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Abstract: We have synthesized aniline based amides (3a–h) via palladium catalyzed Suzuki cross
coupling of N-(2,5-dibromophenyl) acetamide with different arylboronic acids in moderate to good
yields. A variety of functional groups were well tolerated in reaction conditions. For exploring
the possible applications as optoelectronic devices, the nonlinear optical (NLO) properties of all
synthesized derivatives (3a–h) were investigated with the help of density functional theory (DFT)
methods. The frontier molecular orbitals analysis and reactivity descriptors were investigated for
exploring the reactivities.
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1. Introduction

Mono-, bi-, and tri-aryl-substituted aniline derivatives have been widely used for the synthesis of
dyes, pharmaceuticals, ferromagnetic materials, and especially organometallic complexes [1–3]. For
decades, aniline complexes have been a focus in organometallics and catalysis, such as N-heterocyclic
carbene ligands (NHC) and β-diketiminateligands [4–9]. Aniline derivatives have been reported to
possess antithrombolytic, antimicrobial, antioxidant, antitumor activities [10–12]. The polyanilines
are promising products for potential industrial applications, and these are used in electronics and
optics due to their electrical conductivity and good environmental stability [13,14]. Aniline based
azo-dyes are medicinally well known as antineoplasticsm [15], antidiabetics [16], antiseptics [17],
antibacterial, and antitumor agents [17]. They are well known in a number of biological reactions,
such as inhibition of DNA and RNA, synthesis of proteins, carcinogenesis, and nitrogen fixation [18].
Aniline derivatives are known to inhibit the viral replication of HIV, and this effect is caused by the
binding of azo-dyes to both the protease and the reverse transcriptase of this virus [19]. The Suzuki
cross-coupling reaction is remarkedly attractive and beneficial for the formation of C-C bonds due to
high functional group tolerance, favorable reaction conditions, and easy handling of non-hazardous
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by-products [20–24]. In previous reports, the scientists have investigated and proposed that anilines
possess good nonlinear optic (NLO) response and can have the potential to be used in different kinds of
advance materials [25–27]. Keeping in view the importance of aniline derivatives, the present research
was carried out to synthesize the various functionalized aniline derivatives via a palladium (Pd)
catalyzed Suzuki coupling reaction. Furthermore, the first hyperpolarizability (βo), which is directly
related to the NLO response of any compound of all synthesized derivatives and frontier molecular
orbitals (FMOs) analysis and reactivity descriptors, was calculated with the help of density functional
calculations. To the best of our knowledge, all the studies reported in the current manuscript regarding
aniline derivatives had not been reported in literature to date.

2. Results and Discussion

2.1. Chemistry

The protection of aromatic amino or hydroxyl groups in the form of amine derivatives or ethers
and their subsequent cleavage constitute a useful chemical transformation in organic synthesis. In the
present study, we investigated the Suzuki coupling of 2,5-dibromoaniline (1) with 3,5-difluoro and
3,5-dimethyl phenyl boronic acids, but no products were obtained. This reaction rendered unsuccessful
because of the interference of an amino group on the benzene ring. This resulted in the failure of
reactions that were performed without protection of the amino group. Later on, the revised method
was carried out after the protection of the amino group. Herein, the current modification can be an
attractive alternative to solve such problems.

Previously, our group reported the Suzuki coupling of 2-amino-6-bromobenzothiazole where low
yields were obtained in a coupling reaction with an un-protected amino substrate, thus in order to
obtain high yields, the amino group was protected via acylation, which led to substantially enhanced
yields [28]. As presented in Scheme 1, in the first step, the amine group was protected by a reaction
of 2,5-dibromoaniline (1) with acetic anhydride and intermediate protected N-(2,5-dibromophenyl)
acetamide (2) was obtained in 78% yield.
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Scheme 1. Conditions: i, 1 (1 g, 3.98 mmol), acetic anhydride (0.996 g, 9.96 mmol), H2SO4 (few
drops), acetonitrile (10 mL), reflux. Conditions: ii, 2 (0.1 g, 0.341 mmol), Pd(PPh3)4 (0.019 g, 5 mol%),
arylboronic acid (0.717 mmol), K3PO4 (0.2171 g, 1.024 mmol), 1,4-dioxane:H2O (4:1 mL), reflux 32 h,
85–95 ◦C.

