
Scientific Research and Essays Vol. 6(28), pp. 5966-5975, 23 November, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.210
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

A novel design and development of persistence layer
for heterogeneous synchronous replication in data grid

A. H. Beg1, A. Noraziah1* A. N. Abdalla2

1
Faculty of Computer Systems and Software Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan,

Pahang, Malaysia
2
Faculty of Electrical and Electronic Engineering, University Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.

Accepted 31 October, 2011

Data grid provided a way to solve the problems of large-scale data management. Data-intensive
applications such as high-energy physics and Bioinformatics required both computational and data grid
features. Replication is a process to achieved efficient and fault-tolerant access in the data grid. Usually,
data replication schemes maintain an entire replica in every site where a file is replicated. It provided an
important role in this involving world of the distributed database system. Replication technology should
be efficient, thereby facilitates the maintenance costing. Most traditional replication technique is cost
effective and also not considers the heterogeneous system. This paper presented a new model of
persistence layer for synchronous replication and implemented based on multi-threading in
heterogeneous environment. The main objective of this model is to make the persistence layer adaptive
and make the replication process reliable and faster than other existing replication processes concerning
cost minimization. In the proposed replication technique, the replication servers are operating system
independent and the entire replication process is not inter dependent nevertheless on the main server.
Adding a new replication server is easier than other processes. The technique also introduces the
modification of replication servers without making impairment to the entire process. The performance of
the proposed technique has been compared with SQL Server in terms of transactional inserts and
synchronization time. The result shows that PLSR performs outstandingly than SQL server for
transactional insert and synchronization in compare to time (seconds).

Key words: Data replication, data grid environment, synchronous, heterogeneous replication, multi-threading
technique, persistence layer.

INTRODUCTION

The data grid mainly deals with large computational
problems. It can provide geographically distributed
resources for large-scale data-intensive applications
that generate large scientific data sets. Therefore, it
requires the modern scientific community to involve in
managing the massive amounts of very large
collection of geographically distributed data (Abdullah
et al., 2008). Nowadays, in many fields, such as
scientific experiments and technological applications,

*Corresponding author. E-mail: noraziah@ump.edu.my. Tel: 09-
5492121.

generate a huge amount of data. The appropriate use
of data sharing and collaboration, these generated
data should be shared and distributed in wide area
networks. Therefore, the effective management of
these wonderful sources of information shared and
distributed is becoming a very important topic of
scientific research and commercial applications.
Therefore, data replication is a very useful technique
to manage the large scale data across the widely
distributed networks (Sriram and Cliff, 2010; Li and
Shen, 2009; Lei et al., 2008). Several researches have
been carried out regarding the replication process
from the last decade. Among them were those by
Ibison (2010), Pucciani et al. (2010), Tanga et al.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Abdullah,%20A..QT.&newsearch=partialPref

(2010), Lou et al.(2009), Sato et al. (2009), Tong and
Shu (2009), Elghirani et al. (2007), Boyera and Hura
(2005) and Ma et al. (2004). Those articles revealed
that data replication in heterogeneous system are one
of the current issues that still are unsolved in
distributed system. Therefore; the study on this basis
is initiated.

Data replication is a process that maintains multiple
copies of data known as replicas. The replication can
improve availability by providing access to data, even
when some of the replicas are unavailable. Replication
can also improve the performance as follows: i)
reduce the latency, because users can use the nearby
replicas therefore avoiding remote network access; ii)
to accelerate the performance, since multiple
computer is potential in serving the data
simultaneously (Wahid et al., 2007; Sashi and
Thanamani, 2011). Replication can improve the
availability and performance in distributed systems. In
data-centric distributed systems, replication,
consistency and data integrity (constraint consistency)
are used as correctness criteria (Osrael et al., 2007).

