Combining deep and handcrafted image features for MRI brain scan classification

Hasan, Ali M. and Jalab, Hamid A. and Meziane, Farid and Kahtan, Hasan and Al-Ahmad, Ahmad Salah (2019) Combining deep and handcrafted image features for MRI brain scan classification. IEEE Access, 7. pp. 79959-79967. ISSN 2169-3536. (Published)

Pdf (Open access)
Combining deep and handcrafted image features for MRI .pdf

Download (267kB) | Preview


Progresses in the areas of artificial intelligence, machine learning, and medical imaging technologies have allowed the development of the medical image processing field with some astonishing results in the last two decades. These innovations enabled the clinicians to view the human body in high-resolution or three-dimensional cross-sectional slices, which resulted in an increase in the accuracy of the diagnosis and the examination of patients in a non-invasive manner. The fundamental step for magnetic resonance imaging (MRI) brain scans classifiers is their ability to extract meaningful features. As a result, many works have proposed different methods for features extraction to classify the abnormal growths in the brain MRI scans. More recently, the application of deep learning algorithms to medical imaging leads to impressive performance enhancements in classifying and diagnosing complicated pathologies, such as brain tumors. In this paper, a deep learning feature extraction algorithm is proposed to extract the relevant features from MRI brain scans. In parallel, handcrafted features are extracted using the modified gray level co-occurrence matrix (MGLCM) method. Subsequently, the extracted relevant features are combined with handcrafted features to improve the classification process of MRI brain scans with support vector machine (SVM) used as the classifier. The obtained results proved that the combination of the deep learning approach and the handcrafted features extracted by MGLCM improves the accuracy of classification of the SVM classifier up to 99.30%.

Item Type: Article
Additional Information: Indexed by Scopus
Uncontrolled Keywords: Deep learning; MGLCM; MRI brain scans; Feature extraction; SVM classifier
Subjects: Q Science > Q Science (General)
Q Science > QA Mathematics
R Medicine > R Medicine (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Faculty/Division: Faculty of Computer System And Software Engineering
Depositing User: Mrs Norsaini Abdul Samat
Date Deposited: 21 Nov 2019 03:23
Last Modified: 21 Nov 2019 03:23
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item