THE ROLE OF BUILDING INFORMATION MODELLING DESIGN APPLICATION IN MITIGATING THE VARIATION ORDER IN JORDANIAN CONSTRUCTION INDUSTRY

JA’FAR A. A. (AL-DIABAT AL-BTOOSH)

DOCTOR OF PHILOSOPHY
UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis and, in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy of Science in Civil Engineering.

(Supervisor’s Signature)
Full Name : DR. AHMAD TARMIZI BIN HARON

Position :
Date :

(Co-Supervisor’s Signature)
Full Name : PUAN FADZIDA BINTI ISMAIL
Position :
Date :
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : JA’FAR A. A. (AL-DIABAT AL-BTOOSH)
Position : PAC15002
Date :
THE ROLE OF BUILDING INFORMATION MODELLING DESIGN APPLICATION IN MITIGATING THE VARIATION ORDER IN JORDANIAN CONSTRUCTION INDUSTRY

JA'FAR A. A. (AL-DIABAT AL-BTOOSH)

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Civil Engineering & Earth Resources
UNIVERSITI MALAYSIA PAHANG

November 2018
ACKNOWLEDGEMENTS

This study would not be accomplished without the noble people I interacted with when conducting this research, first and foremost, a special thanks to the Almighty God for bringing me this far.

With heartfelt gratitude I wish to acknowledge my supervisor Dr. Ahmad Tarmizi Bin Haron for his guidance, time, critical comments, suggestions and the encouragement he provided throughout the period of conducting this research.

I also would like to thank my brother for his constant encouragement and friendship, finally, I would like to thank my family, my dad soul, my lovely mother, my wife, my children; Ooon, Leen, lean, Hadeel, for their patience and encouragement.
ABSTRAK

Variation order is a major challenge facing the construction industry. It can be defined as changes to the contract documents in the original agreement. It might be a change in quality, or quantity or any forms of change that affect the project. Several researchers in Jordan have inspected the variation orders sources, and a variety of clarifications have been recommended to minimize their causes, nevertheless variation order kept hardly influencing the construction industry. Though, Building Information Modelling (BIM) as a tool to minimize the variation order effects in Jordan has not been examined. Moreover, researchers confirmed a knowledge gap, in terms of BIM awareness through Jordanian construction industry. Literature indicates that the use of BIM in the Jordanian construction industry is lagging behind. The aim of this study is to develop a BIM framework to minimize the variation orders causes on the governmental construction project in Jordan. To meet that aim, a comprehensive literature review was conducted in terms of BIM capability to reduce V.O. impact on construction project around the world. Furthermore, the researcher designed a questionnaire to collect the data required in regard of VO causes and the BIM capability to address this issue. The response rate was around 70% (105/150). The questionnaire answers were analyzed descriptively and statistically by Partial Least Squares (PLS), and Relative Importance Index (RII). The causes of variation order in the Jordanian construction industry were further categorized into four main groups, namely client-related causes, contractor causes, consultant causes and causes arising from unforeseen circumstances of the project. The outcomes of this research (dependent on a relative importance index (RII)) indicate that the most frequent causes of variation orders in Jordan construction industry were, inaccurate quantity take-off, unskilled labourers, missing material specifications, logistic delays, internal politics, shortage of equipment and tools, technology changes, shortage of human and equipment Resource, absence of construction manuals and procedures, unavailability of the required labour skills, change of scope or plans by owners. It was also found that 50% of these causes were initiated by consultants, 20 % by clients and unforeseen variations, while 10 % only were initiated by contractor. Moreover, it was found that BIM Design Applications, Facility Operations Simulation, Exploration Design Scenarios, BIM Design Detection and BIM Quantity Take-off and Cost Estimation were found to be significantly capable to minimize V.O. The research concluded that there is a significant positive relationship between the use of BIM applications and minimizing in the variation order in Jordanian construction industry. This means that the variation orders will decrease significantly if BIM applications is used and supports a case for using BIM as a means of reducing the variation order in the Jordanian construction industry. Finally, focus group workshop was used to validate this framework. Focus group workshop was used to investigate the relationship between the causes of variation order and the functions and features of BIM, which validated the positive effects of using BIM in terms of minimizing the variation order by minimizing the main causes. This research introduced a helpful contribution through a detailed BIM design application framework to minimize variation order, the study recommended to use this framework to solve many problems related to construction industry.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