Data replications used in the various field such as
bank, insurance, group of industries to protect their
secure data to prevent unwanted crashes. Data
replication in terms of duplication of data creates a
backup copy of the data on the different servers. In
the current enterprise software system, typically there
used a persistence layer which persists in different
current objects, which in terms help the application to
avoid fault tolerance. So basically, on an enterprise
system, replication helps to avoid fault of the data
server system. Currently, the data replication system
consist of the following impediments:

1. Usually replication process depends on the main
server
2. Introducing the up-gradation of the replication
process usually mute or pause the system for a
routine of time
3. Fail or cashes of the main server, usually make the
entire system stop working (For a database driven
system)

This research has been focused to design and
development of a Persistence Layer for Synchronous
Replication (PLSR) in the data grid environment that
support the heterogeneous system. The proposed
layer is used as a multi-threaded application and
which also provides an interface between the
database and the main system. The persistence layer
have a single thread which is responsible for making
communication with the main server and have another
thread running to manage the replicated databases.
So it helps the entire system to reduce dependency of
the replicated server on the main server. Replication
server also used as a main server in the case of the

Beg et al. 5967

crashes or fall of main server. Therefore, adding more
replication servers are like plug and play features.

BACKGROUND

Data replication is a process to improve the
performance of data access in a distributed system.
Through this technique, an object request (read and
write) will be accessed from multiple locations such as
Local Area Network (LAN) or in the worldwide
distributed network. For example, the results of a
student in college will be read and updated by
lecturers from various departments. The price of
financial instruments will be read and updated from
around the world (Noraziah et al., 2009; Chidambaram
et al., 2008; Gu et al., 2006).

Data grid solution

In the data grid, data is typically replicated to improve
the file access time and data availability. The
recognition of data-intensive scientific applications,
wherein millions of files are generated from scientific
experiment and thousands of user’s world-wide
access this data, has resulted in the appearance of
Grid computing. The resources of many computers,
spanning geographic locations and organizations, are
utilized to solve large-scale problems in the system
(Lei et al., 2008).

The data transmission is inevitable though, the
channel indicating the geographical distribution of data
sources which also contains time, bandwidth
consumption, and latency and consequently, cause
the performance to decrease. So the serious problem
is that, data grid is a massive resource of data objects.
Data replication is a solution for this matter. The main
objective of replication is to create multiple copies of
files in different location to increase their data
availability ((M.Mat Deris et al., 2004; Atakan, 2009;
Khanli et al., 2011). Data replication is a practical and
effective method to attain efficient fault tolerant data
access in data grids. It can be static or dynamic. In
static replication, location is predetermined and also
well defined. Dynamic replication works is to create
and delete replicas according to changing access
patterns and therefore, ensures the benefits of
replication even in behavior changes (Jose et al., 2010;
Sashi et al., 2011; Bsoul et al., 2010).

Shena and Zhu (2009) proposed a proactive low-
overhead file replication scheme, which is responsible
for file replication among physically close nodes, low
cost and consistency maintenance. Atakan (2009),
studied performance of dynamic file replication
algorithms for real-time file access in data grids. In
their study, the performances of eight dynamic

5968 Sci. Res. Essays

replication algorithms are evaluated under various
data grid settings. They were motivated to elaborate
on the real-time performance of dynamic file
replication algorithms. Data replication is usually use
in data grid to enhance data availability and fault
tolerance (Bsoul et al., 2010). However, replication
should be used wisely because of the limitation of the
storage size of each node that resides on the data
grid.

Data replication can improve the job response time
and data availability (Lei et al., 2008) has proposed a
line optimizer algorithm that can minimize the data
missing rate in order to maximize the data availability,
In (Chang et al., 2007), job scheduling policy, named
HCS (Hierarchical Cluster Scheduling), and a dynamic
data replication strategy, called HRS (Hierarchical
Replication Strategy) was implemented to improve the
data access efficiencies in a cluster grid and evaluate
this in various combinations of data access patterns.

Heterogeneous system

A Distributed Heterogeneous Computing (DHC) is a
collection of autonomous dissimilar computing
machines that are linked by a network and
synchronized by software that functions as a single
powerful computing facility. As computer tasks can be
broken into different parts so is it possible to distribute
the task for parallel execution. A DHC system has
some advantages over homogeneous computing
because some parts of an application perform better in
some system, and some parts may perform better in
another system (Boyera and Hura, 2005). The
homogeneous computing system is easier to control
as the processing times are not dependent and
identical with an arbitrary distribution (Tong and Shu,
2009). Heterogeneous computing system can achieve
both capability and capacity based jobs where
capability based (aimed at minimization of the
completion time of one big job) and capacity based
(aimed at maximization the number of completions of
small jobs within a given time) (Guest editorial, 2005).

