on the physicochemical properties of tri-fuel
emulsions. Design of experiment (DOE) with the two-level factorial design was employed to
analyze the effect of emulsifying settings such as time, amplitude, and cycle along with the variation
ratio of tri-fuel emulsion components as control factors. Numbers of responses identified were
important parameters that may contribute to microexplosion phenomenon in CI engine. Analysis of
variance (ANOVA) was carried out for each response, and the results indicated that density, dynamic
viscosity, surface tension, and average droplet size were influenced by specific preparation control
factors. Furthermore, interaction among the control factors was found to affect the responses as
well. Interaction means the effect of two factors together is different than what would be expected
from each factor separately. Besides, the stability of the tri-fuel emulsion was observed for three
months. Furthermore, a qualitative approach with a multiobjective lens digital microscope revealed
the geometry of freshly made dispersed tri-fuel emulsion droplets. Microscopic examination on
tri-fuel emulsion droplets has shown that the dispersed ethanol capsulated within diesel with the
help of biodiesel is similar to a water in diesel emulsion and is dissimilar to commercial diesel mixed
with fatty acid methyl esters found in the market.

Keywords: emulsion; diesel; biodiesel; ethanol; tri-fuel; emulsifying setting

1. Introduction

Compression ignition, the core principle of a diesel engine, permits high compression ratio which
has been used for decades. The engine has a significant share in transportation and various industries.
It was reported in 2014 in some European countries that the diesel vehicle market share has exceeded
60%. Nonetheless, the world diesel engine sales were forecasted to rise by 7.7% annually through
2017 [1], while the fact was not as expected. Despite predictions, between 2010 to 2040, gasoline
demand decreased by 10%, while diesel had higher demand up to 85% [2]. Though diesel engines
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have preferable advantages compared to other engines, according to BP’s Statistical Review 2017,
diesel fuel demand is decreasing for the first time since 2009 due to industrial slowdown. While
part of this is due to concern about fuel demand and supply, it is also related to ecological concern
and human health, which damaged by diesel engine emissions [3–6]. The main disadvantage of this
engine category is the emission of unwanted particles in the long run [7]. Hence, replacement fuel
may be desirable to overcome the problems of such emission and sustain the CI engine with the
hope for better performance. In other words, to maintain the compression ignition (CI) engine, it is
necessary to discover alternative fuel. With recent development of second-generation bioethanol [8,9]
and second-generation biodiesel production [10,11], mixing diesel with biofuels could be a promising
option, and it should be able to be introduced without significant modification of the engine.

Biofuels have been introduced to the CI engine as stand-alone [12] and diesel-accompanied, known
as blended fuel [6,13]. Ethanol was introduced due to its high volatility that potentially contributes
to secondary atomization, known as the microexplosion phenomenon [14–25]. Meanwhile, ethanol
belongs to the alcohol family and is polar, similar to water. Since ethanol and diesel are known
to be immiscible in nature, palm methyl-ester or biodiesel have been identified as co-solvents and
natural surfactants [26–30]. The remaining task is to resolve the immiscibility issue of alcohol and
diesel. By definition, an emulsion is a mixture of two or more liquids which are immiscible by nature
with the aid of surfactant [31]. It was reported that tri-fuel is essential in emission reduction [6].
Unfortunately, it is nearly impossible to form an emulsion via normal agitation such as stirring or
shaking. Even with the presence of an emulsification agent, the mixture will be separated within
seconds of the machine being switch off. An ultrasonic emulsifier, however, has been identified as one of
the effective mixing instruments [32,33], with the capability of producing a stable emulsion with a lower
amount of surfactant required in comparison to conventional methods of blending or mixing [34–37].
Nevertheless, information regarding the formulation ratio combined with emulsifying setting, such as
amplitude, cycle, and period, are limited in the literature which utilized emulsified tri-fuel.

The aim of this study is to identify the effect of emulsification setting and formulation ratio on
physicochemical properties of tri-fuel emulsions for a CI engine. Physicochemical properties selected
are relevant to the studies of spray and droplet atomization.

2. Material and Methods

2.1. Materials

For the formulation of the tri-fuel emulsion, the materials required are diesel, palm methyl ester,
and ethanol. Distillate diesel fuel without additive was obtained from an available supplier in Kuantan,
Pahang, Malaysia, meeting the specifications of Malaysia standards (SIRIM) and Euro 2M standards.
Detailed specification is presented in Table 1. Similarly, biodiesel from palm oil origin or a synonymous
name, Palm Oil Methyl Esters, Biodiesel B100, and Fatty Acid Methyl Esters (FAME), was obtained from
the local manufacturer along with anhydrous ethanol with purity of 99.9% v/v. Detailed specification
of biodiesel is presented in Table 2, while technical specification of ethanol is listed in Table 3.
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Table 1. Diesel’s technical specifications.

Properties Min Max Unit Test Method

Density D 4052–Density @ 15 ◦C 0.81 0.87 Kg/L @ 15 ◦C ASTM D4052-15
D86 Dist. Comp.–95% Rec 370 ◦C ASTM D86-15

Flashpoint comp–Flashpoint 60 ◦C ASTM D93-16
K. viscosity Comp–viscosity 40 ◦C 1.50 5.80 cSt ASTM D445-15A

Sulfur (X-ray)–Sulfur by X-ray 500 Mg/kg ASTM D494-16A1
Ash comp, ash 0.01 Wt% ASTM D482-13

MCRT Comp–Micro Carbon residue 0.20 %wt ASTM D4530-15
Water content–Water content 0.05 %vol ASTM D95-13
Sediment Comp–Sediment 0.01 %wt ASTM D473-12

Color D1500 Comp–Colour D 1500 2.50 None ASTM D1500-07
Cetane Index Comp–Cetane Ind 49 None ASTM D4737-10

Cu. Corr.–Cu Corrosion 1a ASTM D130-12
Conductivity Comp–Cond diesel 50 pS/M ASTMD2624-15
Auto Cloud Point–Cloud Point 19 ASTM D5771-15

Lubricity 460 microns ASTM D6079-11(201)

Table 2. Biodiesel’s technical specifications.