In the second step, Suzuki coupling of (2) with different arylboronic acids was conducted
(Scheme 1), which eventually led to the synthesis of various tri-aryl acetamide derivatives (3a–h) in
low to good yields (6–73%) (Figure 1). The triaryl compounds (3a–h) were obtained with the protected
acetamide group. The compound 3a showed high yield (73%) and 3h showed 6% yield, while all other
derivatives (3d, 3e, 3c, 3f, 3b, 3g) showed moderate yields (43%, 40%, 38%, 37%, 34%, 33%), respectively.
Different electron-donating and electron-withdrawing functional groups were well tolerated in the
reaction, and they did not affect the reaction rate. Reaction conditions are responsible for the amount
of product obtained. Moreover, the resulted group after protection was inert to all boronic acids, and it
did not take part in any reaction. However, prolonged reaction time could de-protect that because of
the basic medium.
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Figure 1. Suzuki coupling reaction of N-(2,5-dibromophenyl)acetamide (2) with different
arylboronic acids.

It was noted that in the cases of products 3d and 3g, a mixture of mono- and di-arylated products
was obtained in the Suzuki cross coupling reaction, and this may have been due to ineffective
transmetallation and reductive elimination in the overall reaction cycle [29].

2.2. Computational Studies

2.2.1. Geometry Optimization

All the novel synthesized derivatives with different arylboronic acids (3a–h, Figure 2) were
modeled in GaussView 5.0 and then optimized at the PBE0-D3BJ/def2-TZVP/SMD1,4-dioxane level
of theory using Gaussian 09. The optimized structures were confirmed to be true minima on the
potential energy surface by confirming the absence of imaginary frequencies through the calculations
of vibrational frequencies.
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In the 3D models, the grey color represents carbon, white represents hydrogens, green is for
chlorine atoms, violet represents iodine atoms, red is for oxygen, yellow represents sulphur, and blue
shows nitrogen atoms.

2.2.2. Frontier Molecular Orbital (FMO) Analysis

Due to the progressive development of the density functional theory (DFT), the calculation
of frontier molecular orbitals of a molecule is fairly easy and provides insights into the electronic
properties and reactivities of molecules [30]. The electronic transitions mainly occur between frontier
orbitals (HOMO/LUMO), and their energy gap (HOMO-LUMO gap) can provide information about
the reactivity and kinetic stability of the molecule [31]. The lower this energy gap is, the more reactive
the compound is and vice versa. The FMO calculations were done at the same level of theory as the
optimizations of the molecules, and plots of these orbitals are shown in Figure 3.

Table 1 represents the H-LEg values (∆E) of all the compounds under study. These ∆E values of
the molecules ranged from 4.51 to 5.32 eV. It was a narrow range, which indicated that, in general,
the reactivity of these compounds was not much different. Compound 3g had the lowest ∆E value
(4.51 eV), which suggested it was the most reactive one in the series. Contrary to that, compound 3h
had the highest ∆E value, which made it the most stable in this series of compounds (3a–h).
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Figure 3. A plot of all the frontier orbitals of all the molecules (6a–6h) calculated at PBE0-D3BJ/
def2-TZVP/SMD1,4-dioxane level of theory.

Table 1. Energies of HOMO, LUMO, H-LEg and first hyperpolarizabilities (βo) of all compounds (3a–h).

