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Distance and real-time data monitoring are the necessary condition that makes any system in good 
working order. Recent advancements in micro-electronics and wireless technology enable the 
application of wireless sensors in both industry and wild environments. However, Long-distance 
wireless communication has several drawbacks like limited bandwidth, considerable costs and 
unstable connection quality. Therefore, Power Line Communication (PLC) using pre-established Power 
Lines (PL) becomes more attractive for high data transmission technology. This paper reviews the 
existing distance data monitoring systems and presents a case study for data transferring of 
temperature and heart beat measurement. The simulations were carried out on the detected and 
transmitted signals of medical data using Matlab program. Furthermore, a framework of Intelligent 
Neural Monitoring System (INMS) is proposed for future works. The performance of PLC as a channel to 
transfer the patient Heart Rate (HR) is evaluated based on the Bit Error Rate (BER).  
 
Key words: Power line communication, electrical signals, data monitoring, electrocardiogram, electromyogram, 
neural interfacing. 

 
 
INTRODUCTION 
 
Data Monitoring of Human Electrical Activity is a branch 
of Body Sensor Networks (BSN) converged with 
wearable computing technologies to sense many kinds of 
vital signs in the human body detected by electro-
cardiogram (ECG) and electromyogram (EMG) and 
accelerometer sensors (Dongheui et al., 2007). 

Systems extracting temporal parameters have mostly 
used cameras or marker-based approaches to extract 
limb positions and orientations. Currently, BSN employs a 
variety of sensors and the most common are 
accelerometers and gyroscopes because of their small 
size, low power usage, and useful motion data (Eric et 
al., 2009). 
Monitoring various signals from human body is presently 
an active area of research and development. 
Increasingly, monitoring devices are becoming wireless 
to allow patient mobility. Another trend is to connect 
monitoring devices into a network  using  wireless  sensor 
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nodes (Behcet et al., 2006). The close connection with its 
immediate physical environment allows sensors to 
provide localized measurements and detailed information 
which is hard to be obtained traditional manual 
measuring approaches. Two of the most important 
technologies that have emerged in these years are Radio 
Frequency Identification (RFID) and Wireless Sensor 
Networks (WSN) (Ze et al., 2008).  

Recently, there is an increasing demand for long term 
continuous monitoring of biosignals. Telemedicine and 
healthcare are fast-growing issues which require new 
innovative ideas to successfully position new reliable 
products (Madjid, 2009). In order to provide a truly 
pervasive monitoring and sensing environment, a number 
of research issues have to be addressed. These include 
biosensor design, biocompatibility, wireless 
communication, power management, and autonomic 
sensing. The ubiquitous computing abilities of BSN offer 
the prospect of continuous monitoring of human health in 
any environment (home, hospital, outdoors or the 
workplace). In the past few years, RFID and WSN have 
been separately studied.  Nowadays,  wearable  solutions 
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for mobile computing and health monitoring system 
receive much attention, and wireless communication with 
integrated sensors has been adopted in daily healthcare 
monitoring system. Particularly, wearable inductor 
becomes a strong candidate for inductive coupling in 
wearable applications of less than 1cm distance. 
However, they suffer from static and dynamic variations 
during manufacturing process and operation (Seulki et 
al., 2009). Wireless technologies developed for wireless 
personal area networks (WPANs), such as Bluetooth and 
Zigbee, have been investigated to interconnect 
biomedical sensors within the body area (Shu-Di et al., 
2006).  

The integration of data from disparate sources 
improves the clinical decision-making process, especially 
in clinical situations such as the emergency room. If the 
clinical test results can be gathered and shared 
immediately, it will immensely improve the response time 
(Wee et al., 2009).  
Here, time delay in patient care represents a critical 
issue, and it is important to monitor the surgical 
competency which is becoming a major public concern in 
light of recent major surgical errors in Europe and the 
U.S. (Rachel et al., 2009). 
The major objective of modern health care is to ensure 
that patients are treated in a community setting and 
supported at home when ever possible. Therefore, the 
main motivation in the clinical requirement is to obtain 
activity profiles of patients using a minimal number of 
sensors without affecting the patient’s behavior or daily 
routine (Louis et al., 2009). Typically, in-home monitoring 
systems a variety of vital signals such as heart rate, 
blood pressure, oxygen saturation, body weight and 
temperature are usually sent via phone lines to a central 
monitoring unit where a health professional reviews the 
information and responds appropriately. There is no cost-
effective in such type of monitoring system, and thus, 
most monitoring companies rely on phone lines (He, 
2008).  
The Wireless Body Area Networks (WBAN) is network 
whose nodes are usually placed close to the body on or 
in everyday clothing. To successfully deploy body area 
networks that can perform long-term and continuous 
healthcare monitoring, it is critical that the wearable 
devices be small and lightweight (Shuo et al., 2009). The 
significant advance in remote monitoring is the integration 
of the active sensor nodes which are considered for a 
variety of applications due to the low-cost, low-power, 
and multifunctional aspects (Patricia, 2007).  