Recently, heterogeneous systems have emerged as
a major high-performance computing platform in
parallel and distributed system. Chen et al. (2008)
proposed an isospeed-efficiency model based on mark
speed for heterogeneous computing. Chi et al. (2006)
proposed App.Net.P2P architecture to implement
effective content delivery on peer-to-peer networks for
heterogeneous system. The main objective of their
App.Net.P2P is to allow delivering intermediate
objects to other peers as well as, the final
presentations. Therefore, the recipient peers can
share the intermediate objects and adapt their
presentations for other peers using the associated
service logic.

Persistence layer

Persistence layer is used in data dictionary and load
balancing systems. It is used in simulation checkpoint
and restart, and it is very important in parallel and
distributed system. Qiao et al. (2006) described two
frameworks: SPEEDES Persistence Framework (SPF)
and Boost Serialization Library (BSL) and applied
persistence framework in parallel and distributed
systems. The main contribution of their work tested a
C

++
 template based persistence framework BSL in a

Parallel and Distributed Simulation (PADS)
application.

In a collaborative computing environment, the
collaborative applications required a simple and
transparent persistence middleware to deal with
complex data accesses. Wang et al. (2005) proposed
a data persistence mechanism and implemented a
persistence server, called Tree-Structured Persistence
Server, which is known as TSPS. Their TSPS allowed
states of collaborative applications to stored in a tree
fashion beside tables. Their main goal is to develop
the TPS to serve as a persistence layer in supporting
the project of computer collaborative work.

Transactions

A transaction is a group that contains a set of tasks
inherent of any part application that collects or
manipulates data. SQL Server to ensure data integrity.
This means that two users should not modify the same
data item simultaneously. In the SQL server, a
transaction is a single statement or multiple data
modification language (DML) statements executed
simultaneously. In a transaction all statements are
treated as a group of work. If any statement fails, then
the transaction is treated as a failed transactions and
the whole transaction is rolled back. Accordingly,
changes are not saved. On the other hand, if all of the
statement succeed the transaction is treated as a
succeed transaction and committed (Dewald, 2011;
Poddar, 2003).

SQL server replication

SQL Server is defined as a Relational Database
Management System (RDBMS) from Microsoft that is
designed for the enterprise environments. It’s run on
Transact-SQL (T-SQL), a set programming extension
from Sybase and Microsoft. The original SQL server
code has been developed by Sybase in the 1980's,
Microsoft. Sybase and Ashton-Tate have collaborated
to produce the first product version, SQL Server 4.2
for OS / 2. Later, Sybase and Microsoft SQL Server
provide the products. In November 2005, SQL Server

Beg et al. 5969

Figure 1. SQL server replication architecture.

Table 1. Basic comparison of SQL server replication time between transaction and merge insert .

rows Snapshot inserts Sync time Transactional inserts Sync time Merge inserts Sync time

100 0 4 0 0 1 2

500 1 4 1 1 3 6

1000 2 5 2 1 5 12

5000 6 7 7 2 21 42

10000 13 12 26 5 42 96

2005 was released. The features of the products were
to offer flexibility, scalability, reliability and security of
database applications and were easier to build and
deploy, and also reduced the complexity and
tediousness involved in database management. This
version also includes a more administrative support
(SearchSQlserver.com, 2006).

Gutzait (2007) has described SQL server database
design, replication design and architecture. The
architectures shows that the databases are replicated
with a common structure and the changes are
replicated to the subscribers with fewer publications.
During the replication consolidated information, users
can publish a piece of information about the specific
site. This allows users to create one publication and
add the “where” clause according to the site or

database code. The database servers are connected
with the main server. The main database also
connected with replication servers. Figure 1 show the
SQL server replication.

Ibison (2010) described a basic comparison of SQL
server replication times between Merge and
Transactional insert and synchronization as shown in
Table 1. The Table used a sample table having fixed
width columns: The fixed-length data types were
chosen because this table was also used to calibrate
the problems of network bandwidth. The table data
shows that for the inserts, merge takes significantly
longer than transactional and snapshot. For a small
number of insertions, transactional and snapshot are
quite the same. When the number of row increases,
transaction begins to take longer than the snapshot.

