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Abstract - Overhead cranes are widely used in industry for transportation of heavy loads. The natural sway of crane payloads is 
detrimental to safe and efficient operation. However, the crane acceleration, required for motion, always induces undesirable 
load swing. This paper presents dynamic modelling of a 3-D overhead gantry crane system based on closed-form equations of 
motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system 
incorporating payload and rope length is developed. Then the effects of payload and rope length on the response of the system 
are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.  
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I. INTRODUCTION 

A 3-D crane system is used frequently to move heavy 
cargo in factories and harbours. Overhead cranes have 
some serious problems, i.e. crane acceleration or 
deceleration always induces undesirable load swing. 
Disturbances, such as wind and rain, also decrease the 
crane performance by adversely affecting the crane 
control. Furthermore, a crane operator may not effectively 
control a crane due to carelessness or lack of experience. 
Such problems decrease the work efficiency and in some 
cases cause damage to the loads and cause safety 
accidents. Thus, an effective and precise crane motion 
control design is required for rapid and smooth automatic 
payload handling (Chang and Chiang, 2008). Therefore, 
research on the dynamic modelling of the gantry crane 
system is crucial before any controller can be 
implemented to the system. 

Some studies developed the dynamic model and 
control design for 3-D overhead gantry crane system. The 
development of modelling and control method for a 3-D 
crane has been reported in Lee (1998). The employment 
of dynamic crane model to determine an optimal speed 
that minimized load swing has been investigated in Fang 
et al., (2003) and Piazzi and Visioli (2002). The 
modelling and energy based nonlinear control for crane 
lifters has been reported in Karkoub and Zribi (2002). In 
these studies, complex system dynamic equations for a 
crane must be considered for the controller. Anti-

swinging control and motion planning for 3-D gantry 
crane are also reported in Blajer and Kolodziejczyk 
(2007) and Garrido et al. (2008). Moreover, the study of 
the dynamic modelling of the other vibratory system 
incorporating payload is also has been reported. The study 
on the effects of payload on the dynamic behaviour of the 
3-D gantry crane system has been presented in Ismail et 
al. (2009) and the investigation on the effects of payload 
on the dynamic behaviour of the two-link flexible 
manipulator system has been presented in Ahmad et al. 
(2008),. 

This paper presents a generalised modelling 
framework that provides a closed-form dynamic equation 
of motion of a 3-D overhead gantry crane system. The 
work also presents the effect of payloads on the dynamic 
behaviour of the system. The Euler-Lagrange principle is 
used to derive the dynamic model of the system. The 
simulation algorithm thus developed is implemented in 
Matlab. Cart position and swing angles of the system and 
the power spectral density (PSD) are obtained in both 
time and frequency domains. To study the effect of 
payloads and rope length, the results are evaluated with 
varying the two parameters of the gantry crane. 
Simulation results are analysed in both time and 
frequency domains to assess the accuracy of the model in 
representing the actual system. 
 The rest of this paper is structured in the following 
manner. The next section provides a brief description of 
the 3-D overhead gantry crane system considered in this 
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study. Section 3 describes the dynamic modelling of the 
system derived using Euler-Lagrange formulation. 
Simulation results with parameters variation are reported 
in Section 4. Finally, concluding remarks are offered in 
the last section. 
 

II. THE 3-D OVERHEAD GANTRY CRANE 
SYSTEM 

The 3-D overhead gantry crane system with its payload 
considered in this work is shown in Figure 1, where  and 
  denote the swing angles of the rope, L is the length of 

rope, and F is the cart drive force.  
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Figure 1 Description of the 3-D overhead gantry crane. 
 

For simplicity, the cart friction force is ignored. The 
cart and the payload can be considered as point masses. 
The tension force that may cause the rope elongates is 
also ignored. 

 

III. DYNAMIC MODELLING OF THE 3-D 
OVERHEAD GANTRY CRANE SYSTEM 

This section provides detail description on the modelling 
of the 3-D overhead gantry crane system, as a basis of a 
simulation environment for the study on the effects of 
parameters variation to the system. The Euler-Lagrange 
formulation is considered in characterizing the dynamic 
behaviour of the crane system incorporate payload and 
length of the rope. 