Type Analysis Data

Appearance Clear, Light Yellow liquid
Odor category Soft
Physical form Liquid

pH level Neutral
Boiling point >200 ◦C
Flash point >130 ◦C

Molecular weight 170–200 g/mol
Specific Gravity 0.86–0.90 @ 15 ◦C (H2O = 1)
Water solubility Minor solubility
Vapor pressure 0.01 psi 100 ◦F, 38 ◦C
Vapor density Air = 1: >2

Table 3. Ethanol’s technical specifications.

Type Analysis Data

Assay (20 ◦C) 99.90% v/v
Water Content 0.195% w/w

Specific gravity (20 ◦C/20 ◦C) 0.791
Clarity of solution Clear

Apparent density (20 ◦C) 788.70 kg/m3

Aldehydes as acetaldehyde <50 ppm
Nonvolatile matter 1 ppm

2.2. Formulation Ratio and Emulsifying Setting

The purpose of the experiment was to understand the effect of formulation ratio along with
emulsifying setting on tri-fuel emulsion physicochemical properties relevant to the study of fuel
injection, spray, and atomization. All the experiments were conducted at an ambient temperature
between 24 ◦C–26 ◦C and humidity recorded was between 50–60%. Temperature increment of samples
due to emulsification was recorded every minute and did not exceed 40 ◦C. The level of ethanol
concentration in each sample prepared was measured and verified with an alcohol hydrometer and a
portable density/specific gravity meter (DA-130N) utilizing configuration mode of measuring alcohol
concentration calculated from the density at the measurement temperature.

The emulsification time was selected based on the temperature level corresponding to the ethanol
evaporation tendency and flash point. The emulsification settings, such as amplitude and cycle
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setting limit, were decided based on the temperature limit corresponding to ethanol’s limit. Since the
sensitivity of ethanol to the rise of temperature is one of the main hurdles when dealing with tri-fuel
emulsion, the limit was set by considering the evaporation tendency with an open cap, time, and
the specific rise of temperature. As an ultrasonic emulsifier may generate heat and could affect the
fuel quantity in the mixture [34], apart from the temperature below the flashpoint level [38,39], the
temperature range was decided within the acceptable evaporation rate. Figure 1a,b represents the
preliminary experimental results of ethanol evaporation response to the specific elevated temperature
for a duration up to five minutes with an open-cap. The outcome was employed as the setting range
benchmark for the cycle and amplitude setting for the primary experiment. The pattern indicated
that the sensitivity of ethanol evaporation loss subject to the temperature change was aggressive after
approximately 40 ◦C. Hence, preparation of the sample for the primary experiment was decided to be
conducted below 40 ◦C with constant temperature monitoring, and a duration of five minutes was
selected as the analysis time for all samples with various amplitude and cycle setting, which satisfied
the limitation. Table 4 displays the details of the emulsifier settings and formulation ratio.

Design of Experiment (DOE) is a flexible and quality-based approach [40] that utilizes a number
of powerful statistical tools for quality control purposes [29,41]. In order to utilize this approach,
commercial software was employed as a platform for the application of DOE with a two-level factorial
design. The two-level factorial design is beneficial for estimation of main effects and interactions which
may not be revealed by a traditional “one-factor-at-a-time” (OFAT) approach in order to achieve at least
an 80% quality level. The remaining 20% quality could be achieved via response surface method (RSM),
which has not been discussed in this study. The interaction between independent variables (factors)
on specific dependent variables or responses was analyzed statistically. A total of 20 samples were
prepared and randomly assigned to each of the physicochemical properties. The randomized order
was for the reduction of lurking factors, such as time, temperature, and humidity. Four samples were
the middle range setting for all factors and were replicated four times to provide sufficient information
on possible curvature in the system. This is required in order to utilize RSM for any optimization
approach in the future. The main effect of each control factor, known as its effect on the response, may
not be similar at different levels of other control factors. In other words, the effect of one control factor
may depend on the level of another control factor.

Four sets of crucial factors were selected in sample preparation. Factors from formulation ratio
were the percentage of biodiesel and ethanol, in which diesel, as the base fluid, was the remaining
percentage ratio formulation. To be specific, diesel was used as the base fuel which complements the
variation setting of biodiesel and ethanol with a total combination of 100%. Meanwhile, emulsification
time, cycle, and amplitude were the emulsification control factors nominated for the experiment.
All samples were prepared using Hielscher Ultrasonic Processor UP400S Emulsifier. It is known that a
cycle is a pulse control mode which switches the ultrasonic processor on or off, while the difference of
1.0 s is the pause time. The experiment was carried out in two sections by varying the time. In the lower
cycle, the power would be triggered for 0.1 s out of 1.0 s and would be paused for 0.9 s. In the higher
cycle, the power triggering time can be maintained for 0.9 s while being paused for 0.1 s. The ultrasonic
output is the rotary amplitude regulator type. Table 4 demonstrates the finalized emulsifier setting
and formulation ratio, while Table 5 shows samples with the decided control factors.
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- - Time 5 min 
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1 1 17 5 −1 5 −1 30 −1 0.4 −1 
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3 3 2 5 −1 15 1 30 −1 0.4 −1 
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15 11 1 5 −1 15 1 30 −1 0.6 1 
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Figure 1. (a) Percentage mass drop of ethanol due to temperature increment within five minutes
with open cap. (b) Percentage evaporation rate of ethanol each minute at different temperature with
an open-cap.