5970 Sci. Res. Essays

Conversely, there are a few rows with not much
difference, but as there is increase in the number of
rows, transactional and snapshot stay very similar,
while the merge becomes much larger.

Multi-threading technique

Multi-threading is the ability to run multiple processor
threads. It seems at the same time that CPUs are very
fast in executing instructions. Modern PCs can run
almost one billion instructions per second. Instead of
running the same program for a second, the processor
executes a program, perhaps a few hundred
microseconds, and then switch to another and work for
a short period and so on. It is also possible for an
application to have multiple parts that run
simultaneously. For example, a background task could
be to respond to the mouse, while a file is loaded into
RAM, and second task updates a progress bar on the
screen (Bolton, 2011). Wang et al. (2007) presented a
Software-based Redundant Multi-Threading (SRMT)
approach for transient fault detection. Their technique
used compiler to automatically generate redundant
threads, and they can run on general-purpose chip
multi-processors (CMPs). The result shows that their
technique can provide a flexible program execution
environment where flexible scheduling legacy binary
codes and reliability-enhanced codes can co-exist in a
fashion mix-and-match according to the desired level
of reliability and software compatibility.

Wei et al. (2009) presented the Multi-Staged Engine
(MSE) for high performance and flexibility in the
application of concurrent continuous query processing,
using the pipeline strategy and departs from the
continuous query processing on three parallel phases:
preprocessing, execution and dispatching modules to
improve the parallelism with multi-threaded
technology. They developed an algorithm multi -
threaded (MTCNN) for k nearest massive continuous
query processing. MTCNN algorithm uses parallel
threaded workload and cache-conscious
implementation of the reorganization to improve
spatial and temporal locality.

PLSR MODEL DESCRIPTION

In the proposed system PLSR modifies the
persistence layer to adopt multi processing use of
multi-threading. The persistence layer is connected
with different database servers, from those one will be
the main server that will take care of Create Read,
Update and Delete (CRUD) with the entire system and
the several others are known as the replicated server.
A thread with higher priority, that is; main thread
keeps the consistent connection with the main server.

Thread is defined as the single stream of execution

within a process. Programs that execute within its own
address space are known as Process. The
persistence layer creates one thread for each of the
replication servers. One thread is the higher priority
used for main server, and rest of all has the lower
priority. As the main server is maintained by a high
priority thread, thus the data should be saved or
deleted or modified immediately with high priority. On
the other hand, replication servers are maintained by a
low priority thread. Consequently, the data transaction
will be kept in a queue, and then it makes its own copy
and does the transaction with that thread.

Programming implementation

The programming implementation has been developed
using Java programming language. NetBean 6.9.1 has
been used to write the source code of persistence
layer. This is because NetBean is a comfortable
Integrated Development Environments (IDE) in
implementing Java source code. NetBean is
developed and maintained by Sun Microsystems. After
installing NetBean, it can be accessible to the start
menu. NetBean has its own file format to maintain the
source code. MySQL, SQLServer and MSAccess have
been used as the database. To implement the SQL
Query testing in MySQL, SQLyog (which is a free tool)
was used. SQL Server has its own SQL IDE. To
connect to the database from Java, JavaMySQL
connector API was used, and to connect to MSSQL,
JavaSQLServer connector API was used. Finally, Java
can easily connect to MS Access from the user control
panel.

Hardware and software components

The implementation of PLSR requires some minimum
hardware and software specifications. To demonstrate
PLSR system, prototypes across three replication
servers as in Figures 2 and 3 are deployed. Each
server or node has been connected to one another
through a fast Ethernet switch hub. Theoretically, each
of the replication servers and the main server has to
be connected to each other logically. The hardware
specifications as shown in Table 2 were used in each
replication server for implementation.

The implementation of the PLSR was carried out by
using Java programming language and has been
deployed in different OS environment. Table 3 shows
the system development tools specification for this
implementation.

PLSR Environment

From the user’s perspective, the functionality is
offered by PLSR framework for heterogeneous system.

http://cplus.about.com/bio/David-Bolton-20620.htm

Beg et al. 5971

Table 2. Server main components specifications.