To derive the dynamic equations of motion of the 3-
D overhead gantry crane system, the total energy 
associated with the crane system needs to be computed 
using the Lagrangian approach (Spong, 1997; Spong et 
al., 2006). Then, the Euler-Lagrange formulation is 
considered in characterizing the dynamic behaviour of the 
crane system. 

Based on Figure 1, the rail, cart and payload position 
vectors are given by  

 
]0,0,[xr r  

]0,,[ yxc r  

]cos,cossin,sinsin[  LLyLxp r  

where x and y are the cart positions in X- and Y-directions 
respectively.  

The total kinetic energy, K and potential energy, P 
of the whole system are given by  
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where J denotes the moment of inertia of the payload and 
g is the gravity acceleration. Then, the total kinetic energy 
and the total potential energy are obtained as 
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Using the Lagrangian approach, the Lagrangian of the 

system is obtain as 
 
 PKL           (3) 
 
Then, the Euler-Lagrange formulation is used that is 
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where q is the state vector and F is the control vector 
which are defined as 
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 Tyx q  

 Tyx ff 00F  

 
where xf and yf denote the control force inputs acting on 

the X- and Y-direction motions. From (4), a set of four 
equations is obtained that is 
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From (5), the dynamic model of the 3-D overhead gantry 
crane system can be expressed in the form of matrices 
such that 
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where the matrices 44)(M q , 44),(C qq  , and 
4)(G q  represent the inertia, Centripetal-Coriolis 

terms, and gravity, respectively, and are defined as 
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After rearranging (6) and multiplying both sides by 1M  , 
one obtains 
 
 )GC(M 1 Fqq     (10) 

 

where 1M   is guaranteed to exist due to 0)Mdet(  . 

From (10), the swing angles of the payload with respect to 
YZ-plane, θx and with respect to XZ-plane, θy are obtained 
as 
 

)sin(tantan 1  x  

)cos(sinsin 1  y  

 
In this study, the nominal values of the parameters are 

defined as mp = 0.73 kg, mc = 1.06 kg, mr = 6.4 kg, L = 
0.7 m and J = 0.005 kg-m2 (Chang and Chiang, 2008). In 
order to investigate the dynamic behaviour of the system 
incorporating payload, mp is varied from 0 to 1 kg while L 
is set to its nominal value. On the other hand, to study the 
effect of the rope length to the dynamic behaviour of the 
system, the value of L is varied from 0 to 1 m while mp is 
set to its nominal. The value of gravity acceleration is g = 
9.8 m-s–2. 

 

IV. SIMULATION RESULTS 

In this section, simulation results of the dynamic 
behaviour of the 3-D overhead gantry crane system are 
presented in the time and frequency domains. A bang-
bang signal of amplitude 1 N and 1 s width is used as an 
input force, applied at the cart of the gantry crane. A 
bang-bang force has a positive (acceleration) and negative 
(deceleration) period allowing the cart to, initially, 
accelerate and then decelerate and eventually stop at a 
target location.  

 
System responses are verified by undertaking 

computer simulation using the fourth-order Runge-Kutta 
integration method for duration of 20 s with a sampling 
time of 1 ms. The swing angles responses of the system 
with the power spectral density (PSD) are obtained and 
evaluated.  
 
A. System Responses with Payload Variation 

 
To demonstrate the effects of payload on the dynamic 

behaviour of the system, various payloads of up to 1 kg 
weight were simulated. Figure 2 and Figure 3 show the 
responses of the cart positions in X- and Y-directions, 
respectively for various payloads. It is noted that the 
average final positions for both X- and Y-directions of the 
cart decrease. Moreover, the chattering of the final 
position response varies from 3 to 7 mm for position in X-
direction and 2.2 to 3.6 cm for position in Y-direction. 
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Table 1 summarizes the relation between payload and the 
cart position response. Figure 4 and Figure 5 respectively 
show the swing angles with respect to YZ- and XZ-planes 
responses, with various payloads. It is shown that the 
oscillations of the swing angles decrease with increasing 
payloads. The relation between payload and the swing 
angles is also shown in Table 1. Figure 6 and Figure 7 
show the corresponding PSDs for both swing angles. It 
demonstrates that the resonance modes of vibration of the 
system shift to higher frequencies with increasing 
payloads. Table 2 summarizes the relation between 
payload and the resonance frequencies of the system. This 
study shows that, in order to decrease the oscillation of 
the system, a same control design can be used for several 
systems although they have different payloads. This result 
is remarkable since the parameters of a controller do not 
need to be redesigned if the payload is varied within the 
specific range. 
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Figure 2 Position of the cart in X-direction with variation of mp. 
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Figure 3 Position of the cart in Y-direction with variation of mp. 
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Figure 4 Swing angle of the rope with respect to YZ-plane with variation 

