INTUITIVE CONTENT MANAGEMENT SYSTEM VIA MANIPULATION AND DUPLICATION WITH IF-ELSE RULES CLASSIFICATION

CHAN CHUNG HOONG

Master of Science

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science

__
(Supervisor’s Signature)

Full Name : DR. MOHAMED ARIFF BIN AMEEDDEEN
Position : SENIOR LECTURER
Date
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : CHAN CHUNG HOONG
ID Number : MCC14005
Date :
INTUITIVE CONTENT MANAGEMENT SYSTEM VIA MANIPULATION AND DUPLICATION WITH IF-ELSE RULES CLASSIFICATION

CHAN CHUNG HOONG

Thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science

Faculty of Computer System & Software Engineering
UNIVERSITI MALAYSIA PAHANG

SEPTEMBER 2018
ACKNOWLEDGEMENTS

I would like to thank the society for their participation in the survey who supported my work in this way and helped me get results of better quality. A very special gratitude goes out to all down at Research Fund and also Rich Foundation for helping and providing the funding for the work.

I would like to thank my supervisor, Dr. Mohamed Ariff Bin Ameedeen for his invaluable advice and contributions to this work. Her insights and high standards have definitely helped to shape this work. It is a pleasure to have an advisor being so joyful in his work.

I would like to thank my friends for accepting nothing less than excellence from me. Last but not the least, I would like to thank my family: my parents and to my brothers and sister for supporting me spiritually throughout writing this thesis and my life in general.

This project is successfully completed with the assistance of Jabatan Pembangunan Wanita (JPW). I am thankful for this project with its grant by JPW for helping rural areas to generate website for their businesses.

Last but not least, I would like to express my appreciation towards FSKKP for their assistance throughout this project. With all assistances from all parties above, my project was successfully completed and presented.
ABSTRACT

A Content Management System (CMS) is a system that is used to control or manage content on a website such as text, links, image, HTML documents, and other forms of media. The fact that CMS is dynamically generated is a problem on pages loading speed which is currently used in Drupal, Joomla, WordPress, and Agility CMS. However, static websites load faster than dynamic ones, since the content is delivered as-is and can be cached by a content delivery network (CDN), and the web server does not need to perform any application logic or database queries. In order to solve this problem, an Intuitive Content Management System (ICMS) is proposed in this study. The aim of ICMS is to help non-technical users to design their website easily. Users will need to choose the content from templates, upload images directly, and fill in necessary documents to create a quick, easy, and static website which can reduce load time from dynamic website. An ICMS is a content management system that uses three main important techniques to build, such as Manipulation method, Data Mining Prediction, and Boyer-Moore Horspool algorithm. The manipulation method is a method that can easily generate a website and store the information precisely in a correct order with buffering method. A buffering method will be implemented after the generation of website, in order to transform dynamic website into static website. Therefore, a static website is created which load faster than dynamic website. An ICMS needs to use data mining classification to accurately classify stored data while predicting the user’s database information to give the best preferences and suitable template chosen for an end user to select. The time consumed for choosing a template will decrease as an example of giving the user 5 templates to choose from out of 100. As a result, it can minimize the workload of choosing a template and the time consumed which come from preferences of 5 recommendation which are 20 times faster than before. Boyer-Moore Horspool algorithm is adapted in ICMS which is mainly for faster searching result. As a result, ICMS can transform dynamic websites into static websites with faster load speed using manipulation method mixed with data mining classification prediction and Boyer-Moore Horspool algorithm which can be classified, edited, adjustable and searched more precisely. An ICMS makes things easy for any small business or personal business to create, manage, and publish interactive observations to interpret their own websites, which also support mobile platform browsers.
ABSTRAK

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Background of Problem 1

1.3 Problem Definition 2

1.4 Objective of Research 3

1.5 Scope of Research 3

1.6 Thesis Organization 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Review of Present CMS Services 5

2.1.1 Introduction 5

2.1.2 Drupal 5

2.1.3 Overview of Drupal 6

2.1.4 Advantages of Drupal 7
2.1.31 Comparison of Joomla, Drupal, WordPress, Shopify, Agility CMS, WIX, Research CMS 20

2.2 Data Mining 22
 2.2.1 Introduction 22
 2.2.2 Advantages of Data Mining 22
 2.2.3 Data Mining Classification 23
 2.2.4 Rule Prediction 23
 2.2.5 Neural Network 24
 2.2.6 Ant Colony 25
 2.2.7 Clustering Data Mining 26
 2.2.8 Introduction of Clustering Data Mining 26
 2.2.9 Clustering Methods Overview 26
 2.2.10 Possible Applications 27
 2.2.11 Classification VS Clustering 27

