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Abstract. Improved streamflow forecasting is considered an important task for researchers and 

water resources managers. However, streamflow forecasting is often challenging owing to the 

complexity of hydrologic systems. The accuracy of streamflow forecasting mainly depends on 

the input data from rainfall. Hence, this is important to make the estimation of rainfall as accurate 

as possible result in achieve an economical design of watershed management, water budget 

studies, reservoir operation, and flood forecasting and control. Most of the previous research was 

highlighted, an optimal rain gauge network is necessary to provide high quality rainfall estimates. 

The goal of this paper is to provide a concise review of several studies on the optimal design of 

a rain gauge network models to enhance the accuracy of streamflow forecasting. This study had 

two components. First, the design of an optimal rain gauge network using the kriging-based 

geostatistical approach based on the variance reduction framework. Second, the uses of 

optimization technique for minimizing the kriging variance in order to optimize rain gauge 

networks. Additionally, a discussion of both techniques to design an optimal rain gauge network 

is presented.  A well designed rain gauge network is capable of providing accurate rainfall 

estimates with an optimal number of rain gauge network density. This paper closes with a set of 

recommendations for what observations and capabilities are needed in the future to advance our 

understanding of an optimal rain gauge network design and their location for improving the 

estimate of aerial rainfall. 

1. Introduction
Monitoring of rainfall in time and space is considered to be a fundamental requirement in managing

water resources. In many hydrological analysis and watershed management problems such as water

budget studies, flood frequency analysis and sewer drainage design, availability of accurate rainfall data

with an appropriate coverage in both time and space is considered a classic issue in surface water

hydrology. Rainfall data can be obtained from both ground-based (rain gauge stations) and air-based

(radar or satellite) instruments. Even if one uses an air-based measurement, discrete ground-based data

are still required for validation and calibration purposes. Among examples in which streamflow forecasts

provide significant information is through the analysis and design of hydraulic structures such as dams

and bridges, management of extreme events including flood and drought, optimum operation of

reservoirs for activities including irrigation water requirements, hydropower generation, domestic water

supply objectives and industrial [1, 2]. Hence, this is vital to make the estimation of rainfall as accurate

as possible result in achieve an economical design of watershed management, water budget studies,

reservoir operation, and flood forecasting and control. Forecasting of streamflow is considered

significant result in minimize the risk in a decision taken, at any given point of interest, in various water

engineering applications. Hence, there is a growing need for both short-term and long-term forecasting

of future streamflow in order to optimize the water resources systems in an efficient way [3]. According

to [4], a reliable and improved forecasting of streamflow ensures rational regulation of river runoff,

which ultimately results in the enhanced flood control and protection.
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Generally, due to the complexity of hydrologic systems, the key challenge of achieving enhanced 

accuracy of streamflow forecasting is remains. This is by no means an easy task because there is no 

single streamflow forecasting method that provides optimum forecast results for all types of catchments 

and under all circumstances [5]. Furthermore, there is always uncertainty when it comes to forecasting 

because it is unlikely to forecast the exact future conditions. As a result, it is necessary to develop a 

sustainable streamflow forecasting approach for improved estimation of future streamflow with better 

accuracy. The accuracy of streamflow forecasting primarily depends on the input data, especially rainfall 

data as it constitutes the key input in transforming rainfall into runoff [6]. Hence, rainfall is one of the 

most important inputs to develop streamflow forecasting models. Since streamflow is a consequence of 

rainfall, uncertainty associated with rainfall causes uncertainty in estimated streamflow and adversely 

affects the accuracy of streamflow forecasting [7 – 9]. The importance of using accurate rainfall data in 

streamflow forecasting models is to meet the challenge of enhanced streamflow forecasting. Therefore, 

it can be expected that the enhanced accuracy in streamflow forecasting can be achieved if catchment 

rainfall is estimated accurately and fed into streamflow forecasting models. 

In the relation to this matter, rain gauge networks are usually installed to get direct measurements of 

rainfall. However, many of the water resources systems are large in spatial extent and often consist of a 

rain gauge network that is very sparse due to financial, logistics and geological factors. This results in 

considerable uncertainty in the rainfall data that are available [10]. Rainfall often shows significant 

spatial variations within a catchment or region [7, 11]. Therefore, the design and establishment of an 

optimal rain gauge network is an important task to obtain high quality rainfall estimates. An essential 

advantage of having such an optimal network is to achieve improved streamflow forecasting. The 

optimal network improves the accuracy in streamflow forecasting by providing accurate estimates of 

rainfall data with little or no uncertainty [8] that are used as the input to streamflow forecasting models. 

Rainfall is often considered independent of streamflow simulation and forecasting such as estimation of 

areal average rainfall over a catchment [12] or the design of rain gauge networks [8, 13 – 18].  

