Design and synthesis of a novel mPGES-1 lead inhibitor guided by 3D-QSAR CoMFA

Mohd Fadhlizil Fasihi Mohd Aluwi^a, Kamal Rullah^b, Andreas Koeberle^c, Oliver Werz^c, Nur Sakinah Abdul Razak^d, Leong Sze Wei^e, Fatimah Salim^f, Nor Hadiani Ismail^f, Ibrahim Jantan^g, Lam Kok Wai^d

 ^a Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia
^b Department of Pharmaceutical Chemistry, Kuliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
^c Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
^d Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
^e Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
^f Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Kampus Puncak Alam, 42300, Puncak Alam, Selangor, Malaysia
^g School of Pharmacy, Taylor University Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia

ABSTRACT

The search of novel mPGES-1 inhibitors has recently intensified probably due to the superior safety in comparison to existing anti-inflammatory drugs. Although two mPGES-1 inhibitors have entered clinical trials, none has yet reached the market. In this study, we performed modifications guided by 3D-QSAR CoMFA on **2**, which is an unsymmetrical curcumin derivative with low binding affinity towards mPGES-1. To counter the PAINS properties predicted for **2**, the diketone linker was replaced with a pyrazole ring. On the other hand, both prenyl and carboxylate ester groups were introduced to improve the activity. When tested *in vitro*, **11** suppressed PGE₂ biosynthesis in activated macrophages and showed promising human mPGES-1 inhibition in microsomes of interleukin-1 β -stimulated A549 cells. Altogether, **11** has been identified as a potential mPGES-1 inhibitor and could be a promising lead for a novel class of mPGES-1 inhibitors.

KEYWORDS

3D-QSAR CoMFA; PGE2; mPGES-1; PAINS

ACKNOWLEDGEMENTS

This work was financially supported by ScienceFund (02-01-02-SF00665), Ministry of Science, Technology and Innovation, Malaysia and FRGS (FRGS/2/2014/ST01/UKM/02/3), Ministry of High Education, Malaysia. Authors also thank Universiti Kebangsaan Malaysia for the funds provided under the Research University Grant UKM-DIP-2014-16.