Another application of wireless communication for data 
monitoring system is the Global Positioning System 
(GPS) technology. GPS can provide position information 
with accuracy to a few millimeters in near real-time. It is 
widely used in navigation and has become an established 
technique in geodesy (Knecht and Manetti, 2001; (Gethin 
et al., 2003).To allow unlimited subject’s mobility, long- 
distance   wireless   communication   is   used   such   as 

 
 
 
 
General Packet Radio Service (GPRS) (Piotr, 2010).  

The recent movement toward intelligent micro grids and 
the continued pressure on utility companies to provide a 
more reliable service to customers have amplified the 
importance of robust, real time communication between 
remote points of the network and the control room. One 
way to achieve this is the use of the existing power line 
infrastructure as the communications medium, a process 
generally known as PLC (Robson et al., 2010). AC Power 
Line Communication technology is being used in many 
applications for example (Adnan et al., 2009) low rate of 
transfer of data in smart home, automation system, 
remote metering for electricity billing and light controlling 
system. PL for data communication offers several 
advantages: 1) Total cost of new installation of PLC 
system result in saving cost of new wires and labour 
charges. 2) Availability of PL outlet/ socket makes PLC 
technology flexible. 3) Regarding industrial uses, 
because of place and environment limitations imposed by 
the infrastructure of factories and power plant, new 
installation of extra wiring for monitoring purposes 
present several difficulties. 

Communication in a PL network must occur at three 
levels – high voltage (HV), medium voltage (MV) and low 
voltage (LV). The HV network consists of strategically 
positioned major substations within the supply region. 
The MV network consists of many distributor substations 
that are linked to the major HV substations via branched 
networks or underground or overhead MV cable. 
Residential consumers are connected to the LV network 
and no communication infrastructure exists at this level 
(Poobalan and Sunil, 2006).  

Presently, the demand for broadband internet service is 
increasing dramatically. However, these services are 
usually given to urban areas since building cost of 
communication networks is very high, thus, the services 
are not profitable in rural areas. Due to the 
aforementioned reasons of the high cost establishment, a 
PLC using pre-established PL becomes more attractive 
for high data rate internet and Voice over Internet 
Protocol (VoIP) services (Jae-Jo et al., 2005; Lin et al., 
2009;  Yu and Zhaoyu, 2009;  Qi-Song and Xiao-Wei, 
2008). Similarly, PLC can also be used to transfer the 
medical data of the patients to the doctor, such that the 
doctors can view transferred data and give their 
comments.  

Brain Computer Interface is one of hopeful interface 
technologies between human and machine. However, 
brain waves are very weak and there exist many kind of 
noise due to the distance of data transferring (Kenji and 
Kiyoto, 2006). The conventional methods used for 
distance data monitoring of neural electrical activity 
changes rely on detecting the presence of particular 
signal features by a human observer. Due to large 
number of patients in intensive care units and the need 
for continuous observation of such conditions, several 
techniques for automated data monitoring and analyzing
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Figure 1. System architecture of the detected signals.  

 
 
 
have been developed, the application of adaptive neuro-
fuzzy inference system has been proposed for 
classification of ECG signals (Elif, 2009). Neural network 
analysis on heart rate variability data was used to assess 
driver fatigue (Patel et al., 2011). Numerous approaches 
derived from the theory of signal analysis have been 
implemented to obtain representations and extract the 
features of interest for classification purposes (Ling et al., 
2009). 

In this paper, a simulation study of data transmission 
over PLC based on Orthogonal Frequency Division 
Multiplexing (OFDM) technique has been carried out 
using Matlab program. A wireless communication system 
for medical data transferring is tested and the preliminary 
results are presented. In addition, a developed 
programming model is utilized to simulate the electrical 
activity of human body signals.  
 