Hardware Specifications

Processor Intel (R) Core ((TM) 2 Quad CPU Q9650 @3.00 GHz 2.99 GHz

Memory 4.00 Gigabyte

Cache 3624 Megabyte

Hard disk 300 Gigabyte

Chip set ATI Radeon HD 3450- Dell Optiplex

Network card Intel (R) 82567 LM-3 Gigabit Network Connection

Table 3. System development tools specifications.

System development software Specifications

Java SE (Jdk 6.0)

SQLyog Community edition 8.53

MySQL server Version 5.0.89

Ubuntu Version 10.0.4

NetBeans IDE Version 6.9.1

Wine Version 1.14

Windows vista TM business

SQL server Version 2008

MSAccess Version 2007

system. Nevertheless, PLSR is tested in different
server under the local area network (LAN) for this
implementation. Two experiments have been done. In
the first experiment, SQL server was the main server,
while in the second experiment, MySQL server in
Linux OS was the main server.

Experiment 1

In this experiment, the heterogeneous replication has
been done with one main server and three replication
servers. The entire servers are connected with the
persistence layers. SQL server is the main server and
connected with the persistence layer with high priority
thread. Ms Access is the first replication server.
MySQL in Windows OS is the second replication
server and MySQL in Linux OS is the third replication
server that is connected with the persistence layer
with low priority thread as shown in Figure 2.

The host name and IP address for each server
depicted in Table 4 Server A with IP address
172.21.202.232 is the main server. Server B with IP
address 172.21.202.235 is the first replication server.
Server C with IP address 172.21.202.231 is the
second replication server, and Server D with IP
address 172.21.202.230 is the third replication server.

Experiment 2

In this experiment, heterogeneous replication has

been done with one main server and three replication
servers. The entire server is connected with the
persistence layers. MySQL in Linux OS is the main
server and connected with the persistence layer with
high priority thread. MS Access is the first replication
server. MySQL in Windows OS is the second
replication server and SQL Server is the third
replication server that is connected with the
persistence layer with low priority thread as shown in
Figure 3.

On the other hand, in this experiment, the host name
and IP address for each server is depicted in Table 5.
Server A with IP address 172.21.202.230 is the main
server. Server B with IP address 172.21.202.235 is
the first replication server. Server C with IP address
172.21.202.231 is the second replication server and
Server D with IP address 172.21.202.232 is the third
replication server.

RESULTS

The proposed persistence layer synchronous
replication (PLSR) has been compared with other
replication processes in terms of replication time for
transactional insert and synchronization. Table 6
shows the comparative time between SQL Server and
PLSR replication server 1 and server 2 for insertion.
At the first experiment, server 1 was the main server
and at the second experiment, server 2 was the main
server. The result demonstrates that, 1000 rows of

5972 Sci. Res. Essays

Figure 2. Data replication on heterogeneous system with 3 replication server and SQL server.

Table 4. The local IP address for each server based on SQL Server.

Server Host Name IP address Operating System Software

A Main Server 172.21.202.232 Windows Vista SQL Server

B Replication Server 1 172.21.202.235 Windows Vista MS Access

C Replication Server 2 172.21.202.231 Windows Vista MySQL

D Replication Server 3 172.21.202.230 Linux (Ubuntu) MySQL

data insertion, SQL server taken 2 s, where PLSR
replication server 1 and server 2 taken 0.689 and
5.479 s respectively.

On the other hand, 5000 rows of data insertion, SQL
server taken 7 s where PLSR main replication server 1
and server 2 taken 2.421 and 6.485 s respectively.
Conversely it shows that in 10000 rows of data
insertion, SQL server took 26 s where PLSR
replication server 1 and server 2 took 4.754 and 7.508
s respectively. Table 7 shows the comparative time
between SQL Server and PLSR replication Server 1
and Server 2 for synchronization. The result
demonstrates that in 1000 rows of data
synchronization, SQL server took 1 s, where PLSR
replication server 1 and server 2 took 0.689 and 5.479

s respectively. On the other hand, in 5000 rows of
data synchronization, SQL server took 2 s where
PLSR replication server 1 and server 2 t00k 2.421 and
6.485 s respectively. Conversely, it shows that in
10000 rows of data synchronization, SQL server have
taken 5 s where PLSR replication server 1 and server
2 took 4.754 and 7.508 s respectively. The total
replication time (RT) has been calculated by using
Equation (1) (Beg et al., 2011):

RT = ∑ (TT+ST) (1)

Here, RT represents the replication time, TT
represents Transactional time and ST represents

Beg et al. 5973

Figure 3. Data replication on heterogeneous system with three replication servers and MySQL

server.