LIST OF SYMBOLS xiv

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

1.2 Construction sector in Jordan 1

1.3 Problem Statement 5

1.4 Research Objectives 8

1.5 Research Hypothesis 8

1.6 Limitations and Scope of the Study 9

1.7 Contribution of the study 9

1.8 Thesis Outline 10

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 11

2.2 Variation Order 11

2.2.1 Definition of variation order 11

2.2.2 Potential causes of variation orders 18

2.2.3 Effects of Variation Orders 28

2.2.4 Classification of Variations 32

2.2.5 Elements of Variation Order 33

2.2.6 Types of Variation Orders 33

2.2.7 Variation Originators 34

2.2.8 Controllers for Variation Orders 34

2.3 Building Information Modelling 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 BIM Stages</td>
<td>41</td>
</tr>
<tr>
<td>2.3.2 BIM Maturity Stages</td>
<td>42</td>
</tr>
<tr>
<td>2.3.3 Acceptance of BIM in the National Industry</td>
<td>43</td>
</tr>
<tr>
<td>2.3.4 Benefits of BIM</td>
<td>45</td>
</tr>
<tr>
<td>2.4 Research Approaches</td>
<td>48</td>
</tr>
<tr>
<td>2.4.1 Qualitative approach</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2 Quantitative approach</td>
<td>53</td>
</tr>
<tr>
<td>2.4.3 Comparison between qualitative and quantitative approaches</td>
<td>54</td>
</tr>
<tr>
<td>2.5 Theoretical Framework</td>
<td>55</td>
</tr>
<tr>
<td>2.5.1 Variation Orders Initiators</td>
<td>57</td>
</tr>
<tr>
<td>2.5.2 BIM Applications</td>
<td>59</td>
</tr>
<tr>
<td>2.6 Summary</td>
<td>66</td>
</tr>
</tbody>
</table>

CHAPTER 3 RESEARCH METHODOLOGY 69

3.1 Introduction | 69 |
3.2 Research Model | 71 |
3.3 Population and Sample | 72 |
3.4 Data Collection Instruments | 74 |
3.5 Questionnaire Format | 74 |
3.6 Data Collection Procedure | 74 |
3.7 An Overview on Structural Equation Modelling (SEM) | 81 |
3.8 Data Analysis Procedure | 83 |
3.8.1 Descriptive | 83 |
3.9 Summary | 84 |

CHAPTER 4 RESULTS AND DISCUSSION 85

4.1 Introduction | 85 |
4.2 Factors Causing Variation Orders in Jordanian Governmental Construction Projects | 86 |
4.2.1 Inaccurate Quantity Take-off | 87 |
4.2.2 Labours or Material Not Meeting the Specifications | 87 |
4.2.3 Logistic Delays | 87 |
4.2.4 Internal Politics | 88 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Number of Workers at Establishments Operating in the Construction Industry Sector in (2013 – 2014)</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>The Construction Industry Sectors Total Exports Values (Million Jordanian Dinars)</td>
<td>5</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>BIM Implementation Benefits</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Qualitative and Quantitative Research: Advantages and Disadvantages</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>The Five Experts Background</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Calculating Validity of the Questions According to Five Experts Answers</td>
<td>76</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>30 Interested Respondents Profile</td>
<td>78</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Results of Reliability Tests upon Receiving the Feedback from Thirty Respondents as Pilot Study</td>
<td>79</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Agenda for the Roundtable Program Entitled Variation Orders Causes Minimization through Building Information Modelling (BIM) Applications</td>
<td>81</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The Most Important Causes of Variation Orders in Jordan</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>The Ten Most Important Causes of Variation and Their Origin Initiateros.</td>
<td>90</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>List of Measurement and VO Components Items</td>
<td>91</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Result of Univariate Outlier Based on Standardized Values.</td>
<td>92</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Assessment of Normality of All Items</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Sample Profile</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Internal Reliability Alpha for all Variation Order Components</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Research Model Convergent Validity 1 and Cronbach Alpha Results CFA Model</td>
<td>99</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Internal Reliability Alpha for all Variation Order Components</td>
<td>101</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Discriminant validity of Modified CFA Model for Research Model 1</td>
<td>102</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Discriminant Validity Of Modified CFA Model for Research Model 2</td>
<td>103</td>
</tr>
</tbody>
</table>
Table 4.12 Displays the Means and Standard Deviation of the Constructs, Assessed On a 5-point Likert Scale 104

Table 4.13 Examining Results of Hypothesized Direct Effects of the Constructs in Structural Model 1 107

Table 4.14 Examining Results of Hypothesized Direct Effects of the Constructs in Structural Model 2 109

Table 4.15 Examining Results of Hypothesized Direct Effects of the Framework Elements. 113