Compound EHOMO (eV) ELUMO (eV) H-LEg (eV) βo (au)

3a −6.17 −1.15 5.02 236.99
3b −5.84 −1.01 4.84 465.20
3c −6.31 −1.51 4.80 326.75
3d −6.54 −1.80 4.75 775.01
3e −6.39 −1.49 4.90 252.00
3f −6.64 −1.67 4.96 311.90
3g −5.74 −1.23 4.51 833.15
3h −6.68 −1.36 5.32 245.70

The iso-density dispersion in the FMOs of these compounds showed quite similar trends for all
of them except 3h. The iso-density was mainly located on the phenyl rings for HOMO and LUMO,
but in 3h, the HOMO iso-density was found on the central phenyl ring and the acetamide group
on it, while the LUMO iso-density was found on all the three phenyl rings, including the chlorine
atoms. Having HOMO and LUMO distributed on such different functionalities made it the most stable
compound. Compound 3g was suggested to be the most reactive one with SMe groups on the phenyl
rings. Here, the HOMO iso-density was found evenly distributed on all three phenyl rings and on both
SMe groups. The less electro-negativity of sulphur and the electron-donating nature of SMe could
explain this iso-density distribution, which showed a low HOMO-LUMO energy gap and rendered 3g
to be the most reactive in the series.

2.2.3. Nonlinear Optical Properties (NLO)

Materials with larger second-order NLO properties have been of considerable interest due to
their potential applications in imaging technologies, optical computing, sensors, and medicinal
applications [32–34]. The computed first hyperpolarizability (βo) values of organic compounds
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demonstrated their ability to support the movement of electrons. Higher βo values showed greater
push and pull of electrons with increased NLO response.

In the aniline derivatives in the present study (3a–h), the phenyl rings were acting as electron
donors, while other present substituents acted as electron acceptors. Electron donating groups on
phenyl rings increased the βo values due to the increased movement of electrons. Contrary to that,
the electron withdrawing groups made both ends electron acceptors, which in turn decreased the
NLO response. In the present series of compounds, only compounds 3d (βo = 775.01 au) and 3g
(βo = 833.15 au) showed a reasonably higher NLO response, as shown in Table 1. It was evident that
the highest NLO response was shown by 3g, which had two SMe groups on the para positions of the
phenyl rings; 3e, on the other hand, had two Cl atoms at the para positions and the lowest βo value of
252.00 au due to its electron-withdrawing effect.

2.2.4. Conceptual Reactivity Descriptors

DFT can also give insights into other reactivity descriptors of compounds, which are important
to explain the reactivity of a compound. These descriptors are given in Table 2 and were calculated
according to Koopman’s theorem, which says that the negative of EHOMO and ELUMO correspond to
the ionization potential (I) and electron affinity (EA) of the compound [35,36]. The other descriptors,
i.e., chemical hardness (η), electronic chemical potential (µ), and electrophilicity index (ω), can then be
computed as follows:

η = (EHOMO − ELUMO)/2 (1)

µ = −(EHOMO + ELUMO)/2 (2)

ω = µ2/2η (3)

The values of all important reactivity descriptors of the compounds under study are given in
Table 2.

Table 2. Reactivity indices of the compounds under study (3a–h).

Compound
Ionization
Potential, I

(eV)

Electron
Affinity, (EA)

(eV)

Chemical
Hardness, η

(eV)

Electronic
Chemical

Potential, µ (eV)

Electrophilicity
Index, ω (eV)

3a 6.17 1.15 2.51 −3.66 2.67
3b 5.84 1.01 2.42 −3.42 2.42
3c 6.31 1.51 2.40 −3.91 3.18
3d 6.54 1.80 2.37 −4.17 3.67
3e 6.39 1.49 2.45 −3.94 3.17
3f 6.64 1.67 2.48 −4.16 3.48
3g 5.74 1.23 2.26 −3.48 2.69
3h 6.68 1.36 2.66 −4.02 3.03

A detailed observation of Table 2 shows that different reactivity descriptors supported each
other, thus strengthening the findings. According to the ∆E values discussed in the previous section,
compound 3h (Figure 3) was the most stable compound, which was supported by its highest ionization
potential and chemical hardness values. Similarly, the most reactive compound—as predicted from
FMO analysis—showed the lowest values of I, EA, and η, thus supporting the predicted results.

3. Experimental

3.1. General

A melting point apparatus (B-540) was used for determining the melting points of synthesized
solids. 1H-NMR was measured using CDCl3 (Bruker ARX, Billercia, MA, USA) at 300, 400, 500,
600 MHz). The JMS-HX-110 spectrometer with a data system was used for Electron Impact Mass
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Spectrometry (EI-MS) spectra. Thin Layer Chromatography TLC was used for monitoring the
completion of reaction (Merck silica gel 60 PF254 cards).