Table 5. The local IP address for each server based on MySQL server.

Server Host name IP address Operating system Software

A Main server 172.21.202.230 Linux (Ubuntu) MySQL

B Replication server 1 172.21.202.235 Windows vista MS access

C Replication server 2 172.21.202.231 Windows vista MySQL

D Replication server 3 172.21.202.232 Windows vista SQL server

Table 6. Transactional insertion time between SQL server and PLSR replication server 1 and server 2.

No. of rows SQL server replication PLSR replication server 1 PLSR replication server 2

100 0 0.375 5.129

500 1 0.459 5.385

1000 2 0.689 5.479

5000 7 2.421 6.485

10000 26 4.754 7.508

Synchronous time.

For 10000 rows of data insertion in SQL server, (Table
1)
RT = (26 + 5) s
 = 31 s

For 10000 rows of data insertion in PLSR (Server 1),
(Table 6).
RT = (4.754 + 0) s [ST=0, Because PLSR TT and
ST done at the same time]
 = 4.754 s

5974 Sci. Res. Essays

Table 7. Transactional synchronization time between SQL server and PLSR server 1 and server 2.

No. of rows SQL server replication PLSR replication server 1 PLSR replication server 2

100 0 0.375 5.129

500 1 0.459 5.385

1000 1 0.689 5.479

5000 2 2.421 6.485

10000 5 4.754 7.508

Figure 4. Total replication time between SQL server and PLSR replication server 1 and server 2.

The total replication time between SQL Server and
PLSR replication server 1 and server 2 has been
compared in Figure 4.

DISCUSSION

From the replication time, it shows that PLSR
replication time is lower than SQL Server replication.
As the number of data goes higher, SQL Server
replication time gets much higher in comparison to the
PLSR replication.

The motivation to compare the result of PLSR
replication with SQL Server replication is the
transactional replications which can alter the use of
several trigger, similar to the proposed strategy, as the
algorithm can perform rollback command from the
persistence layer which can alter the result. The result
shows that PLSR outstanding performs more than
SQL server for transactional insertion and synchroni-
zation in comparison to SQL server replication in time
per seconds. From the aforementioned result and the
execution point of view, it can be found that PLSR is
highly acceptable.

CONCLUSION

The data grid is a grid computing system to process
and manage this very large amount of distributed data.
At present, in the data grid community and clustering
system, a lot of work has been focused on providing
efficient and safe replication management services
through designing of algorithms and systems. A lot of
organizations used replication for many purposes. In
this research, a new model PLSR has been proposed
for managing data replication in the heterogeneous
system. It can provide several advantages like,
enterprise application, a more secured and reliable
data transmission. In addition, one of the main goals is
to make the database replication easier to handle.
Thus, making it vastly configurable and the entire
architecture, service oriented. It used latest
technology trends and the replication done from the
persistence layer. On the other hand, persistence
layer is a part of a software engine and uses the latest
customizable fourth generation language like Java.
Therefore, a new era can move forward related to
networking as well as database programming.
Currently, PLSR is a support to only 3 types of

databases. Supporting all other popular databases
can be another important improvement of PLSR. The
developed prototype tool has few fields to insert data
into different master and replication table. To make
this more user friendly, various forms of input can be
introduced. Therefore, many input type fields can be
added in future.

ACKNOWLEDGEMENT

Appreciation conveyed to Ministry of Higher Education
Malaysia for project financing under Fundamental
Research Grant Scheme RDU100109; and University
Malaysia Pahang under UMP Short Term Grant
RDU080328.

REFERENCES

Abdullah A, Othman M, Sulaiman MN, Ibrahim H, Othman AT (2008).
Towards a scalable Scientific Data Grid model and services. Int.
Conf. Comput. Commun. Eng., pp. 20-25.

Atakan D (2009). A study on performance of dynamic file replication
algorithms for real-time file access in Data Grids. Future Generation
Computer Systems. 25: 829-839.