 
Body's electrical signals 
 
Bioelectric signals result from the electrical response of 
physiological systems and the sources of these signals 
are transient changes. In particular, bioelectric signals 
arise from the time-varying transmembrane potentials 
seen in nerve cells (neuron action potentials and 
generator potentials) and in muscle cells, including the 
heart (Robert, 2004). 

Therefore, before describing and analyzing the required 
electronic circuits covering the main components such as 
amplifiers and filters to improve the signals, it is 

appropriate to describe the sources and properties of 
these signals (That is, their bandwidths, distribution of 
amplitudes, and noisiness). Generally, the biomedical 
signals can be subdivided into two major classes (Volmer 
and Orglmeister, 2008). 
 
 
Endogenous signals 
 
These signals are arising from natural physiological 
processes and measured within or on living creatures 
using the following indicators: 1) Electroencephalogram 
(EEG); 2) Respiratory rate; 3) Temperature; and 4) Blood 
glucose. The system architecture of the body sensor 
network with coordinator of such signals is depicted in 
Figure 1.  
 
Exogenous signals  
 
These signals are applied from without (generally 
noninvasively) to measure internal structures and 
parameters. Electrical impulses from the heart muscle 
cause the heart to beat. The impulse is an electrical 
signal begins in the sinoatrial node (SA), located at the 
top of the right atrium. While an electrical impulse is 
released from SA, it causes the atria to contract. The 
signal then passes through the atrioventricular (AV) node. 
The AV node verifies the signal and sends it through the 
muscle fibers of the ventricles, causing them to contract. 
The SA node sends electrical impulses at a certain rate, 
but the heart rate may still change depending on physical 
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Table 1. Normal amplitude and time period values for ECG parameters. 
 

Amplitude Duration 

Wave Signal voltage (mV) Wave Time (sec) 

P – Depolarization of atria 0.25 P-R Delay of AV node to allow filling of Ventricles 0.12 –0.20 

R – Contraction of ventricles 1.60 Q-S Depolarization of ventricles 0.35 – 0.44 

Q – Depolarization of ventricles 0.4 S-T  Beginning of ventricle repolarization 0.05 – 0.15 

T – Ventricular repolarization 0.1 - 0.5 P- Depolarization of atria 0.11 

 
 
 

 
 
Figure 2. The graphical representation of the heart sounds signals. 

 
 
 
demands, stress, or hormonal factors. The ECG wave 
contains information about the electric rhythm, electric 
conduction, muscular mass, presence of arrhythmia 
(irregular heart beat), ischemia (lack of blood flow) and 
infraction. A typical amplitude and duration of ECG wave 
are illustrated in Table 1. The graphical representation of 
sounds produced by the heart beating and flow of the 
blood are shown in Figure 2. The first heart sound (S1) is 
produced due to the closure of atrioventricular valves. It 
is loudest and the longest of all the heart sounds and its 
duration is about 140ms. It consists of vibrations of low 
frequencies and the frequencies range from 10 Hz to 200 
Hz. The second heart sound (S2) is produced due to the 
closing of the aortic and pulmonary valves. It is of shorter 
duration (110ms) and consists of two high frequency 
components. The third heart sound (S3) is mainly caused 
due to the rapid filling of the ventricles during early 
diastole. The fourth heart sound (S4) is produced due to 
the late diastolic filling after the contraction of the atria 
(Eugenijus, 2011; Abbas and Rasha, 2009). 

The human brain is a complicated system, and exhibits 
rich spatiotemporal dynamics. EEG is one of the most 
important tools among amounts of techniques probing 
brain activity. It is especially useful in diagnosis of 
neurological diseases (Rosso et al., 2004; Hazarika et al., 
1997). The electrical signals of the brain can be 
measured by means of brain cells activity using EEG 
Electrodes on the scalp. The different waveforms with 
their frequency and voltage generated by the brain are 
illustrated in Table 2. Low amplitude beta with multiple 
and varying frequencies is often associated with active, 
busy or anxious thinking and active concentration (Ling et 

al., 2009). Other signal of human body is generated by 
the body temperature in many ways like a machine. 
Every time the human body does work of any sort, heat is 
generated, in much the same way as heat is generated in 
machines by friction. The variation of the actual output 
signal due the change in temperature is the indication of 
the body condition. 
 