Table 4. Finalized emulsifier setting and formulation ratio.

Acronym Formulation Setting Range

- Diesel - 70–90%
A Ethanol - 5–15%
B Biodiesel - 5–15%
C - Amplitude 30–60%
D - Cycle 0.4–0.6/s
- - Time 5 min

Table 5. Samples with decided control factors.

Sample Std Run Ethanol (A) Biodiesel (B) Amplitude (C) Cycle (D)

1 1 17 5 −1 5 −1 30 −1 0.4 −1
2 2 7 15 1 5 −1 30 −1 0.4 −1
3 3 2 5 −1 15 1 30 −1 0.4 −1
4 4 19 15 1 15 1 30 −1 0.4 −1
5 5 11 5 −1 5 −1 60 1 0.4 −1
6 6 20 15 1 5 −1 60 1 0.4 −1
7 7 18 5 −1 15 1 60 1 0.4 −1
8 8 8 15 1 15 1 60 1 0.4 −1
9 18 6 10 0 10 0 45 0 0.5 0

10 20 12 10 0 10 0 45 0 0.5 0
11 19 14 10 0 10 0 45 0 0.5 0
12 17 16 10 0 10 0 45 0 0.5 0
13 9 4 5 −1 5 −1 30 −1 0.6 1
14 10 15 15 1 5 −1 30 −1 0.6 1
15 11 1 5 −1 15 1 30 −1 0.6 1
16 12 3 15 1 15 1 30 −1 0.6 1
17 13 10 5 −1 5 −1 60 1 0.6 1
18 14 13 15 1 5 −1 60 1 0.6 1
19 15 9 5 −1 15 1 60 1 0.6 1
20 16 5 15 1 15 1 60 1 0.6 1

The analyzed responses with a two-level factorial approach were dynamic viscosity, density,
surface tension, and average droplet size. As far as the selection process of the factorial design, no
hard-to-change (HTC) factors were selected. Hence, the study did not consider the split point design.
Twenty samples were prepared for each response and evaluated power was detected at more than
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80%, sufficient to reveal an active significant effect. Analysis of variance (ANOVA) was employed
from the built-in tool in the commercial software.

2.3. Density Test

The density of all samples was measured at 20 ◦C ± 1 ◦C using a portable density/specific gravity
meter (model DA-130N) with the supplied sampling nozzle vertical to the ground. The measuring
method of the tool is the resonant frequency oscillation which was specified in ASTM D777, the standard
test method of density by portable density meter. The measuring range capability of the density
meter is from 0.0000 to 2.0000 g/cm3 with resolution of 0.0001 g/cm3 and accuracy of ±0.001 g/cm3.
After the emulsification procedure, samples were cooled down to 20 ◦C in a mini-refrigerator prior to
measurements. In order to avoid evaporation of ethanol content in the tri-fuel emulsion, the prepared
samples were stored in a tightly closed glass laboratory bottle with plastic screw cap. The procedure
was repeated at least three times while the average value was obtained as the final reading to minimize
the effect of systematic errors.

2.4. Viscosity Test

A Brookfield, DV-III Ultra Programmable Rheometer was utilized in order to measure the viscosity,
and the software used was Brookfield Rheocalc V3.3 Build 49-1. Properties tested were in accordance
with the petroleum standard ASTM D445 [42]. Dynamic viscosity in centipoise was measured by
taking the ratio of shear stress multiply by 100 over the shear rate. Viscosity reading was obtained
under laminar conditions (only directed by the shearing force), and average reading was obtained
within the detected equivalent range of 10% to 100% torque reading for any combination of spindle
speed rotation. The temperature of each sample was recorded at the initial stage of the spindle rotation,
starting at 40 ◦C ± 1 ◦C. The experiment was executed immediately after each sample preparation with
at least three repetitions.

2.5. Surface Tension Test

In order to analyze the surface tension, a tension meter (Data Physics/DCAT 9T) was utilized.
The method of surface tension measurement was validated via the Wilhelmy thin plate method, and
the ring method test was used to countercheck result validity. Humidity and room temperature were
controlled at 50% and 25 ◦C ± 1 ◦C, respectively. The experiment was executed immediately after each
preparation of the sample with at least three repetitions. Properties tested were in accordance to the
petroleum standard ASTM D971.

2.6. Average Droplet Size Test

Average droplet size can be obtained with Zetasizer machine [35,43]. Hence, the measuring
procedure to obtain the average droplet size of 20 samples was executed via Zetasizer Nano S90
machine. A simple but highly sensitive machine manufactured by Malvern can determine the size by
measuring the Brownian motion of the droplet in the sample. By definition, the Brownian motion is the
random movement of a particle in the liquid as a result of surrounding bombardment motion of another
particles [44]. Hence, by measuring the speed of the particle undergoing Brownian motion, the droplet
size can be determined via dynamic light scattering (DLS) [45]. Since the DLS technique takes advantage
of Brownian motion, the experiment cannot be conducted with unstable temperature or warm, freshly
made tri-fuel emulsion due to the rapid Brownian motion produced by the warm temperature.