3.2. General Procedure for the Synthesis of N-(2,5-Dibromophenyl)acetamide (2)

A solution of 2,5-dibromoaniline (1, 1 g, 3.98 mmol) and acetic anhydride (0.996 g, 9.96 mmol) in
acetonitrile (10 mL) was stirred and refluxed at 60 ◦C with a few drops of 96% H2SO4 under an inert
nitrogen atmosphere. The reaction was conducted for more than half an hour, and it was examined
through TLC until completion. The volume of the reaction mixture was decreased by evaporating
the solvent. Then, the solution was cooled to room temperature. Water was added drop wise to form
precipitates. The mixture was stirred for one hour more at room temperature. After that, it was filtered.
The work up was done by creating organic and aqueous layers and separating the organic layer. The
solvent was evaporated through a rotary evaporator.

3.3. General Procedure for the Synthesis of Compound (3a–h)

N-(2,5-dibromophenyl)acetamide (2, 0.1 g, 0.341 mmol) and catalyst Pd(PPh3)4 (0.019 g, 5 mol%)
were added in the schlenk flask with solvent 1,4-dioxane (8 mL). The reaction mixture was stirred
for half an hour at room temperature. After that, arylboronic acid (0.717 mmol), K3PO4 (0.2171 g,
1.024 mmol), and water (2 mL) were added, and stirring and refluxing was done for 32 h at 85–95 ◦C.
After cooling the reaction mixture to room temperature, it was filtered and diluted by solvent ethyl
acetate. The work up was done by adding distilled water. Organic and aqueous layers were separated,
and the organic layer was further processed. The solution was concentrated by rotary evaporation. The
resulting sample was purified by column chromatography. The final product was dried, re-crystallized,
and further analyzed by using different spectroscopic techniques.

3.4. Characterization Data

N-(2,5-Dibromophenyl)acetamide (2): solid, mp = 516 ◦C, 1H-NMR (600 MHz, CDCl3) δ: 8.57 (s, 1H, NH),
7.36 (d, J = 9.0 Hz, 1H, aryl), 7.09 (dd, J = 8.4, 1.8 Hz, 2H, aryl), 2.26 (s, 3H, CH3). 13C-NMR (150 MHz,
CDCl3): δ 170.1, 142.0, 132.1, 130.1, 127.3, 122.4, 115.6, 24.0; EIMS (m/z, + ion mode): 293 [M + H]+:
[M + 2] = 294.1; [M + 4] = 296.0; [M − Br]+ = 212.0.

N-(3,3′′,5,5′′-Tetramethyl-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3a): solid, mp = 680 ◦C, 1H-NMR (600
MHz, CDCl3) δ: 8.57 (s, 1H, NH), 7.36 (d, J = 8.4 Hz, 2H, aryl), 7.26–7.17 (m 3H, aryl), 7.04–6.98 (m, 4H,
aryl), 2.26 (s, 12H, CH3), 2.02 (s, 3H, CH3). 13C-NMR (150 MHz, CDCl3): δ 167.1, 140.1, 139.1, 138.9,
138.3, 137.9, 137.1, 136.1, 135.1, 129.1, 128.5, 128.1, 127.1, 126.3, 125.8, 125.1, 123.4, 122.8, 121.1, 25.0, 23.1,
22.3, 21.9, 21.1. EIMS (m/z, + ion mode): 343.3 [M + H]+, [M −Me]+ = 328.0.

N-(4,4′′-Dimethoxy-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3b): solid, mp = 677 ◦C, 1H-NMR (600 MHz,
CDCl3) δ: 9.02 (s, 1H, NH), 8.01 (d, J = 7.8 Hz, 2H, aryl), 7.65–7.35 (m, 4H, aryl), 7.10 (d, J = 8.2 Hz, 2H,
aryl), 7.04–7.02 (m, 3H, aryl), 2.42 (s, 6H, OCH3), 2.32 (s, 3H, CH3). 13C-NMR (150 MHz, CDCl3): δ
170.1, 160.1, 159.1, 140.1, 138.1, 135.1, 134.1, 132.1, 131.1, 130.8, 131.1, 129.1, 124.1, 121.9, 120.1, 116.1,
115.8, 115.1, 114.0, 56.9, 55.1, 25.0 EIMS (m/z, + ion mode): 348.1 [M + H]+, [M − OMe]+ = 317.1,
[M − 2OMe]+ = 286.4.