Beg AH, A. Noraziah , Abdalla AN, Mohd ZN, Sultan EI (2011).
Synchronous Replication: Novel Strategy of Software Persistence
Layer Supporting Heterogeneous System. 2nd International

Conference on Software Engineering and Computer Systems,
Pahang, Malaysia, ICSECS, Part 2 180, pp. 232-243, 2011.Springer-
Verlag Berlin Heidelberg 2011.

Bolton D (2011). About.com Guide. Retrieved from
http://cplus.about.com/od/glossar1/g/multithreading.htm(February 12,
2011).

Bsoul M, Khasawneh AA, Abdallah EE, Kilani Y (2010). Enhanced Fast
Spread Replication strategy for Data Grid. Journal of Network and
Computer Applications j.jnca.2010:12.006.

Boyera WF, Hurab GS (2005). Non-evolutionary algorithm for
scheduling dependent tasks in distributed heterogeneous computing
environments. J. Parallel Distr. Comput., 65: 1035-1046.

Chen Y, Sun X, Wu, M (2008). Algorithm-system scalability of
heterogeneous computing. J. Parallel Distr. Comput., 68: 1403-
1412.

Chi CH, Su M, Liu L, Wang HG (2006). An Active Peer-to-Peer System
for Heterogeneous Service Provisioning. IEEE Int. Conf. Inf. Reuse
Integrat., pp. 17- 22.

Chidambaram J, Rao PAN, Aneesh CS, Prabhu CSR, Wankar R,
Agarwal A (2008). A Methodology for High Availability of Data for
Business Continuity Planning / Disaster Recovery in a Grid using

Replication in a Distributed Database. TENCON, IEEE Region 10
Conference, pp.1-6.

Dewald B, Kline K (2011). SQL Server: Transaction and Locking

Architecture. Retrieved from
http://www.informit.com/articles/article.aspx?p=26657.

Elghirani A, Zomaya AY, Subrata R (2007). An Intelligent Replication

Framework for Data Grids. EEE/ACS Int. Conf. Comput. Syst. Appl.,
pp. 351- 358.

Gutzait M (2007). Simplify SQL Server replication. Retrieved from

http://searchsqlserver.techtarget.com/tip/Simplify-SQL-Server-
replication (June 23, 2010).

Guest editorial (2005). Heterogeneous computing. Parallel Computing,

31: 649-652.
Gu X, Lin W, Veeravalli B (2006). Practically Realizable Efficient Data

Allocation and Replication Strategies for Distributed Databases with

Buffer Constraints. IEEE trans. parallel distr. syst., 17(9): 1001-1013.

Beg et al. 5975

Ibison P (2010). Basic Comparison of Replication Times between

Merge and Transactional Replication. Retrieved from
http://www.replicationanswers.com/ReplicationTimesArticle.asp.

Jose M, Perez, Felix GC, Carretero J, Alejandro C, Fernandez J
(2010). Branch replication scheme: A new model for data replication
in large scale data grids. Future Gene. Comput. Syst., 26: 12-20.

Lei M, Vrbsky SV, Hong X (2008). An on-line replication strategy to
increase availability in Data Grids. Future Gene. Comput. Syst., 24:
85- 98.

Li Z, Shen H (2009). A mobility and congestion resilient data
management system for distributed mobile networks. 6th IEEE Int.
Conf. Mobile Adhoc Sensor Syst. Macau., pp. 60-69.

Lou YS, Wang ZJ, Huang L, Yue L (2009).The Study of a Reflected
Persistence Data Layer Framework.WRI World Congress Software
Eng., pp. 291-294.

Ma D, Zhang W, Li Q (2004). Dynamic Scheduling Algorithm for Parallel
Real-time Jobs in Heterogeneous System. The Fourth Int. Conf.
Comput. Inf. Technol., pp. 462- 466.