Nevertheless, within 24 h of preparation, all the samples were measured at a temperature at
25 ◦C ± 1 ◦C. At such a stable temperature, the basic principle of DLS can be applied. In principle,
slow Brownian motion indicates the existence of large particle, while rapid Brownian motion indicates
smaller droplets. A glass covet was utilized as the standard container and cautiously poured with a
micropipette. Size measurement dedicated by the machine should be ideally no more than 10 microns.
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2.7. Stability Test

The stability test method was conducted via a gravitational approach [46]. Five hundred mL
volume per sample set was prepared, and a small portion of approximately 16 mL for each tube
test was used for the stability test. Two sets of test tubes for each sample were examined to ensure
repeatable results. A tube rack was utilized under room temperature between 24 ◦C and 36 ◦C, while
the humidity recorded was between 40% and 80%, under closed-cap conditions. The samples were
left under gravitational force in order to observe the phase separation daily. Twenty samples were
prepared altogether and were cautiously poured into the test tube using a micropipette and properly
sealed with aluminium foil. The observation was conducted for a total period of 100 days. Daily
observation was performed for the first two weeks. The observation was then continued once per week
until it reached the 4th week. After that, the observation was taken monthly until the third month.
The last reading was taken on the 100th day.

2.8. Microstructure Test

A digital microscope (Dolomite Celestron(CARIFF, Universiti Malaysia Pahang, Gambang,
Malaysia) was employed with 5×, 10×, and 40× objective lenses and total magnification up to 400×.
The sample was observed immediately after preparation within less than 1 h with 5×, 10×, and 40×
objective lenses.

3. Results and Discussion

3.1. Density

The final equation in terms of coded factors is shown as in Equation (1). This is the equation that
relates ethanol as the input factor to the density as the output response.

ρ = +0.81− 0.006218A (1)

where ρ is density, and A is ethanol.
The final Equation (2) in terms of actual factors:

ρ = +0.82438− 0.0012436A (2)

It was found that ethanol (A) has the highest influence on the density. Figure 2 illustrates the
computing effect for model selection via half normal plot (a) and diagnostic plot (b) of residuals
versus run with no random scatter and no outside limit detected. No statistical outliers were detected,
indicating no model problems.
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It can be seen from the analysis of variance presented in Table 6 that the probability value of the
model indicates that only ethanol’s (A) influence on the density was statistically significant. In other
words, it is unlikely that this happens by chance alone. The F-tests with 0.3774 (>0.05) indicate no
statistically significant value on the lack of a fit test, which is desirable. The curvature F value of 0.08
indicates that it is not necessary to proceed to higher quality analysis, such as the respond surface
method (RSM) [47]. Figure 3 below presents the predicted versus experimental values for density.

Table 6. Analysis of variance (ANOVA) for the selected factorial model (Partial sum of the square—Type
III) for response 1 (Density).

Source
Sum of

df
Mean F p-Value

Remark
Squares Square Value Prob > F

Model 0.0006187 1 0.0006187 12.76 0.0023 significant
A-Ethanol 0.0006187 1 0.0006187 12.76 0.0023
Curvature 0.000003681 1 0.000003681 0.076 0.7862 not significant
Residual 0.0008243 17 0.00004849

Lack of Fit 0.0007298 14 0.00005213 1.65 0.3774 not significant
Pure Error 0.00009458 3 0.00003153
Cor Total 0.001447 19

Factor A was found to be not involved in any interaction with other factors. It was found that as
the ethanol content increases, the values of density decreases. Furthermore, the effective detection was
under the negative effect category. This indicates that by increasing the control factor of ethanol, the
value of density decreases. In other words, higher content of ethanol yields a lower density reading.

Nevertheless, the decreasing level was considered to be likely due to biodiesel that compensates
the dominancy of ethanol. The counterbalance of these opposite effects leads to the production of a
tri-fuel emulsion which could compete with commercial diesel. In our previous work, the range of
density in the mixing of diesel and biodiesel without incorporation of ethanol were above the density
value of diesel [48]. However, in this study, incorporation of ethanol counterbalances the density to a
very comfortable level, far from the maximum acceptable value of diesel standard ASTM D7467 and
biodiesel maximum acceptable value ASTM D6751. The obtained data are in agreement with recent
studies [38,39].

The rationale behind investigating the influence of all the factors on density is due to the fact that
density is one of the main factors that affects the flow characteristic inside the injector nozzle, which
consequently influences the momentum of the fuel injection spray [49]. If the density of the fuel is
drastically decreased, the quality of the fuel may not be in favour of the existing engine setting. Peak
injection rate may be expected to be deterred by the low-density effect. Consequently, it will delay the
dynamic injection timing by at least 1-degree crank angle (CA). Besides, stoichiometric ratio is expected
to be affected, since the reduction in density leads to lower fuel mass with the same volume, and the
fuel–air mixture setting needs to be readjusted in order to achieve the desired burning efficiency.

In spark ignition (SI) engines, the stoichiometric ratio is normally around 14.7:1, while this ratio
is around 16:1 and 12:1 for a lean mixture and rich mixture, respectively. However, the average
stoichiometric air–fuel ratio on a mass basis is estimated to be 14.5:1 in a CI engine, while this value
for rich and lean can be around 100:1 to 2:1. Control of the acceleration in a CI engine is performed
by controlling the fuel, while in SI engines, this is executed by controlling the air. The result may
not be in favour and may imply incomplete combustion. Finally, since density is directly related to
viscosity, a density drop indicates a higher viscosity reading and a higher droplet size may be expected
for discussion in the upcoming results.
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3.2. Viscosity

The final Equation in terms of coded factors is presented as in Equation (3). This is the equation
that relates the listed input factors with interaction to the viscosity as the output response.