However, this does not allow one to focus on the strength and weakness of an established optimal 

rain gauge network that really matters when rainfall data from the optimal network are fed into 

streamflow forecasting models. Therefore, it is logical to design an optimal rain gauge network for 

providing a satisfactory solution to the specific requirement of enhanced streamflow forecasting for 

which the network is being established. In the past, rainfall data were used in streamflow forecasting 

models directly from the existing rain gauge network (which may not be an optimal network) rather than 

using improved rainfall data from an optimally designed rain gauge network [6, 9, 19 – 22]. This 

ultimately results in the less accurate forecasting of streamflow. Thus, it can be hypothesized that the 

integration of rainfall input from an optimal rain gauge network with streamflow forecasting models is 

expected to improve the accuracy of streamflow forecasting.  

Therefore, this paper is to provide a concise review of recent studies on the optimal design of a rain 

gauge network models to enhance the accuracy of streamflow forecasting using a geostatistical approach 

based on the variance reduction framework and the uses of optimization technique for minimizing the 

kriging variance in order to optimize rain gauge networks. 
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2. Optimal design of a rain gauge network models to enhance the accuracy of streamflow 
forecasting 
A review of the existing optimal rain gauge network design approaches is vital to come up with a suitable 

approach for the optimal design of rain gauge network. Optimal rain gauge network can be defined as a 

balanced network that neither suffers from lack of rain gauge stations nor is over-saturated with 

redundant rain gauge stations [23, 24]. Hence, in any hydrological study, an optimal rain gauge network 

is often considered as crucial component. The design of hydrometric networks is a classical problem in 

hydrometeorology [23], which has received significant attention from the researchers for many years. 

Since myriad concerns are associated with hydrometric network design [25], many approaches have 

been developed for that purpose around the world.  

 

 

 

 

 

 

 

 

 

 

Figure1. Classification of methods for hydrometric networks design and evaluation 
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A number of available network design and evaluation methods can be found in [23]. These 

approaches can be broadly classified as statistical methods, entropy methods, optimization methods, 

basin physiographic characteristics and sampling strategies (as showed in Figure 1), a comprehensive 

review of which is presented in the work by [23]. [23] mentioned that statistical methods are the most 

developed. Furthermore, it is found based on the available literature that among all the statistical 

methods, the kriging-based geostatistical method is the most commonly used method for the design and 

evaluation of rain gauge networks. An important advantage of this method is that it can be implemented 

with the combination of other methods such as entropy method, multivariate statistical techniques, and 

different multi-objective optimization techniques using genetic algorithms, simulated annealing, particle 

swarm optimization, and artificial bee colony (ABC) in order to achieve a balanced or optimal rain 

gauge network. Therefore, a detailed review of kriging-based geostatistical and optimization techniques 

for the design of a rain gauge network is presented in this chapter. 

2.1. Kriging-Based Geostatistical and Approach 
Geostatistics defines the statistical study of natural phenomena, which can be generally characterized 

by a distribution of one or more variables in space. These variables are referred to as regionalized 

variables [26]. The unique feature of a regionalized variable is that it can take values according to its 

spatial location [27]. Geostatistics is thus based on the theory of regionalized variables, which allows 

modelling of the spatial variability of the variable based on the spatial dependence between neighbouring 

observations. The degree of spatial dependence is generally expressed by variogram (also called 

semivariogram) in geostatistics, which has the structural (spatial variability) information required on a 

regionalized variable. A variogram is a mathematical function of the distance and direction separating 

two locations used to quantify the spatial autocorrelation in regionalized variables [26]. The variogram 

has a key role in geostatistics, which was first applied and developed through kriging. 

Kriging refers to a family of generalized least square regression methods in geostatistics [28, 29] that 

estimate values at unsampled locations using the sampled observations in a specified search 

neighbourhood. As it will be seen, kriging-based geostatistical method for the design of rain gauge 

networks depends on the correct estimation of variogram models in which the design criteria are often 

related to the accuracy of the spatial estimation (i.e., the kriging standard error or the kriging variance) 

[28]. Therefore, prior to any kriging-based geostatistical assessment, the variogram must be computed 

from the regionalized variable data. In most of the studies for rain gauge network design, kriging was 

implemented alone where only rainfall was considered as a single regionalized variable in kriging 

analysis. However, it is also found from the literature that the kriging-based geostatistical approach 

offers an advantage over other network design methods because kriging is able to complement the 

sparsely sampled primary variable, such as rainfall by the correlated densely sampled secondary 

variable, such as elevation, radar-based rainfall data etc [30, 31]. 

In this section, a series of studies have presented similar findings. Among those, the methods namely 

kriging-based geostatistical approach was used for the optimal design of a rain gauge network by 

researchers. They found that with an increasing of the network with additional rain gauge stations will 

result in achieve the desired network density and identifying the optimal location of the additional 

stations in the network to improve the rainfall estimation accuracy [8, 13, 14, 22, 27, 32 – 35]. With 

respect to this context, another study by [15, 24, 36, 37] revealed that by choosing an optimal 

representative subset of rain gauge from an existing dense network will result in achieve as much 

information as possible maintaining the desired level of accuracy. On the other hand, [16 – 18, 38 – 41] 

found that by prioritizing the rain gauge in the network with respect to their contribution in estimation 

error reduction and accuracy improvement will result in enhance the accuracy of streamflow forecasting. 