Noraziah A, Deris MM, Saman MYM, Norhayati R, Rabiei M, Shuhadah
WNW (2009). Managing Transaction on Grid-Neighbour Replication
in Distributed System. Int. J. Comput. Math. Taylor Francis., 86(9):

1624-1633.
Osrael J, Froihofer L, Chlaupek N, Goeschka KM (2007). Availability

and Performance of the Adaptive Voting Replication Protocol. The

Second Int. Conf. Avail. Reliab. Secur. Vienna. pp. 53-60.
Poddar S (2003). SQL server transactions and error handling. Retrieved

from

http://www.codeproject.com/KB/database/sqlservertransactions.aspx
(July 24, 2010)

Pucciani G, Domenici A, Donno F, Stockinger H (2010). A performance

study on the synchronisation of heterogeneous Grid databases using
CONStanza. Future Gene. Comput. Syst., 26: 820- 834.

Qiao H, Ju R, Li G, Huang K (2006). A New Persistence Framework for

Parallel and Distributed Simulation. International on Multi-Symp.
Comput. Computat. Sci., pp. 344- 348.

Sato H, Matsuoka S, Endo T (2009). File Clustering Based Replication

Algorithm in a Grid Environment. 9th IEEE/ACM Int. Symp. Clust.
Comput. Grid., pp. 204-211.

Sashi K, Thanamani AS (2011). Dynamic replication in a data grid using

a Modified BHR Region Based Algorithm. Future Gene. Comput.
Syst., 27: 202-210.

SearchSQlserver.com (2006) Definition SQL Server. Retrieved from

http://searchsqlserver.techtarget.com/definition/SQL-Server
(February 25, 2011).

Shena H and Zhu Y (2009). A proactive low-overhead file replication

scheme for structured P2P content delivery networks, “J. Parallel
Distrib. Comput., 69: 429-440.

Sriram I, Cliff D (2010). Effects of Component-Subscription Network

Topology on Large-Scale Data Centre Performance Scaling. 15th
IEEE Int. Conf. Eng. Complex Comput. Syst., pp. 72- 81.

Tanga X, Kenli L, Renfa L, Veeravalli B (2010). Reliability-aware

scheduling strategy for heterogeneous distributed computing
systems. J. Parallel Distrib. Comput., 70:941-952.

Tong X, Shu W (2009). An Efficient Dynamic Load Balancing Scheme

for Heterogenous Processing System. IEEE Conf. Comput. Intell.
Nat. Comput., pp. 319- 322.

Wahid SAW, Andonie R, Lemley J, Schwing J, Widger J (2007).

Adaptive Distributed Database Replication Through Colonies of Pogo
Ants. Parallel Distrib. Process. Symp. IPDPS. IEEE Int., pp. 1-8.

Wang CH, Kim H, Wu Y, Ying V (2007). Compiler-Managed Software-

based Redundant Multi-Threading for Transient Fault Detection. Int.
Symp. Code Gene. Optimiz. pp. 244- 258.

Wang CM, Chen HM, Lee GC, Wang ST, Hong SF (2005). A Tree-

Structured Persistence Server for Data Management ofCollaborative
Applications. IEEE Int. Conf. Adv. Inf. Network. Appl., pp. 503 -506

Wei L, Ping WX, Qi Z, Nong Z (2009). Improving Throughout of

Continuous k-Nearest Neighbor Queries with Multi-threaded
Techniques. IEEE Int. Conf. Intell. Comput. Intell. Syst., pp. 438- 442.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Abdullah,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Othman,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Sulaiman,%20M.N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Ibrahim,%20H..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Othman,%20A.T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4569830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4569830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4569830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4569830
http://cplus.about.com/od/glossar1/g/multithreading.htm
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4018442
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4018442
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4753725
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4753725
http://www.informit.com/authors/bio.aspx?a=be0470b3-ab7f-4cc5-8f97-7c0ae88ff5de
http://www.informit.com/authors/bio.aspx?a=04d1853b-8388-4a8a-885f-19cddc1c5bca
http://www.informit.com/articles/article.aspx?p=26657
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4230920
http://searchsqlserver.techtarget.com/tip/Simplify-SQL-Server-replication
http://searchsqlserver.techtarget.com/tip/Simplify-SQL-Server-replication
http://www.replicationanswers.com/ReplicationTimesArticle.asp
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5312767
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9381
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4159773
http://www.codeproject.com/KB/database/sqlservertransactions.aspx
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10901
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Sriram,%20I..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Cliff,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5626943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4203121
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4145089
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9746
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5351119