µ = +3.01− 0.16A + 0.039B− 0.027D− 0.024AB− 0.00813AD + 0.00688BD
+ 0.028ABD

(3)

where µ is the dynamic viscosity.
The final equation in terms of actual factors is as in Equation (4):

µ = +2.705 + 0.043A + 0.067B + 0.88125D− 0.00660AB− 0.12875AD
−0.09875BD + 0.01125ABD

(4)

Viscosity readings of 20 samples were obtained and statistically analyzed. Figure 4a illustrates
the computed effects for model selection via the half-normal probability plot in order to identify the
biggest effect, which was the furthest point to the right. Interaction AD and BD were incorporated
after manual regression in order to preserve the hierarchy. It is commonly known that the t-value
scale provides a highly accurate measure of relative effects. Despite the factor interaction, AD and BD
fall below the t-value scale and AD and BD were not clicked off since they were involved in another
significant interaction. In order to transform between coded and actual models, hierarchy must be
supported. Otherwise, the coded model provides a different prediction in comparison to the actual
model. Lack of a linear term by excluding nonsignificant factors and neglecting the hierarchy could
lead to an incorrect conclusion. Hence, it was not a mistake or a botched factor argument consistent
with Stat-Ease Consultation [50,51]. The diagnostic plot is presented as residuals versus run plot in
Figure 4b, illustrating model quality.
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Figure 4. Viscosity reading (a) Viscosity half-normal plot; (b) residuals analysis plot.

As can be seen in Table 7, the probability value of the model indicates a statistically significant level.
In this case, A, B, D, AB, and ABD are significant model terms, while AD and BD have p-values above
0.1000, indicating they are not significant. The p-value for the curvature yield is significant, which
indicates that the effect is not only in a linear form, but is more complex than that. For an additional
20% quality, to proceed to RSM is prudent [47]. Lack of fit testing shows a nonsignificant level which is
desirable. Figure 5 demonstrates the predicted versus experimental plot with an acceptable random
scattered point along the 45◦ line.

Table 7. ANOVA for the selected factorial model (Partial sum of the square—Type III) for response 2
(Viscosity) with hierarchical terms added after manual regression (AD and BD).

Source
Sum of

df
Mean F p-Value

RemarkSquares Square Value Prob > F

Model 0.450 7 0.064 182.79 <0.0001 significant
A-Ethanol 0.390 1 0.390 1107.16 <0.0001
B-Biodiesel 0.025 1 0.025 70.87 <0.0001

D-Cycle 0.012 1 0.012 33.02 0.0001
AB 0.009506 1 0.009506 27.16 0.0003
AD 0.001056 1 0.001056 3.02 0.1102
BD 0.0007563 1 0.0007563 2.16 0.1696

ABD 0.013 1 0.013 36.16 <0.0001
Curvature 0.021 1 0.021 59.43 <0.0001 significant
Residual 0.003850 11 0.0003500

Lack of Fit 0.003250 8 0.0004063 2.03 0.3026 not significant
Pure Error 0.0006 3 0.000200
Cor Total 0.470 19

Figure 6a illustrates biodiesel–ethanol interaction with confidence bands subject to constant
small cycle setting regardless of amplitude variation. Formulation of low ethanol with high biodiesel
percentage yielded the highest viscosity reading. Meanwhile, with both low ethanol and biodiesel,
the viscosity was lower. Furthermore, a formulation with high ethanol but low biodiesel exhibited
a dramatic viscosity drop, but it was surprisingly slightly higher than samples with high biodiesel
content. In another word, with both high ethanol and high biodiesel, the viscosity drop was higher.
This indicates that ethanol is more dominant and has a direct influence on viscosity. When the cycle is
lower, the proportionality of the interaction behavior slightly changes. Particularly, when the ethanol
ratio is approximately above 12.50%, the viscosity level is similar for both 5% and 15% biodiesel
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ratios. After the crossing point, the reduction level of the viscosity for low biodiesel content was lower
compared to high biodiesel content.
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Low ethanol with a high percentage of biodiesel yielded the highest viscosity reading. However,
when both ethanol and biodiesel are at low proportions, the viscosity value was found to be lower.
Surprisingly, when both ethanol and biodiesel are high, a dramatic reduction in viscosity was observed.
Again, ethanol’s effect appears dominant over that of biodiesel. Furthermore, with high ethanol and a
low setting of biodiesel, the viscosity drop was higher, as expected. With middle cycle range, regardless
of high or low amplitude, the pattern was found to be almost the same as in Figure 6a, but without the
cross point. In samples with high ethanol and high biodiesel, the viscosity drop was significant but
slightly higher than in samples with low biodiesel content, as expected.

Figure 6b,c demonstrated ethanol, biodiesel, and cycle interactions when cycle and amplitude
were at the middle of their range. Ethanol, biodiesel, and cycle settings were combined in order to affect
the viscosity of the tri-fuel emulsion. The cube plot indicates that the lowest viscosity reading was
when ethanol content and cycle setting were set at a high level and biodiesel ratio was set at a low level.
The viscous condition occurs when biodiesel content is high, while the rest are set low. As stated earlier
in the discussion of density results, viscosity plays an important role in the fuel atomization process.

3.3. Surface Tension

The final Equation regarding coded factors is presented as Equation (5). This is the equation that
relates the listed input factors to the surface tension as the output response.