N-(4,4′′-Diiodo-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3c): solid, mp = 726 ◦C, 1H-NMR (600 MHz, CDCl3)
δ: 9.05 (s, 1H, NH), 8.21 (d, J = 7.6 Hz, 2H, aryl), 7.81–7.77 (m, 4H, aryl), 7.57–7.52 (m, 5H, aryl), 2.23 (s,
3H, CH3). 13C-NMR (150 MHz, CDCl3): δ 170.1, 140.5, 139.7, 138.7, 138.1, 137.2, 136.6, 135.9, 134.1,
133.7, 132.1, 131.1, 129.1, 124.1, 123.7, 122.1, 120.1, 94.2, 93.4, 25.7. EIMS (m/z, + ion mode): 540.1
[M + H]+, [M − I]+ = 413.1, [M − 2I]+ = 285.9.

N-(3,3′′-Diacetyl-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3d): solid, mp = 755 ◦C, 1H-NMR (600 MHz,
CDCl3) δ: 9.32 (s, 1H, NH), 8.01–7.91 (m, 3H, aryl), 7.65–7.35 (m, 6H, aryl), 6.87 (d, J = 3.5 Hz, 2H, aryl),
2.64 (s, 6H, COCH3), 2.26 (s, 3H, CH3). 13C-NMR (150 MHz, CDCl3): δ 197.9, 197.1, 167.1, 142.3, 140.1,
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139.1, 137.8, 137.1, 135.1, 132.1, 131.1, 128.9, 128.1, 127.6, 126.8, 126.1, 125.1, 121.7, 120.1, 27.1, 26.6, 23.1.
EIMS (m/z, + ion mode): 372.2 [M + H]+, [M − COCH3]+ = 329.1, [M − 2COCH3]+ = 285.2, [M-aryl,
COCH3, fragments]+ = 253.2.

N-(4,4′′-Dichloro-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3e): solid, mp = 670◦C, 1H-NMR (600 MHz,
CDCl3) δ: 8.42 (s, 1H, NH), δ: 7.56 (d, J = 10.0 Hz, 2H, aryl), 7.46 (d, J = 9.4 Hz, 3H, aryl),7.39 (d,
J = 8.5 Hz, 3H, aryl), 7.35–7.31 (m, 3H, aryl), 2.02 (s, 3H, CH3). 13C-NMR (150 MHz, CDCl3): δ 170.1,
140.1, 139.1, 138.8, 137.1, 132.6, 131.1, 130.7, 130.1, 129.4, 128.1, 127.6, 126.1, 125.3, 124.6, 124.0, 121.9,
121.1, 119.8, 23.9. EIMS (m/z, + ion mode): 355.0 [M + H]+, 456.1 [M + 2]; 358.1 [M + 4]; [M − Cl,
NHCOCH3]+ = 262.0, [M − 2Cl, NHCOCH3]+ = 226.0.

N-(3,3′′,5,5′′-Tetrafluoro-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3f): solid, mp = 637 ◦C, 1H-NMR (600
MHz, CDCl3) δ: 8.65 (s, 1H, NH), 7.85–7.81 (m, 4H, aryl), 7.65 (d, J = 8.1 Hz, 2H, aryl), 7.05–7.01 (m, 3H,
aryl), 2.12 (s, 3H, CH3). 13C-NMR (150 MHz, CDCl3): δ 170.1, 169.1, 168.1, 166.9, 165.2, 140.9, 139.8,
138.2, 137.1, 129.0, 125.7, 122.7, 120.3, 114.0, 113.7, 112.1, 111.0, 104.1, 103.5, 23.6. EIMS (m/z, + ion
mode): 360.0 [M + H]+, [M − NHCOCH3]+ = 302.0, [M − 4F]+ = 284.0.