2.3 Searching Algorithms 28
 2.3.1 Introduction of Searching Algorithms 28
 2.3.2 Boyer-Moore Algorithm 29
 2.3.3 Brute-Force Algorithm 30
 2.3.4 Boyer-Moore Horspool Algorithm 30
 2.3.5 Knuth-Morris-Pratt Algorithm (KMP) 30
 2.3.6 Rabin-Karp Algorithm (RK) 31
 2.3.7 Comparison Graph of Fast Searching Algorithm 32
 2.3.8 Pros and Cons of Fast Searching Method 33
 2.3.9 Conclusion of Searching Method 34

CHAPTER 3 METHODOLOGY 36
3.1 Operational Framework 36

3.2 Plan, Problem Structuring 36

3.2.1 Module 1 – Problem Definition 36

3.2.2 Module 2 – Resources Gathering 37

3.2.3 Module 3 – Interview & Survey Findings 37

3.2.4 Module 4 – Developing Architecture and Structure of the System 39

3.2.5 Module 5 – Developing Structure Database 39

3.2.6 Module 6 – Projects: Experiment, Error Checking, Solving, and Executing 40

3.3 Flow Chart Explanation 40

3.3.1 Administrator Module 40

3.3.2 Entrepreneur Module 43

3.3.3 User Module 45

3.4 Use Case Diagram of System 46

3.4.1 Use Case Module and User Requirements 46

CHAPTER 4 RESULTS VERIFICATION AND VALIDATION OF ICMS 51

4.1 Verification 51

4.2 Validation 53

4.3 Process Flow of Manipulation and Duplication Process Backend 56

4.4 Preprocess of Data Mining 58

4.5 Fast Searching Comparison 62

CHAPTER 5 CONCLUSION AND FUTURE WORKS 63

5.1 Conclusion 63

5.2 Limitation 63

5.3 Future Work 64
LIST OF TABLES

Table 2.1 Comparison of Joomla, Drupal, Wordpress, Shopify, Agility CMS, Wix, Research CMS 21
Table 2.2 Comparison of Between Classification And Clustering 28
Table 2.3 Advantages and Disadvantages Searching Method 34
Table 4.1 Performance Comparison for existing CMs and Research ICMS 52
Table 4.2 Table of Colour Preference Template and Job Categories 58
Table 4.3 Table of Colour Preferences Template against Age 59
LIST OF FIGURES

Figure 2.1 Drupal System 6
Figure 2.2 Drupal Dashboard 7
Figure 2.3 Rule Prediction 23
Figure 2.4 Shift in the Knuth-Morris-Pratt algorithm (v border of ‘u’ and ‘c’ neq ‘b’) 31
Figure 2.5 Comparison Graph of Fast Search Algorithm 33
Figure 3.1 Operation Framework for ICMS project 36
Figure 3.2 Administrator Module 42
Figure 3.3 Entrepreneur Module 44
Figure 3.4 User Module 45
Figure 3.5 Entrepreneur Information Set Up 46
Figure 3.6 Entrepreneur Functional and Template Set up 47
Figure 3.7 Entrepreneur Product Setup 47
Figure 3.8 User, Entrepreneur and Administrator 48
Figure 3.9 Use Case Diagram of System 49
Figure 4.1 Verification hypothesis 51
Figure 4.2 Validation Steps 53
Figure 4.3 Pseudocode of Manipulation Process 54
Figure 4.4 Database of Entrepreneur 55
Figure 4.5 Process Flow of Manipulation and Duplication 57
Figure 4.6 Colour Preferences Template vs Job Categories 58
Figure 4.7 Colour Preferences Template against Age 59
Figure 4.8 Pseudocode of creating preference template 60
Figure 4.9 Comparison Elapsed for Searching algorithms 61
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>Content Management System</td>
</tr>
<tr>
<td>ICMS</td>
<td>Intuitive Content Management System</td>
</tr>
<tr>
<td>PHP</td>
<td>Hypertext Pre-processor</td>
</tr>
<tr>
<td>CSS</td>
<td>Cascading Style Sheets</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Mark-up Language</td>
</tr>
<tr>
<td>XHTML</td>
<td>Extensible Hyper Text Markup Language</td>
</tr>
<tr>
<td>URL</td>
<td>Universal Resource Locator</td>
</tr>
<tr>
<td>MYSQL</td>
<td>My Structured Query Language</td>
</tr>
<tr>
<td>POSTGRESQL</td>
<td>Postgres Structured Query Language</td>
</tr>
<tr>
<td>SAAS</td>
<td>Software as a Service</td>
</tr>
</tbody>
</table>