γ = +25.40− 1.26A + 0.25B− 0.081C + 0.43D + 0.36AD− 0.45BC (5)

where γ is the surface tension.
The final equation in terms of actual factors is Equation (6):

γ = +26.38750− 0.60925A + 0.32150B + 0.05492C− 2.87500D + 0.71500AD
−0.00603333BC

(6)

One of the important properties that could significantly affect the atomization process is the
surface tension [52]. Surface tension readings of the 20 samples were obtained and statically analyzed.
Figure 7a illustrates the computed effects for model selection via the half-normal probability plot in
order to select the biggest effect, which is the point furthest to the right. Interaction B and C were
incorporated after manual regression in order to preserve hierarchy. It is commonly known that the
t-value scale provides a highly accurate measure of relative effects. Despite the factor interaction, B and
C fall below the t-value scale and were not clicked off since they were involved in another significant
interaction. In order to transform between coded and actual models, hierarchy must be supported.
Otherwise, the coded model provides a different prediction in comparison to the actual model. The
lack of a linear term by excluding nonsignificant factors and neglecting the hierarchy could lead to
an incorrect conclusion. Hence, it was not a mistake or a botched factor argument, consistent with
Stat-Ease Consultation [50,51]. For counter checking, residuals analysis is needed. For this purpose,
Figure 7b presents the residuals analysis plot. In the residuals versus run plot, random scattering is
observed and no pattern is detected, which indicates that the assumptions for ANOVA are met.
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Figure 7. Surface tension half-normal plot (a) and residuals analysis plot (b).

As can be seen in Table 8, the probability value for the model is detected as significant. In this
case, A, D, and AD. The curvature is detected as significant, which implies that the RSM is worth the
effort [47]. Lack of fit testing shows a nonsignificant level, which is desirable. Figure 8 demonstrates
the predicted versus experimental plot with an acceptable random scattered point along the 45◦ line.

Table 8. ANOVA for the selected factorial model (Partial sum of the square—Type III) for response 3
(Surface tension) with hierarchical terms added after manual regression (B and C).

Source
Sum of

df
Mean F p-Value

RemarkSquares Square Value Prob > F

Model 34.70 6 5.78 15.31 <0.0001 significant
A-Ethanol 25.35 1 25.35 67.10 <0.0001
B-Biodiesel 1.00 1 1.00 2.65 0.1297

C-amplitude 0.11 1 0.11 0.28 0.6066
D-Cycle 2.92 1 2.92 7.74 0.0166

AD 2.04 1 2.04 5.41 0.0383
BC 3.28 1 3.28 8.67 0.0123

Curvature 3.79 1 3.79 10.04 0.0081 significant
Residual 4.53 12 0.38

Lack of Fit 3.24 9 0.36 0.84 0.6335 not significant
Pure Error 1.29 3 0.43
Cor Total 43.03 19

High and low cycle settings interact with low ethanol content yield to similar surface tension
results. A high cycle setting along with a low ethanol content yield high surface tension. For low
cycle setting with low ethanol content, the surface tension is also high. High cycle setting with a high
proportion of ethanol reduces the surface tension. However, low cycle with high ethanol content further
reduced the surface tension. This indicates that cycle setting plays a significant role in maintaining
the reading inclination from further reducing due to the influence of the ethanol. Figure 9 illustrates
the interaction of amplitude and biodiesel on surface tension when cycle and ethanol content are at
medium settings. Confidence bands are represented by the dotted lines. A low percentage of biodiesel
with a high amplitude setting yields higher surface tension in comparison to low biodiesel content
with low amplitude setting, although the difference is small. The surface tension oppositely responds
to the high content of biodiesel regardless of amplitude setting.
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3.4. Average Droplet Size

The final Equation in terms of coded factors is presented as in Equation (7). This is the equation
that relates the listed input factors to the average droplet size.

DAvg = +1.05 + 0.16B− 0.41C− 0.47D− 0.26BC− 0.17BD + 0.48CD
+ 0.30BCD

(7)

where DAvg is the average droplet size in microns.
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The final equation in terms of actual factors is Equation (8):

DAvg = −0.763925 + 1.261885B + 0.047082C + 2.345125D− 0.023460BC
−2.147875BD− 0.079717CD + 0.039988BCD

(8)

Average droplet size readings of 20 samples were obtained and statistically analyzed [50,51]. Most
of the data were found to have high polydispersity index (0.5 > PdI < 1) and not under monodisperse
(>100 nm) categories, fluorescence, and absorbance (coloured samples). Apparently, samples were
almost too large for DLS measurement, particularly for determination of accurate average droplet size
corresponding to mixing fuel under emulsion. Furthermore, possible errors may occur and result
in a lack of precise particle size results, and hence may not be suitable for comparison with other
methods of measurement [45]. In other words, other measurement techniques may yield dissimilar
sizes for identical samples, meaning inter-method comparison is invalid. Besides, the limitation of the
DLS technique was due to the existence of a non-spherical shape of the droplets. Evaluation of the
average particle size measurement technique and its accuracy have been critically discussed [53,54].
Nevertheless, the results obtained did not defeat the experiment’s objective, which was to recognize
the interaction magnitude of four control factors on the characterized average droplet size range for all
the prepared samples. To further clarify, it does not mean that the droplet sizes obtained by DLS are
not useable considering the PdI values did not reach 1 or more, hence this is not an indicator to dismiss
the technique. When comparing DLS data to conventional microscopy or counting-based techniques,
the distribution is comparable. It is important, however, to emphasize that the objective of this study is
not to compare between approaches, but to understand the effect of a few vital control factors on the
behaviour of the droplet size produced.