N-(4,4′′-Bis(methylthio)-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3g): solid, mp = 710 ◦C, 1H-NMR (600
MHz, CDCl3) δ: 8.56 (s, 1H, NH), 7.83–7.80 (m, 4H, aryl), 7.77–7.73 (m, 3H, aryl), 7.36 (d, J = 8.4 Hz, 2H,
aryl), 7.09 (dd, J = 8.4, 2.4 Hz, 2H, aryl), 2.23 (s, 6H, SCH3), 2.01 (s, 3H, CH3). 13C-NMR (150 MHz,
CDCl3): δ 170.1, 139.7, 138.5, 137.3, 136.2, 135.6, 135.1, 130.9, 128.4, 127.1, 126.9, 126.1, 125.7, 125.0, 124.6,
123.6, 122.4, 120.4, 119.0, 25.8, 15.6, 15.0. EIMS (m/z, + ion mode): 380.0 [M + H]+, [M −NHCOCH3]+ =

321.0, [M − SCH3, aryl fragments]+ = 256.1, [M − NHCOCH3, SCH3, aryl fragments]+ = 199.1.

N-(2,2′′,3,3′′-Tetrachloro-[1,1′:4′,1′′-terphenyl]-2′-yl)acetamide (3h): solid, mp = 754 ◦C, 1H-NMR (600
MHz, CDCl3) δ: 8.95 (s, 1H, NH), 7.47 (d, J = 7.8 Hz, 2H, aryl), 7.30 (t, J = 7.8 Hz, 3H, aryl), 7.10–7.08
(m, 4H, aryl), 2.16 (s, 3H, CH3). 13C-NMR (150 MHz, CDCl3): δ 171.0, 143.1, 140.1, 138.7, 137.1, 136.3,
135.2, 134.7, 132.0, 130.1, 128.9, 128.1, 127.4, 126.7, 125.9, 124.7, 123.7, 122.0, 121.8, 25.7. EIMS (m/z, + ion
mode): 426.1 [M + H]+, 427.1 [M + 2]; 429.1 [M + 4]; 431 [M + 6], 433.7 [M + 8], [M − 2Cl, aryl
fragments]+ = 279.0.

3.5. Computational Methods

Gaussian 09 (Revision D.01) [37] was used for all the calculations. The density functional theory
(DFT) was employed for all the calculations, utilizing Adamo’s hybrid [38] version of Perdew, Burke
and Ernzerhof functional (PBE0) [39,40] along with the application of Grimme’s empirical dispersion
correction (D3) with Becke-Johnston damping (D3BJ) [41–43]. All the calculations were performed
with Ahlrich’s triplet ζ basis set Def2-TZVP [44] aided by the Polarizable Continuum Model (PCM)
with the integral equation formalism variant (IEFPCM) [45–51] for solvation modeling. The solvent
for all the calculations was 1,4-dioxane, which was modeled with the SMD parameter set by Cramer
and Truhlar [52] (as implemented in Gaussian 09) [37]. All optimized structures were established to
be true minima on the potential energy surface at the PBE0-D3BJ/def2-TZVP/SMD1,4-dioxane level by
calculating the vibrational frequencies with the absence of imaginary frequencies. NLO calculations
were performed at the same level of theory as optimizations. The 3D images of optimized molecules
were drawn using GaussView 5.0.9 and CYLview [53] programs.

4. Conclusions

A series of novel amides (3a–h) was synthesized via a Suzuki cross coupling reaction. The density
functional theory calculations were performed on the synthesized aniline derivatives to gain insight
into their structural and electronic properties. An analysis of the frontier orbitals and other reactivity
descriptors, including ionization potential, electron affinity, chemical hardness, electronic chemical
potential, and electrophilicity index, showed that compound 3g was the most reactive one, while 3h
was the most stable one. The first hyperpolarizability (βo) analysis revealed that 3g (833.15 au) had a
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reasonably high NLO response, whereas 3e had the lowest βo value of 252.00 au among all synthesized
derivatives. The NLO response revealed that in the future, these derivatives have potential applications
in optoelectronic devices.
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