It was found in most of the past studies that expansion of the existing network by adding 

supplementary stations has been the main underlying criterion to achieve the optimal rain gauge 

network. However, the location and modification of stations significantly influence the quality of the 

obtained hydrological variable in a network [39]. Furthermore, [23] mentioned that an existing network 
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may consist of redundant stations that may make small or no contribution to the network performance 

in providing quality data. [23] suggested that one can approach the problem either by eliminating 

redundant stations from the network to minimize the cost or by expanding the network with the 

installation of additional stations to reduce the rainfall estimation uncertainty. Therefore, optimal 

placement of redundant stations, as well as additional stations, must be ensured in order to achieve the 

optimal rain gauge network. 

2.2.  Optimization Technique Approach 
Generally, optimization refers to the study of problems in which one seeks to minimize or maximize a 

real function by systematically choosing the values of real or integer variables from within an allowed 

set. The application of optimization in network design is to maximize information with respect to 

minimizing cost [23]. According to [42], the design of rain gauge networks need not essentially be based 

on formal schemes of optimization, such as the minimum cost of attaining data accuracy. A design can 

be based upon judgmental analyses to accommodate a mix of design criteria. Available literature 

indicates that most of the past studies used a sequential trial and error procedure to minimize the kriging 

variance of rain gauge networks to optimize the network [13, 32, 35].  

 

However, a few studies used optimization techniques such as simulated annealing, genetic algorithm, 

particle swarm optimization and artificial bee colony (ABC) for minimizing the kriging variance in order 

to optimize rain gauge networks [14, 15, 27, 33, 37, 41, 43]. Several optimization techniques have been 

proposed in the literature since the early work of [44, 45], who demonstrated a methodology of rain 

gauge network design based on the minimization of the mean areal kriging variance. The adoption of 

optimization techniques in combination with the kriging-based geostatistical method for rainfall network 

sizing and augmentation was also performed by [14, 15, 27, 33, 37, 41, 43]. 

 

Optimization technique, namely simulated annealing [45] was adopted in [14] research which found 

that simulated annealing improves the optimal network design by minimising an objective function 

which includes both the accuracy of the areal mean estimation (as expressed by the kriging variance of 

estimation) and the economic cost of the data collection by variance reduction. [33] provided a 

methodology for assessing the optimal location of new rain gauge stations within an existing rain gauge 

network. The methodology used kriging and probabilistic techniques (simulated annealing) combined 

with a geographic information system (GIS). [27] have considered mono-objective criteria in simulated 

annealing technique assuming 1-hour rainfall intensity interpolation and erosivity factor interpolation 

and using one single extreme rainfall event to perform the analysis. Rainfall quantities retained in 

previous studies were mainly taken in a deterministic way. Effectively, a single rainfall pattern was 

selected for which the average kriging variance was minimized to achieve the best new rain gauge 

locations [14, 27, 45].  

 

In the recent past, genetic algorithm and particle swarm optimization techniques in combination with 

geostatistics were also used for rain gauge network design to minimize the kriging variance for network 

optimization [15, 37]. They have found that the optimal number of stations of rain gauge with the 

estimated variance was improving the optimal network of rain gauge stations. Particle swarm 

optimization as an algorithm numerical optimization also improves the optimal network of rain gauge 

stations by variance reduction method with help of rainfall, elevation, humidity, solar radiation, 

temperature and wind speed data [15].  

 

Furthermore, a study was conducted by [41] found that artificial bee colony (ABC) as an algorithm 

of minimization make the estimation of long term average annual rainfall more accurate and efficient in 

order to prioritization the rain gauge stations in the network with respect to their contribution in 

estimation error reduction and accuracy improvement. The result presented that as the number of rain 

gauges increases, the variance of residual over the study area decreases. The couple of atifical bee colony 

and kriging seems to be an appropriate, robust and efficient approach to identify the exponentially 

decaying function of the variance versus the number of rain gauge stations. 
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3. Conclusion and Recommendation
In conclusion, as mentioned earlier, the goal of this paper was to provide a brief review of past recent 
studies on the optimal design of a rain gauge network models to enhance the accuracy of streamflow 
forecasting. In a rain gauge network design exercise, network expansion (using additional stations) as 
well as network rationalization (eliminating or re-locating redundant stations) and identification of 
optimal locations of both additional and redundant stations are seen as a potential way to achieve the 
optimal rain gauge network. In other words, the additional stations that contribute to reduce kriging 
variance of the network can be selected. Also, the redundant stations that have little or no contribution 
to the network variance reduction can be either eliminated or optimally located in the high variance 
areas of the network. However, this study focused on kriging and optimization approach in optimal rain 
gauge network for enhancing streamflow forecasting which was found highly effective in improving the 
streamflow forecasting accuracy.

To sum up, future studies can be focused on reviewing the combination of other statistical methods 
such as entropy method, multivariate statistical techniques, GIS and others.  
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