 
System modelling of power line channel 
 

The high frequency signal of power line channel is mainly 
interfered by various additive noises. Such noises are 
presented in the block diagram as seen in Figure 3. The 
high frequency interference environments of PL can be 
divided into the following types of noise (Zimmermann 
and Dostert, 2002; Ma et al., 2010):  
 

1. Colored background noise; 
2. Narrow band noise 
3. Periodic impulse noise synchronous with power 
frequency 
4. Non-periodic impulse noise 
5. Burst noise 
6. Additive white Gaussian noise  
 

The simulated model of PLC is illustrated in Figure 3 and 
the frequency response of the multipath PLC is given by 
(Zimmermann and Dostert, 2002).  
 

 ∑
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Table 2. Normal values for EEG parameters and its waveforms. 
 

Wave 
Frequency (Hz) Voltage (µV) Subject condition 

Generated  Pattern 

Beta 
 

14 – 30 10 – 20 Activity, thinking 

Alpha 
 

8 – 13 
Kids – 75 

Adult – 50 
Relax, closed eye 

Theta 

 

4 – 7 
Kids – 50 

Adult – 10 
Light sleep, emotional stress 

Delta 
 

0.5 – 3 10 mV Profound sleep 

 
 
 

 

Narrowband Noise Burst Noise Gaussian Noise 

Input Signal Channel Impulse 

Response 
Summing Unit Received Signal 

Colored Background 

Noise 

Periodic Impulse 

Noise 

Non – Periodic Impulse 

Noise 
 

 
Figure 3. Simulated model of power line channel. 

 
 
 

Where, i  - number of the path (for short delay 1=i ); 
i

τ - 

delay of a path; 
i

d - length of path i ;
i

g - weighting factor 

for path. 
 

The transmission of data on PLC is achieved by using 
OFDM. This technology is transmitting multiple signals 
simultaneously over a single transmission path, such as a 
cable or wireless system. It offers resistance against 
multipath, burst noise, frequency interference, dispersion, 
fading and distortion. Figure 4 shows the transmission 
and reception of data using OFDM model. The stored HR 
data in the system is transmitted on the PLC model using 
OFDM technology. OFDM technique is applied in the 
following way: Inverse Fast Fourier Transform (IFFT) is 
implemented at the transmitter and Fast Fourier 
Transform (FFT) at the receiver so that the Inter-Symbol 
Interference (ISI) channel is modified into parallel ISI-free 
sub-channels with gains equal to the channel’s frequency 
response values on the FFT grid. To eliminate Inter Block 
Interference (IBI) between successive IFFT processed 
blocks, Guard Interval (GI) of length not less than 
channel order is inserted in the entire transmitted block. 
In the receiver, GI is discarded in order to suppress IBI 
and converts the linear channel convolution into circular 
convolution (Zimmermann and Dostert, 2002; Wang et 
al., 2004). In OFDM transmission, the information 

symbols )(ns  are first converted into parallel blocks of 

length N  as given in (2) and IFFT is performed on the 

blocks )(isF
H

N
; 

 
T

NiNsiNsis )]1(),...,([)( −+=                            (2) 

 
 
The proposed framework of intelligent neural 
monitoring system  

 
The system architecture includes three main subsystems, 
the devices for signals capturing, communication 
channels and intelligent software for system monitoring 
and interfacing. The procedures of the overall real time 
data monitoring system approach are: 1) Acquiring the 
electrical activity signals; 2) Processing of the biosignals; 
3) Multiplexing the biosignals; 4) Transmitting the 
Multiplexed biosignals; 5) Reception of multiplexed 
biosignals; 6) De-Multiplexing the biosignals; 7) 
Displaying the biosignals separately; 8) Neural Interface 
and Analysis of signals; 9) Extraction of required 
features. 

The electrical signal of human body (biosignals) will be 
first acquired and processed after removing the noise and 
the artifacts. Processing of the signals is achieved using 
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Serial to Parallel 
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Placing Guard Interval 

Channel 
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FFT 

Parallel to Serial 

Decoding 
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Figure 4. OFDM transmission and reception model. 

 
 
 
Digital Signal Processor (DSP). The signals from the 
measuring and signal processing unit are converted from 
analog to digital converter. The analog to digital converter 
is used to convert the real continuous signal to discrete.  