of mp. 
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Figure 5 Swing angle of the rope with respect to XZ-plane with variation 

of mp. 
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Table 1: Relation between payload mass with cart position and swing angles responses. 

 
Cart position (m) Swing angles (rad) 

X-direction Y-direction 
Payload 

mass 
(kg) Average Oscillation Average Oscillation 

With respect 
to YZ-plane, θx 

With respect 
to XZ-plane, θy 

0 0.1340 - 0.9434 - 0 0 
0.1 0.1321 ±0.0031 0.8455 ±0.0359 ±0.3202 ±0.3400 
0.2 0.1301 ±0.0049 0.7936 ±0.0297 ±0.2711 ±0.3002 
0.3 0.1289 ±0.0061 0.7353 ±0.0347 ±0.2266 ±0.2660 
0.4 0.1272 ±0.0069 0.6849 ±0.0357 ±0.1949 ±0.2361 
0.5 0.1257 ±0.0072 0.6425 ±0.0328 ±0.1631 ±0.2099 
0.6 0.1243 ±0.0072 0.6032 ±0.0329 ±0.1407 ±0.1869 
0.7 0.1223 ±0.0073 0.5683 ±0.0304 ±0.1204 ±0.1668 
0.8 0.1211 ±0.0070 0.5377 ±0.0278 ±0.1033 ±0.1492 
0.9 0.1198 ±0.0065 0.5101 ±0.0251 ±0.0887 ±0.1337 
1.0 0.1184 ±0.0062 0.4862 ±0.0221 ±0.0769 ±0.1201 
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Figure 6 Power spectral density of the swing angle with respect to YZ-

plane with variation of mp. 
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Figure 7 Power spectral density of the swing angle with respect to XZ-

plane with variation of mp. 

  
 
Table 2: Relation between payload and resonance frequencies of the 3-D 

overhead gantry crane system. 

 
Resonance frequency (Hz) 