Figure 10 demonstrates the computed effects for model selection via a half-normal probability plot
(a) for the model selection. B and BD were incorporated after manual regression in order to preserve
hierarchy. It is commonly known that the t-value scale provides an accurate measure of relative
effects. Despite factor interaction, B and BD fall below the t-value scale since they were involved in
another significant interaction. In order to transform coded models into actual models, hierarchy
must be supported. Otherwise, the coded model provides a different prediction than the actual model.
Lack of a linear term by excluding nonsignificant factors and neglecting the hierarchy could lead to
an incorrect conclusion. Hence, it was not a mistake or a botched factor argument, consistent with
Stat-Ease Consultation [50,51]. Consequently, it depends on the other factors with which it interacts.
Figure 10b displays the residual plot analysis for model assessment. The residuals versus run plot
confirms that the assumptions for ANOVA are correct.
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As can be seen in Table 9, the probability value for the model is significant. In this case, C, D, BC,
CD, and BCD are significant model terms, while values greater than 0.1000 indicate that the model
terms are not significant. The curvature F value of 0.087 indicates that it is not necessary to proceed to
RSM analysis [47]. The lack of fit test was nonsignificant, and this is desirable. Figure 11 illustrates the
experimental and predictive values of average droplet size with an acceptable random scattered point
along the 45◦ line.

Table 9. ANOVA for the selected factorial model (Partial sum of the square—Type III) for response 4
(Average droplet size) with hierarchical terms added after manual regression (B and BD).

Source
Sum of

df
Mean F p-Value

RemarkSquares Square Value Prob > F

Model 13.39 7 1.91 12.45 0.0002 Significant
B-Biodiesel 0.41 1 0.41 2.67 0.1308

C-amplitude 2.71 1 2.71 17.64 0.0015
D-Cycle 3.57 1 3.57 23.27 0.0005

BC 1.08 1 1.08 7.04 0.0225
BD 0.49 1 0.49 3.16 0.1030
CD 3.69 1 3.69 24.03 0.0005

BCD 1.44 1 1.44 9.37 0.0108
Curvature 0.013 1 0.013 0.087 0.7735 not significant
Residual 1.69 11 0.15

Lack of Fit 0.91 8 0.11 0.44 0.8415 not significant
Pure Error 0.78 3 0.26
Cor Total 15.09 19Energies 2019, 12, x 17 of 25 
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Variation of ethanol percentage did not lead to any alteration in this case. Low or high amplitude
with a small percentage of biodiesel resulted in no major difference to the average droplet size.
However, with high biodiesel percentage, low amplitude contributed to a bigger size, while a high
amplitude led to a more refined size. As expected, high cycle setting even with low amplitude lead to
the formation of smaller droplet size, compared to low cycle setting accompanied by low amplitude.
At high amplitude, regardless of high or low cycle setting, the average droplet size yielded an identical
result. The obtained results presented no abnormal behavior, while the pattern slightly altered when
biodiesel content was high in the mixture. Figure 12a above demonstrates the interaction between
amplitude and cycle setting with respect to high biodiesel setting. The interaction can be observed
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when the amplitude is high, with both high and low cycle setting presenting opposite effects. The
opposite effect, however, appeared to be minor. Increasing biodiesel content had nearly no effect with
the increase of the amplitude level. However, a high percentage of biodiesel with low amplitude
setting yielded a slightl larger average droplet size. Meanwhile, with high cycle setting, the interaction
is similar to any combination of amplitude or biodiesel percentage. Figure 12b illustrates the cube
presentation of the interaction between biodiesel, amplitude, and cycle setting. Figure 12c displays a
3D representation of the interaction.Energies 2019, 12, x 18 of 25 
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3.5. Fuel Stability

The experiment was to evaluate the duration in which the tri-fuel emulsions can survive with the
experimental formulation ratio and emulsifying setting. It was observed that the samples prepared
were not very stable and were subsequently subjected to phase separation after a couple of weeks,
which is in agreement with a previous study [55]. In addition, rapid phase change was detected at
initial stages. The shelf life of tri-fuel emulsion was predicted to be quite short and this was confirmed
with experiments. A refresher is required to maintain the freshness and quality of the product. Through
observation, two layers were visible which fluctuated over time due to evaporation and condensation.

Statistically, it was detected that ethanol has a significant influence on the density values in
comparison to the rest of the control factors involved, as discussed in the density test result section.
Nonetheless, the percentage contribution was 42.76%, while the rest of the factors contributed less than
10% to the density reading. It was observed that while the separation phase took place, the ethanol



Energies 2019, 12, 1708 18 of 24

layer separated as the top layer evaporated. Although each of the test tubes was under closed-cap
conditions, the evaporated gas was trapped in the container and condensed when it lost its energy.
This could be further explained by kinetic molecular theory. When molecules in the liquid are retained
together with an attractive force, the molecules in the surface of the liquid absorb the heat energy from
the atmosphere, hence the kinetic energy of the molecule in the liquid surface increases so that it can
overcome the attractive forces and escape from the surface to the environment. This solely occurs when
the energy of the absorption is sufficient to overcome the attractive force. Hence, it is not advisable
to record the upper layer reading due to the fluctuation level. Thus, the bottom layer is the targeted
region in order to obtain the optimum solution. This is comparable to a previous study [39].

Another phenomenon observed was moisture on the inner wall of the container. Eventually,
the moisture became a droplet and was gravitationally pulled down and joined the original liquid.
In instances where the humidity level outside the container was slightly high, the evaporated molecules
that were trapped in the container were condensed and were attached to the wall of the container above
the liquid level. The molecules lost energy due to the surrounding temperature. The molecules in the
liquid absorbed the heat energy from the atmosphere in the container. In addition, it was observed
that after the occurrence of phase separation, the upper layer of the liquid was alcohol, considering
that the density value of alcohol is lower than the density of biodiesel or diesel.

Nonetheless, it was observed that in some cases the layer of alcohol settled down at the bottom of
the test tube. This observation is doubtful but consistent with a number of repeated samples prepared
with the same emulsifying setting and mixture ratio. The density of the alcohol mixed with diesel
was found to not be constant, and this explains the bubble at the bottom of the container and is
consistent with the previous experiment on other blended fuel categories involving diesel and alcohol
mixtures [56].