These discrete signals will be then multiplexed together 
and transmitted as shown in Figure 5. In the receiver, 
signals will be de-multiplexed and separated. The DSP 
processor in the receiver side will process and convert
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Figure 5. Block diagram for acquiring and transmission of biosignals. 
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Figure 6. Block diagram for reception and analyzing of biosignals. 

 
 
 
the discrete signal to continuous signal using Digital to 
Analog Convertor (DAC) as seen in Figure 6. These 
biosignals will be analyzed using the Neural Interface 
Unit and Electrical Signal Analysis block, after that, the 
required feature will be extracted.  Two methods are 
utilized to transmit the signals; the first is by using 
wireless such as Radio Frequency (RF), specification for 
a suite of high level communication (zigbee) or GPS. The 
second method is PLC.  

The block diagram of the overall INMS is shown in 
Figure 7. As seen from this figure, the electrical activity of 
the human body will be recorded in real time using the 
data acquisition module. The established data in the 

intelligent agent is stored in the patient database unit as 
well as transmitted through communication channel. The 
function of the neural interface unit is to compare the 
received data with the clinical database and for decision 
making.  

The Intelligent agents have their origins in distributed 
artificial intelligence.  Each agent is an independent 
methodology with reasoning capabilities working on a 
prescribed task. The intelligent agent implemented at a 
router should pose minimal computational overload. 
Here, the neural interfacing is used to get a faster 
classification for human body signals obtained by ECG, 
EEG etc. In neural network model, the node will consist 
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Figure 7. Overall block diagram of INMS. 

 
 
 

 
 
Figure 8. Neural network computation. 

 
 
 
of inputs, weighted values and activation functions as 
shown in Figure 8. Each signal received from the input 
neurons is multiplied the corresponding connection 
strength, that is, weight. The Sums of weighted signals 
are passed through an activation function to the output 
neuron. Denoting the input signal by a 

vector ),...,,( 21 nxxxX and the corresponding weights to 

unit j by ),...,( 21 jnjjj
wwwW , the net input to the 

unit j is given by (Rezaul et al., 2006): 

 

 ∑ +=+=

n

jjojnj bXWWXWnet                   (3) 

 

Where,  bw jo = is a special weight called bias whose 

input signal is always +1. 

The first pre-processing step is to collect training data 
sets (Electrical signal) recorded from human body. These 
data sets are used to train the network and obtaining the 
normalized values. In the majority of cases, detection of 
abnormal waves needs a preliminary feature extraction 
step, in which characteristics from the signal in time, 
frequency or time-frequency are extracted. The pattern 
recognition step involves the testing of intelligent systems 
dealing with the extracted and selected information in the 
previous step. 
 
 
RESULTS AND DISCUSSION 
 
A preliminary study of real time data transfer for the heart 
rate and temperature of human body was conducted 
using RF technology. Heart rate is measured by 
sentencing the pulse of the body. This pulse can be 
found at any point on the body where the pulse can be 
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Figure 9. Hardware for heart beat rate measuring. 

 
 
 

 
 
Figure 10. Hardware for body temperature measuring. 

 
 
found at any point on the body where the artery’s 
pulsation is transmitted to the surface. Figure 9 shows 
the displaying value of the heart beat detected by sensor. 
Generally, the heat within the body is produced by the 
heart and circulatory system. Figure 10 shows the 
displaying temperature measured by temperature sensor. 
Different parts of the body have different temperatures. 
The commonly accepted average core body temperature 
(taken internally) is 37.0°C (98.6°F). The typical oral 
(under the tongue) measurement is 36.8±0.7°C 
(98.2±1.3°F). 

The transmitter and receiver modules are shown in 
Figures 11 and 12 respectively. In the transmitter side, 
heart rate and temperature are measured and transmitted 
by means of RF technology. In the receiver, the RF 

signals are decoded and the heart rate and temperature 
are displayed. The measured values of the heart rate and 
temperature for certain time with regular time interval are 
illustrated in Table 3. As seen from this table, whenever 
there is a raise or fall in temperature, the heart rate also 
varies with temperature.  

As for the PLC, a simulation study of data transmission 
has been carried out using Matlab program. The HR data 
measured by the prototype shown in Figure 9 is 
transmitted over PLC based on OFDM technique. This 
hardware was tested to assure the performance of 
sensor. To insure the high efficiency of the system, BER 
is applied to evaluate the performance of the OFDM.  The 
results of this study are graphically shown in Figures 13, 
14 and 15. These Figures show the BER Signal-to-Noise 
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Figure 11. Transmitter module.   