Swing angle θx Swing angle θy 
Payload 

(kg) 
Mode 1 Mode 2 Mode 1 Mode 2 

0 - - - - 
0.1 0.4883 1.7090 0.6104 1.4650 

0.2 0.4883 1.8310 0.6104 1.5870 

0.3 0.6104 1.8310 0.7324 1.5870 

0.4 0.6104 1.8310 0.7324 1.7090 

0.5 0.6104 1.9530 0.7324 1.7090 

0.6 0.7324 1.9530 0.8545 1.8310 

0.7 0.7324 1.9530 0.8545 1.8310 

0.8 0.7324 2.0750 0.8545 1.8310 

0.9 0.7324 2.0750 0.8545 1.9530 

1.0 0.7324 2.0750 0.8545 1.9530 
 
B. System Responses with Rope Length Variation 

 
Similarly, to demonstrate the effects of rope length on 

the dynamic behaviour of the system, various length of 
rope up to 1 m were simulated. Figure 8 and Figure 9 
show the responses of the cart positions in X- and Y-
directions, respectively for various rope lengths. 
Remarkably, the variation of the rope length does not 
affect much on the average final positions for both X- and 
Y-directions. However, the chattering of the final position 
response varies from 0.5 to 13 mm for position in X-
direction and 0.9 to 6 cm for position in Y-direction. Table 
3 summarizes the relation between rope length and the 
cart position response. Figure 10 and Figure 11 
respectively show the swing angles with respect to YZ- 
and XZ-planes responses, with various rope lengths. It is 
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shown that, apart from rope length 0.1 m and 0.2 m, the 
oscillations of the swing angles increase with increasing 
rope length. The relation between rope length and the 
swing angles is also shown in Table 3. Figure 12 and 
Figure 13 show the corresponding PSDs for both swing 
angles. It demonstrates that the resonance modes of 
vibration of the system shift to higher frequencies with 
increasing rope length. Table 4 summarizes the relation 
between rope length and the resonance frequencies of the 
system. This investigation shows that, a similar control 
design can be used for several systems although they have 
different rope length, in order to reduce the oscillation of 
the system. This result is also significant since one does 
not have to redesign a controller if the rope length is 
varied within the specific range. 
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Figure 8 Position of the cart in X-direction with variation of L. 
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Figure 9 Position of the cart in Y-direction with variation of L. 
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Figure 10 Swing angle of the rope with respect to YZ-plane with 

variation of L. 
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Figure 11 Swing angle of the rope with respect to XZ-plane with 

variation of L. 
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Figure 12 Power spectral density of the swing angle with respect to YZ-

plane with variation of L. 
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Table 3: Relation between rope length with cart position and swing angles responses. 
 

Cart position (m) Swing angles (rad) 
X-direction Y-direction 

Rope 
length 

(m) Average Oscillation Average Oscillation 
With respect 

to YZ-plane, θx 
With respect 

to XZ-plane, θy 
0 - - - - - - 

0.1 0.1222 ±0.0005 0.5580 ±0.0089 ±0.1904 ±0.2045 
0.2 0.1273 ±0.0005 0.5657 ±0.0088 ±0.1885 ±0.1907 
0.3 0.1235 ±0.0007 0.5644 ±0.0085 ±0.0190 ±0.0108 
0.4 0.1300 ±0.0008 0.5673 ±0.0087 ±0.0243 ±0.0169 
0.5 0.1266 ±0.0010 0.5586 ±0.0085 ±0.0519 ±0.0387 
0.6 0.1245 ±0.0035 0.5669 ±0.0188 ±0.0795 ±0.0605 
0.7 0.1303 ±0.0058 0.5620 ±0.0289 ±0.1072 ±0.0824 
0.8 0.1230 ±0.0083 0.5594 ±0.0390 ±0.1346 ±0.1041 
0.9 0.1300 ±0.0106 0.5677 ±0.0494 ±0.1623 ±0.1250 
1.0 0.1269 ±0.0131 0.5658 ±0.0597 ±0.1899 ±0.1475 
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Figure 13 Power spectral density of the swing angle with respect to XZ-

plane with variation of L. 

 
Table 4: Relation between rope length and resonance frequencies of the 

3-D overhead gantry crane system. 

 
Resonance frequency (Hz) 

Swing angle θx Swing angle θy 
Rope 
length 
(kg) Mode 1 Mode 2 Mode 1 Mode 2 

0 - - - - 

0.1 1.343 4.150 1.343 2.441 

0.2 1.221 3.906 1.099 2.197 

0.3 1.099 3.418 0.9766 1.953 

0.4 0.9766 2.930 0.7324 1.587 

0.5 0.7324 2.441 0.6104 1.343 

0.6 0.7324 2.197 0.6104 1.221 

0.7 0.6104 2.075 0.4883 1.099 

0.8 0.6104 1.953 0.3662 0.9766 

0.9 0.4883 1.831 0.3662 0.8545 

1.0 0.4883 1.587 0.2441 0.8545 

V. CONCLUSION 

 Investigation into the development of a dynamic 
model of a 3-D gantry crane system incorporating payload 
and rope length has been presented. A closed-form finite 
dimensional dynamic model of the system has been 
developed using the Euler-Lagrange approach. The 
derived dynamic model has been simulated with bang-
bang force input. The cart position and swing angle 
responses of the gantry system have been obtained and 
analysed in time and frequency domains. Moreover, the 
effects of payload and rope length on the dynamic 
characteristic of the system have been studied and 
discussed. These results are very helpful and important in 
the development of effective control algorithms for a 3-D 
gantry crane system with variation of payload and rope 
length. 
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