UMP Institutional Repository

DAMP: A protocol for contextualising goodness-of-fit statistics in sediment-discharge data-driven modelling

Abrahart, Robert J. and Mount, Nick J. and Ngahzaifa, Ab. Ghani and Clifford, Nicholas J. and Dawson, Christian W. (2011) DAMP: A protocol for contextualising goodness-of-fit statistics in sediment-discharge data-driven modelling. Journal of Hydrology, 409 (3-4). pp. 596-611. ISSN 0022-1694

DAMP- A protocol for contextualising goodness-of-fit statistics in sediment-discharge.pdf

Download (277kB) | Preview


The decision sequence which guides the selection of a preferred data-driven modelling solution is usually based solely on statistical assessment of fit to a test dataset, and lacks the incorporation of essential contextual knowledge and understanding included in the evaluation of conventional empirical models. This paper demonstrates how hydrologic insight and knowledge of data quality issues can be better incorporated into the sediment-discharge data-driven model assessment procedure: by the plotting of datasets and modelled relationships; and from an understanding and appreciation of the hydrologic context of the catchment being modelled. DAMP: a four-point protocol for evaluating the hydrologic soundness of data-driven single-input single-output sediment rating curve solutions is presented. The approach is adopted and exemplified in an evaluation of seven explicit sediment-discharge models that are used to predict daily suspended sediment concentration values for a small tropical catchment on the island of Puerto Rico. Four neurocomputing counterparts are compared and contrasted against a set of traditional log–log linear sediment rating curve solutions and a simple linear regression model. The statistical assessment procedure provides one indication of the best model, whilst graphical and hydrologic interpretation of the depicted datasets and models challenge this overly-simplistic interpretation. Traditional log–log sediment rating curves, in terms of soundness and robustness, are found to deliver a superior overall product – irrespective of their poorer global goodness-of-fit statistics.

Item Type: Article
Uncontrolled Keywords: Data-driven model; Modelling protocol; Rating curve; Suspended sediment; Tropical catchment; Hydrologic context
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Faculty/Division: Faculty of Civil Engineering & Earth Resources
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 24 Feb 2020 02:14
Last Modified: 24 Feb 2020 02:14
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item