Table 4.16 Focusworkshop Group Profile 114

Table 4.17 BIM Applications Relative Importance Index. 116
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Gross Domestic Product from Construction Sector in Jordan from 2003 until 2018.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Number of Establishments Operating in Construction Industry Sector 2013-2016.</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Total Capitals of the Registered Construction Companies 2013-2016 (Million Dinars)</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of Variation Orders Causes from the Literature Review.</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>BIM Maturity Stages, Linear View.</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>BIM Quantity Take-Off Conceptual Diagram.</td>
<td>65</td>
</tr>
<tr>
<td>2.4</td>
<td>Theoretical Framework</td>
<td>66</td>
</tr>
<tr>
<td>2.5</td>
<td>Variation Order Components .</td>
<td>68</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Process Flowchart</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Research Hypotheses in Research Model 1</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Research Hypotheses in Research Model 2</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>Variation Order Initiators Sharing</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Means and Standard Variations of All Variables</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>PLS Analysis of the Structural Model 1</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>PLS Analysis of the Structural Model 2</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Final BIM Framework to Minimize Variation Orders Causes in Jordanian Governmental Construction Projects</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC</td>
<td>Architecture, Engineering and Construction Industry</td>
</tr>
<tr>
<td>AECO</td>
<td>Architecture, Engineering, Construction and Owner/Operator</td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modelling</td>
</tr>
<tr>
<td>BIMDA</td>
<td>BIM Design Applications</td>
</tr>
<tr>
<td>C&D</td>
<td>Construction and Demolition</td>
</tr>
<tr>
<td>CFA</td>
<td>Confirmatory Factor Analysis</td>
</tr>
<tr>
<td>CNP</td>
<td>Contract Parties</td>
</tr>
<tr>
<td>CNS</td>
<td>Consultant</td>
</tr>
<tr>
<td>CNT</td>
<td>Contractor</td>
</tr>
<tr>
<td>COBie</td>
<td>Construction Operations Building Information Exchange</td>
</tr>
<tr>
<td>DCI</td>
<td>Design Changes Caused by Improvement</td>
</tr>
<tr>
<td>DCO</td>
<td>Design Changes Originated by Owner</td>
</tr>
<tr>
<td>DCP</td>
<td>Design Changes Originated by Professionals</td>
</tr>
<tr>
<td>DSD</td>
<td>Design Detection</td>
</tr>
<tr>
<td>EDS</td>
<td>Exploration Design Scenarios</td>
</tr>
<tr>
<td>FIDIC</td>
<td>International Federation of Consulting Engineer (Fédération Internationale Des Ingénieurs-Conseils)</td>
</tr>
<tr>
<td>FM</td>
<td>Facilities Management</td>
</tr>
<tr>
<td>FOS</td>
<td>Facility Operations Simulation</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>H</td>
<td>Hypothesis</td>
</tr>
<tr>
<td>IFC</td>
<td>Industry Foundation Class</td>
</tr>
<tr>
<td>IPD</td>
<td>Integrated Project Delivery</td>
</tr>
<tr>
<td>JOD</td>
<td>Jordanian Dinar</td>
</tr>
<tr>
<td>MPWH</td>
<td>Ministry of Public Work and Housing</td>
</tr>
<tr>
<td>OBG</td>
<td>Oxford Business Group</td>
</tr>
<tr>
<td>OWN</td>
<td>Owner</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>PGI</td>
<td>Programmatic Integration</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares</td>
</tr>
<tr>
<td>QTCE</td>
<td>Quantity Take-off and Cost Estimation</td>
</tr>
<tr>
<td>RII</td>
<td>Relative Importance Index</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Modelling</td>
</tr>
<tr>
<td>TOC</td>
<td>Taking-Over Certificate</td>
</tr>
<tr>
<td>TPP</td>
<td>Technology, Process and Policy</td>
</tr>
<tr>
<td>UNFV</td>
<td>Unforeseen Variations</td>
</tr>
<tr>
<td>VIS</td>
<td>Visual Simulation</td>
</tr>
<tr>
<td>VO</td>
<td>Variation Order</td>
</tr>
<tr>
<td>VOM</td>
<td>VO minimizing</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>AVE</td>
<td>Average Variance Extracted</td>
</tr>
<tr>
<td>CR</td>
<td>Construct Reliability</td>
</tr>
<tr>
<td>N</td>
<td>Total Number of Population</td>
</tr>
<tr>
<td>Nf</td>
<td>Sample Size from Finite Population</td>
</tr>
<tr>
<td>P</td>
<td>Probability</td>
</tr>
<tr>
<td>Q2</td>
<td>Quantification</td>
</tr>
<tr>
<td>R</td>
<td>Regression</td>
</tr>
<tr>
<td>S2</td>
<td>The Standard Error of Sampling Population</td>
</tr>
<tr>
<td>V</td>
<td>The Variance of the Population Elements</td>
</tr>
</tbody>
</table>
REFERENCES

Al Awad, O. S. (2015). *The uptake of advanced IT with specific emphasis on BIM by SMEs in the Jordanian construction industry* (Doctoral dissertation). University of Salford, Manchester, UK.

Dawes, J. (2008). Do data characteristics change according to the number of scale points used. *International Journal of Market Research, 50*(1), 61-77.