Furthermore, on the first day upon preparation, phase separation activity was observed in the
active stage. This could be due to the phase change from the nano-sized phase to the micron-sized phase
due to coalition of dispersed droplets. Furthermore, the handling procedure during measurement and
observation could have been a source of interruption. The phase separation was slower during weekly
observations in comparison to the immediately prepared stage. Due to the interruption caused by
minor motion during the measuring procedure, the separation rate tended to be disturbed and resulted
in a slow process. However, during monthly observation, it was found that the separation speed rate
accelerated in comparison to the weekly observation and this may be attributable to less interruption.

By using OFAT analysis, all samples from Table 5 were regrouped according to specific constant
control factors as per Figure 13. The legend in Figure 13a–h represents fuel samples from Table 5.
Figure 13a illustrates the samples with low cycle setting, while Figure 13b displays samples with high
cycle setting. Figure 13c demonstrates samples with low amplitude setting, while Figure 13d shows
samples with high amplitude setting. Figure 13e illustrates samples with low biodiesel content, while
Figure 13f shows samples with high biodiesel content. Figure 13g displays samples with low ethanol
content, while Figure 13h demonstrates samples with high ethanol content. According to the results
obtained from the total 100 days of observation, three stages of behavior can be observed in all figures
represented by the steepness of the slope. This is of significance since non-fresh tri-fuel emulsion,
represented by the second and the third phases, may not possess similar physicochemical properties
to other samples which were prepared at other times. Such behavior should not be overlooked and
must be explored further. the steep slope observed in the first ten days indicates that the phase change
behavior is highly active, followed by calmer conditions for the next 20–70 days. The aggressiveness
of the coalition among dispersed droplets consists of trapped encapsulated volatile ethanol being
reduced with time. This could be another key strategy in order to achieve microexplosion. It can
be concluded from the stability observation that utilizing this fuel in CI engines may be challenging.
Nevertheless, it is anticipated that the instability across the tested timeline could be a contributing
factor to the vagueness of the occurrence of the microexplosions with tri-fuel emulsions in CI engines.
This can be further investigated in the future.
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Figure 13. Stability behavior of tri-fuel emulsion subject to low cycle (a), high cycle (b), low amplitude
(c), high amplitude (d), low biodiesel (e), high biodiesel (f), low ethanol (g), and high ethanol (h).
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3.6. Microstructure

Preinjected tri-fuel emulsion droplet microstructure was obtained. Twenty samples with the
highest ethanol content (15% alcohol by volume), highest biodiesel content (up to 15% by volume),
60% amplitude, and 0.6 s cycle were observed.

From the microphotograph, it can be observed that the dispersed ethanol is encapsulated within
the surrounding biodiesel (Figure 14c). Such a phenomenon would not be observed solely in diesel,
biodiesel, or ethanol. The average diameter size of the capsule was estimated to be approximately
1 µm to 10 µm. The state of the droplet in constant motion may be due to the surrounding conditions
and procedure interruption. Collisions among dispersed droplets were observed, which is consistent
with previous studies [36,38,55]. Although Figure 14a,b showed completely round droplet shape, the
shape of the encapsulated droplets were not perfectly round, and Figure 14c,d shows a more oval
shape. This geometry may or may not favour microexplosion, as suggested in the emulsified oil and
water study [57]. Due to aerodynamic effect, the location of the dispersed component in the droplet
may change, resulting in oval-shaped droplets. Hence, additional energy is required on certain sides
of the dispersed droplet geometry in order to enable the micro-explosion phenomenon to transpire.
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4. Conclusions

Tri-fuel emulsions were prepared with the emulsifying setting and formulation ratio as control
factors. Experiments were performed in order to evaluate the effect of emulsifying setting and
formulation ratio on selective physicochemical properties of tri-fuel emulsions. A commercial DOE
software with built-in features, such as effect detection, ANOVA, diagnostics, and model graphs, was
employed for detection of responses such as density, viscosity, surface tension, and average droplet size.

A gravitational approach for stability analysis was conducted using OFAT analysis. Qualitative
experiments of tri-fuel emulsion microstructure revealed that dispersed droplets were not of a perfectly
round shape. This finding is important for analysis of the microexplosion phenomenon in the future,
considering that the non-spherical shape could affect the process of secondary atomization. According
to the density results, while incorporation of biodiesel increased the density of tri-fuel emulsion, this
was offset by a major influence of ethanol, which indicates that tri-fuel emulsions’ density can be
optimized by varying the ethanol content. Furthermore, the dynamic viscosity response was consistent
with the literature. In addition, minor variation in results may be expected when a high content of
ethanol is utilized.

Meanwhile, the surface tension response showed that the amplitude setting interaction with
biodiesel is almost the opposite of the interaction of cycle with ethanol content. For viscosity and
surface tension response, however, subsequent experimentation is required considering both were
analyzed with curvature detection. The curvature detected for viscosity and surface tension in this
study is an excellent indicator for further exploration of the RSM approach for optimization work.

The effect of amplitude and cycle setting on the average droplet size response was obvious with
longer and higher triggered ultrasonic output, which resulted in a more refined average droplet
size. In addition, the stability test indicated that the nano- to micro-phase transformation resulted
in unstable tri-fuel emulsions. Nevertheless, understanding the pattern of stability could assist in
microexplosion experiments.

Optimization based on control factors utilized in this study can be employed to proceed with engine
performance and emission studies, with the specific goal of the investigation of the microexplosion
phenomenon of tri-fuel emulsions in CI engines.
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