 
 

 

 
 
Figure 12. Receiver module. 

 
 
 
Ratio (SNR) for different IFFT. In the simulation, the size 
with guard time was changed in the range of 20, 32, and 
48 as seen in Figures 13, 14 and 15 respectively. From 
these figures, it is seen that as the IFFT size is increased 
the BER is decreased. When guard time is more  than  25  

percentage of IFFT size, the BER is reduced.  
A certain analysis on the ECG signals such as FFT, 

Continuous Wavelet Transform (CWT), Histogram 
equalization and Power Spectral Density (PSD) were 
carried out and the corresponding output waveforms are 
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Table 3: Measured values of the heart rate and temperature 
 

Time Temperature Beats/ Minute 

10:00 33 60 

10:05 33 61 

10:10 34 66 

10:15 34 68 

10:20 35 72 

10:25 33 61 

10:30 35 73 

10:35 36 82 

10:40 36 81 

10:45 35 76 

10:50 35 74 

10:55 34 68 

11:00 35 75 

 
 
 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

Heart Rate - 75 & Transmission by OFDM Technique;  Guard Time = 20

SNR in dB ---->

B
E

R
 *

1
0

-3
 -

--
->

 

 

IFFT = 128

IFFT = 256

IFFT = 512

IFFT = 1024

IFFT = 2048

 
 
Figure 13.  BER SNR  (guard time = 20). 

 
 
 
demonstrated in Figures 16 to 20. The continuous ECG 
signals are depicted in Figure 16. FFT is an efficient 
algorithm to compute the discrete Fourier transform 
(Robert, 2004).  It can be used for non-stationary signals, 
where spectral components exist in the interested 
signals. As seen from Figure 17, when FFT is applied to 
the simulated ECG signal the output is scattered and no 
details can be inferred from that since it decomposes the 

signal into its frequency component and amplitude. 
Histogram equalization is a method in image processing 
of contrast adjustment using the image's histogram 
(Robert, 2004).  When histogram equalization is 
performed for the ECG signal a peak appears in the 
range from 4 to 7 as shown in Figure 18.  

CWT is used to divide a continuous-time function into 
wavelets.  Unlike  Fourier transform,  the  continuous 
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Figure 14.  BER SNR (guard time = 32). 
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Figure 15. BER SNR (guard time = 48). 

 
 
 
wavelet transform possesses the ability to construct a 
time-frequency representation of a signal that offers very 
good time and frequency localization (Sabarimalai and 

Dandapat, 2007).  When ECG signal is subjected to CWT 
few peak in the range of 150 to 300 in the sampled region 
as seen in Figure 19.  PSD is a positive real function of a 
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Figure 16. Continuous ECG waveform.  
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Figure 17. Output after applying FFT.  

 
 
 
frequency variable associated with deterministic function 
of time, which has dimensions of power per Hz, or energy 
per Hz. Intuitively, the spectral density captures the 

frequency content of a stochastic process and helps 
identify periodicities (Patel et al., 2011).  PSD is 
estimated using periodogram method. Figure 20 shows 
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Figure 18. Output after applying Histogram. 
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Figure 19. Output after applying CWT.  

 
 
 
the output after applying PSD on the ECG signal. It is 
used to check whether the person is in aware and 
exhaustion states. 

CONCLUSION 
 
This paper presents a review on the techniques used for 
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Figure 20. Applying PSD for the simulated ECG waveform. 

 
 
 
medical data monitoring systems. A prototype of 
measuring system with wireless medical data transfer 
based on RF is tested. A developed simulation scheme 
was implemented using Matlab program for PLC as a 
channel to transmit the HR using OFDM technique. The 
simulation results on the signals of human body detected 
by ECG were analyzed using different method. In 
addition, a framework of INMS based on PLC was 
discussed for feature works on this project. It is noted that 
the noise is the most crucial factor degrading high-speed 
data transmission over PL networks. However, PLC has 
the advantage of being an independent communications 
network where existing cable infrastructure can be used 
for dual purposes. The availability of PLC technologies is 
increasing rapidly and provides huge opportunities for 
home monitoring applications in particular for outpatients 
and patients suffering from chronic diseases. 
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